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Abstract
Electrical muscle stimulation demonstrates potential for preventing muscle atrophy and for
restoring functional movement after spinal cord injury (SCI). Control systems used to optimize
delivery of electrical stimulation protocols depend upon the algorithms generated using
computational models of paralyzed muscle force output. The Hill-Huxley-type model, while being
highly accurate, is also very complex, making it difficult for real-time implementation. In this
paper, we propose a Wiener-Hammerstein system to model the paralyzed skeletal muscle under
electrical stimulus conditions. The proposed model has substantial advantages in identification
algorithm analysis and implementation including computational complexity and convergence,
which enable it to be used in real-time model implementation. Experimental data sets from the
soleus muscles of fourteen subjects with SCI were collected and tested. The simulation results
show that the proposed model outperforms the Hill-Huxley-type model not only in peak force
prediction, but also in fitting performance for force output of each individual stimulation train.

1. Introduction
After spinal cord injury (SCI), the loss of volitional muscle activity triggers a range of
deleterious adaptations. Muscle cross-sectional area declines by as much as 45% in the first
6 weeks after injury, with further additional atrophy occurring for at least 6 months [1].
Muscle atrophy impairs weight distribution over bony prominences, predisposing
individuals with SCI to pressure ulcers, a potentially life-threatening secondary complication
[2]. The diminution of muscular loading through the skeleton precipitates severe
osteoporosis in paralyzed limbs. The lifetime fracture risk for individuals with SCI is twice
the risk experienced by the non-SCI population [3]. Rehabilitation interventions to prevent
post-SCI muscle atrophy and its sequel are an urgent need.

Functional electrical stimulation (FES) after SCI is an effective method to induce muscle
hypertrophy [4, 5], fiber type and metabolic enzyme adaptations [6, 7], and improvements in
torque output and fatigue resistance [8-10]. New evidence suggests that an appropriate
longitudinal dose of muscular load can be an effective anti-osteoporosis countermeasure [8,
11, 12]. Electrical muscle stimulation also has potential utility for restoration of function in
tasks such as standing, reaching, and ambulating. The myriad applications for electrical
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stimulation after SCI have created a demand for control systems that adjust stimulus
parameters in real-time to accommodate muscle output changes (potentiation, fatigue) or
inter-individual force production differences. To facilitate the refinement of control system
algorithms, mathematical models of muscle torque output are continuously being developed.
To most successfully adapt stimulus parameters to real-time muscle output changes, an
accurate and easy-to-implement model is essential.

Over the last decades, researchers have developed a number of muscle models aimed at
predicting muscle isometric force output [13-16]. The Hill-Huxley-type model [15] is the
most advanced and accurate mathematical model put forward to date [17, 18]. However, its
complexity undermines its usefulness for on-line identification and real-time implementation
for control. Identification of a Hill-Huxley-type model is non-trivial because it is time-
varying, high dimensional and nonlinear. Local minimum versus global minimum is always
a difficult issue, and a user must tune identification algorithm parameters patiently
(including the initial estimate) in order to have a good result. FES fatigue models have been
also developed [19-21] based on the Hill-Huxley-type model for individual stimulation
trains. Due to the structural complexity and convergence issues, the fatigue model is
identified off-line, which is not suitable for applications that require real-time adaptations.

Hunt and his colleagues [22] proposed a Hammerstein system for non-fatigue force
modeling from signal processing point of view, but the model was deemed inadequate for
muscle modeling. By examining the experimental data sets and the system, we noted two
problems. First, a linear block prior to the nonlinear block was missing and secondly, the
static nonlinearity seemed suboptimal. To that end, we have proposed a Wiener-
Hammerstein model for modeling paralyzed skeletal muscle dynamics under electrical
stimulation [23].

In this paper, we extend the model to both fatigue and non-fatigue cases. By using actual
soleus force data from fourteen subjects with SCI, we demonstrate that the advantages of the
proposed model over previous ones are theoretically justified and numerically verified.

2. Material and Methods
A typical electrical stimulation and the corresponding muscle force responses are shown in
Fig. 1. The electrical stimulation pattern is composed of a number of trains (124 trains in
Fig. 1) denoted by pulses and the corresponding forces output is represented by thick curves.
We observe that the peak force of each train decreases as the number of the trains increases,
though the input stimulation pattern remains the same, a phenomenon referred to as fatigue.
The purpose of the modeling is to find a mathematical model that describes force output
under the given stimulation pattern for each individual train and also captures the fatigue
phenomenon.

2.1 The Hill-Huxley-Type Fatigue Model
The Hill-Huxley-type Model [13, 19] is the most accurate model in the literature to describe
the isometric muscle force during non-fatigue and fatigue conditions and is given by a set of
equations (1) - (5).

(1)

Cai et al. Page 2

Biomed Signal Process Control. Author manuscript; available in PMC 2013 May 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(2)

(3)

(4)

(5)

Equation (1) and (2) describe the stimulated muscle behavior for each individual stimulation
train, while Equations (3) - (5) govern the fatigue effect via varying the parameter A, R0 and
τc. In Equation (1) and (2), ti is the time of the ith stimulation input and CN is the (internal)
state variable, while A, and R0 are gains, and y(t) is the force output and τ1, τ2, and τc are
the time constants. Note no actual input amplitude is directly used but only the input time
sequence ti is used. The effect of the input amplitude is automatically adjusted by the
parameters Ri and τc. In Equations (3)-(5), αA, αR0 and ατc are decaying parameters and
τfat is recovery rate. These four parameters control the fatigue model. Arest, R0,rest and τc,rest
are the parameter values at the initial (non-fatigue) stage which have to be identified from
the non-fatigue model (1) and (2). Note that output force is involved as a feedback in
Equations (3) - (5).

To identify the Hill-Huxley-type model, an offline multi-step method is used [19]. First, it
needs to fix τc = 0.02 (seconds) to obtain the other two time constants τ1 and τ2, which are
fixed at the obtained value in the next step; then parameters A, R0, and τc will be identified
for each individual stimulation train. The last step is to derive the fatigue parameters αA,
αR0, ατc and τfat by using the actual force output. This procedure is time-consuming and has
to be done offline due to the complexity of the model and algorithm which cause local
minimum problems.

2.2. The Wiener-Hammerstein Fatigue Model
The proposed Wiener-Hammerstein model for single stimulation train is shown in Fig. 2 (a)

with the nonlinearity , where B and A are unknown parameters which are adjusted for
each individual subject. The system is in the discrete time domain for easy use of digital
computers. The input u(kT) is the electrical stimulus (in volts) at time kT where T (=0.2ms
in the paper) is the sampling interval and the output y(kT) is the muscle force at time kT.
The internal signals, v(kT) and w(kT), are unavailable. The linear blocks prior and after the
nonlinearity are the first order dynamic systems. The Wiener-Hammerstein model resembles
the structure of the Hill-Huxley-type model but at a much reduced complexity. By
decomposing middle block into three blocks (Fig. 2 (b)) and combining the gains B and A /
B with a0 and b0, respectively, we obtain the following system in Fig. 2 (c), where a2 = a0B

and . This normalization process greatly simplifies the identification problem,
reducing the number of unknown parameters from six to four. Also, no additional sequence
of ti's is needed, which is not the case for the Hill-Huxley-type model. It is important to
comment that the system in Fig. 2 (c) is identical to the system in Fig. 2 (a), from input to
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output point of view, though the complexity is greatly reduced. The identification algorithm
and convergence analysis of Wiener-Hammerstein model for single train (non-fatigue) are
described in [23].

In this paper, we concentrate on the Wiener-Hammerstein fatigue model, which is developed
upon the Wiener-Hammerstein model for a single stimulation train. From Fig. 2, the fatigue
model is described by the following set of equations (6) - (9):

(6)

(7)

(8)

(9)

In Equation (6), b2 (p), b1 (p), and a1 (p) are the parameters of pth (p>2) train in the
stimulation pattern,  is the saturation function defined the same as in Fig. 2 (c), and
yp (kT), up (kT) are the force output and stimulus input for the pth stimulation train. Note
that in the fatigue model, we set a2 (p) = 1 for all stimulation trains because the fitting
performance is not sensitive to a2 and it also reduces the number of parameters to three for
each individual train. For stability reason, we set 0 ≤ b1 (p) ≤ 1 and 0 ≤ a1 (p) ≤ 1. Time
varying nature of the parameters b2 (p), b1 (p) and a1 (p) reveals the muscle fatigue effects
(Equations (7) - (9)). It is reasonable to assume that the parameters for each individual train
are slow varying. Therefore, they can be predicted by the extrapolation of the previous two
(or more) corresponding parameters. In Equations (7) - (9), αa1 (p), βa1 (p), αb1 (p), βb1 (p),
αb2 (p) and βb2 (p) are the coefficients, and they are obtained through the iterative (least
squares) method.

(10)

Similarly,

(11)
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(12)

It is commented that to calculate αa1 (p), βa1 (p), αb1 (p), βb1 (p), αb2 (p) and βb2 (p), only
the data up to p-1 trains are needed. This causal property is important which makes
identification in real-time feasible.

2.3. Identification of the Wiener-Hammerstein system
Identification of the Wiener-Hammerstein non-fatigue model (single train
stimulation model)—Before presenting the identification algorithm for the Wiener-
Hammerstein fatigue model, we need to show the method to identify the Wiener-
Hammerstein non-fatigue model or the parameters in Equation (6) for a given pth single
stimulation train. Let θ (p) = [a1 (p), b1 (p), b2 (p)] denote the unknown system parameters
for the given p. The purpose of this identification is to determine their estimates

 based on the available pth stimulation train input up (kT) and
corresponding output yp (kT). Let ŷp (kT) be the predicted output calculated using the
estimates

(13)

The identification problem is to find the best parameter set

, which minimizes the sum of squared errors between
the actual output yp (kT) and the predicted output ŷp (kT) of the proposed model

(14)

Obviously, (14) is a nonlinear optimization problem because of the involvement of the
nonlinear function f and thus in general, local minimum is always a tough issue. However,
we show that this is not a problem for the minimization of (14).

Suppose a value of â1 (p) is given, the internal signal  can be
calculated. Based on this internal signal and the model ŷp ((k + 1)T) = b̂1 (p) ŷp (kT) + b̂2
(p) ŵp (kT, â1 (p)), The optimal value of b̂1 (p) and b̂2 (p) with given value of â1 (p) are the
solution of
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(15)

By taking the derivative of the above cost function with respect to b̂2 (p) and setting it to
zero yields

(16)

which is well defined provided . Now replacing b̂2
(p) by b̂1 (p), the optimization (15) becomes one-dimensional. By visualizing the cost
function versus b̂1 (p) ∈ [0, 1] in Fig. 3, it is easily seen that there is only one (global)
minimum in that range. Then, any nonlinear optimization algorithm can be used to find the
global minimum. Finally, the optimal b̂2 (p) is obtained from b̂1 (p) as in (16). This process
guarantees a unique optimal solution b̂1 (p) and b̂2 (p) for given â1 (p), written as

(17)

and the minimization problem (14) of three parameters becomes the minimization problem
of one parameters

(18)

Although the minimization problem is simplified from (14) to (18), (18) is still nonlinear.
However, it is one-dimensional and the cost function J versus â1 (p) can now be easily
plotted and visualized as shown in Fig. 4. It is clearly shown that there is one (global)
minimum for â1 ∈ [0, 1], precisely in the range â1 ∈ [0.98, 1]. In fact, for both minimization
problems (16) and (18), we have found that, for all tested subjects, there is only one (local
and global) minimum. Then any nonlinear optimization algorithm can be used to find the
global minimum. We now summarize the identification algorithm for single train response
(non-fatigue).

Single train (non-fatigue) model Identification algorithm: Given the data set up (kpT), yp
(kpT) of pth stimulation train and kp = 1, 2, ···, Np,

1. For each â1 (p), use any nonlinear optimization algorithm to find the optimal b̂1 (p)
and b̂2 (p) of (15).

2. Apply any nonlinear optimization algorithm to find the optimal â1 (p) ∈ [0, 1], and
compute the corresponding b̂1 (p) and b̂2 (p).

In the simulations, we use the modified MATLAB program ”fminsearchbnd” to solve the
nonlinear optimization problem for both Step 1 and Step 2. The MATLAB
program ”fminsearchbnd” is Nelder-Mead simplex approach based and is able to deal with
simple upper-bound and lower-bound constraints.
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Identification of the Wiener-Hammerstein fatigue model—The following is the
identification algorithm for the fatigue model.

Online fatigue model Identification algorithm: Given the data set up (kpT), yp (kpT),
where p = 1, 2, ···, N is the stimulation train number and kp ∈ {1, 2, ···, Np} with Np being
the total number of sampling data for pth stimulation train and N being the total stimulation
train number.

1. Identify the single train (non-fatigue) models for the first ks stimulation trains
respectively, which are assumed to be the non-fatigue case. Let p = ks.

2. Format the parameters â1 (p), b̂1 (p) and b̂2 (p) into A1, B1 and B2 as that in
Equation (10) - (12). Apply Equation (10) - (12) to obtain the coefficients, αa1 (p),
βa1 (p), αb1 (p), βb1 (p) and αb2 (p), βb2 (p).

3. Substituting the above coefficients into (7) - (9), we have predicted values of a1 (p
+ 1), b1 (p + 1) and b2 (p + 1) for the next stimulation train.

4. The force response ŷp + 1 (kp + 1T) of the next stimulation train is predicted by
substituting a1 (p + 1), b1 (p + 1), and b2 (p + 1) into Equation (6).

5. Collect the actual input and force output for the (p + 1)th stimulation train.

6. If p = N – 1, stop. Otherwise let p = p + 1 and go back to Step 2.

3. Collection of SCI patient data
Fourteen subjects with chronic SCI (> 2 years) provided written informed consent, as
approved by the University of Iowa Human Subjects Institutional Review Board. A detailed
description of the stimulation and the force transducing systems has been previously
reported [8-10] (Fig. 5). In brief, the subject sat in a wheelchair with the knee and ankle
positioned at ninety degrees. The foot rested upon a rigid metal plate, and the ankle was
secured with a soft cuff and turnbuckle connectors. Padded straps over the knee and forefoot
ensured isometric conditions. The tibial nerve was supramaximally stimulated in the
popliteal fossa using a nerve probe and a custom computer-controlled constant-current
stimulator. Stimulation was controlled by digital pulses from a data-acquisition board
(Metrabyte DAS 16F, Keithley Instruments Inc., Cleveland, OH) housed in a microcomputer
under custom software control. The simulator was programmed to deliver a 10-pulse train
(15 Hz; train duration: 667ms) every 2 seconds for total 124 trains. In this paper, we will
only consider stimulation at 15 Hz. This is because that muscular overload (~60% of
maximal torque) can be generated via 15 Hz supra-maximal stimulation [8] and eliciting
muscle contractions with a 1 on: 2 off work-rest cycle (Burke like protocol) with a 15-Hz
frequency induced significant low-frequency fatigue without compromising neuromuscular
transmission [24]. The ensuing soleus isometric plantar flexion torques were measured via a
load cell (Genisco AWU-250) positioned under the first metatarsal head. Torque was
amplified 500 times (FPM 67, Therapeutics Unlimited) and input to a 12-bit resolution
analog-to-digital converter at a sampling rate of 5000 samples per second. The digitized
signals were analyzed with Datapac 2K2 software (RUN Technologies, Mission Viejo, CA).

4. Results
We applied the proposed Wiener-Hammerstein model on fourteen subjects. To show the
advantages of the proposed model, we compared its performance against the Hill-Huxley-
type model. We tried to obtain the Hill-Huxley-type fatigue model using the algorithm
presented in [19] which unfortunately did not perform well. Therefore, we identified the
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Hill-Huxley model train by train using Equation (1) and (2) (with optimal τ1, τ2 identified in
advance), and denote the predicted force of each train by

(19)

with 

(20)

The actual and the predicted peak forces for the Hill-Huxley-type model are defined as

(21)

where tp is the starting time of the pth train.

The performance of the proposed Wiener-Hammerstein model is compared against the
performance of (19) - (21). It is important to note that the performance of (19) - (21) is better
than the actual Hill-Huxley fatigue model (3) - (5). Hence, the comparison appears
reasonable.

Similarly, the actual and the predicted peak force for the proposed model are defined

(22)

There are totally 124 trains and each train is composed of 10 pulses at 15 Hz with a resting
period 1337 ms (1/3rd on: 2/3rds rest). Fig. 6 shows the fits for the first and the last three
trains of the proposed model. It demonstrates the capability of fitting the actual force
response very well. The predicted parameters (a1 (p + 1) b1 (p + 1) and b2 (p + 1)) (x) in the
fatigue model based on (7) - (9) are shown in Fig. 7 along with the individually identified
ones (dot) based on the data within individual trains. This illustrates the model proposed is
capable of capturing the properties of individual trains as well as the fatigue phenomenon.
Fig. 8 shows the predicted (star) and actual (dot) peak force for subject 1. They match well
in both shape and magnitude.

Force response for individual stimulation train
For each subject, the good-of-fitness (gof) is calculated for each train and their average is
used for comparison, see Equation (23)
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(23)

The average good-of-fitness for all 124 stimulation trains of all fourteen subjects are in
Table 1. The proposed model substantially outperforms the Hill-Huxley-type model in
gofave (0.9102 vs. 0.7805). Keep in mind that the proposed model is for the prediction and
the Hill-Huxley-type model reflects only the off line identification result.

Peak force
As for the prediction performance on the peak force, we use the correlation coefficient and
good of fitness. The former is also used in [19] to show the correlation between the actual
peak force and predicted peak force, which is defined as

(24)

where F ̄pk and  are the average of actual and predicted peak force for all stimulation
trains, respectively. This measurement tells us how the predicted force correlates to the
actual peak force of each individual train. A problem with the use of correlation coefficients
is that it is unable to distinguish the discrepancy between the actual peak force and predicted
peak force due to a DC shift or scaling. That is, the correlation is a measure of association
and not agreement. For instance, the correlation coefficient could be close to one even
though the actual peak force and predicted peak force differ substantially. Consequently, a
very high correlation coefficient does not always imply a small error in predicting the actual
force. A better criterion is the good-of-fitness, widely used in identification literature. Since
we are more concerned about the peak force for each stimulation train during the FES, we
want to know how well the predicted peak force fit the actual peak fore of each individual
train defined by

(25)

Table 1 also shows the peak force correlation coefficient and good-of-fitness of the actual
and predicted peak force for the proposed Wiener-Hammerstein fatigue model and the Hill-
Huxley-type model. It is shown that the proposed fatigue model has a similar correlation
coefficient to the Hill-Huxley-type individual model (0.9988 vs. 0.9916 in R). In terms of
the gof, the proposed model outperforms the Hill-Huxley model substantially (0.8990 vs
0.6755 in gofpk).
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Statistical analysis
To compare the variability of the model, we use one-way analysis of the variance on the
numbers in the Table 1. They are shown in Fig. 9. Not surprisingly, the p-value for gofave, R
and gofpk, are 1.5×10-7, 3.7×10-2 and 7×10-4, respectively. It simply means that W-H model
has a significantly better fitting performance than the Hill-Huxley model for the obtained
data sets.

5. Discussion and conclusions
During the simulation training for patients with SCI, patients’ muscles are easily fatigued
due to the synchronizing recruitment mechanism of FES. The proposed Wiener-
Hammerstein fatigue model predicts well not only the peak force tendency (high gofpk) but
also the force output profile (high gofave) of the each individual stimulation train. However,
this fatigue model is only tested on 15Hz stimulation and has not been tested on other
frequency stimulations or hybrid stimulation frequencies, which will be addressed in
subsequent experiments.

We emphasize that this fatigue model can be identified on-line because the proposed muscle
model has a “global” optimum, which makes the model identification more efficient and
causal. Conversely, the Hill-Huxley-type model is complex and there is no guarantee of
obtaining the global optimum and is non-causal, i.e., the future data is required. Therefore,
the identification procedure is time-consuming and it is not suitable for an on-line algorithm.

We developed a Wiener-Hammerstein fatigue model, which can be performed on-line to
predict the peak force. The results show that the proposed model outperforms the Hill-
Huxley-type model while retaining a more simplified solution. Indeed, the proposed
paralyzed muscle fatigue model is very robust and has strong potential to be incorporated
into a feedback controlled FES system. We emphasize the strengths of the model are that it
is less complicated which affords the opportunity to be implemented in real-time. Our future
goals are to analyze other stimulation protocols and embed the algorithm into a real-time
feedback FES system.
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Key Points

• Because of the simple structure of the proposed model and global optimum
properties of the least squares (10) - (12), and (16) and (18)., this identification
procedure is suitable for on-line identification, that is, identify the model for
each simulation train and use those parameters to predict the force response for
the next stimulation train.

• In Equations (10) - (12), the identified parameters of the current and the
previous 2 trains are used to obtain the model parameter of the next stimulation
train. There exist many modifications. It is always a balance of accuracy,
robustness and complexity.

• The first ks trains are used to establish the initial fatigue model, and then the
parameters, a1 (p), b1 (p) and b2 (p) are updated in real-time. The exact value of
ks can be adjusted based on some criteria, for example, ks is the value that the
fatigue phenomenon is initially observed.
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Fig. 1.
Force responses (thick curves) to the stimulation pulse (thin pulses) for subject 1. The
muscle was stimulated by a sequence of trains with duration of 2 seconds for total 124
trains. Each train is composed of 10-pulses with 15 Hz frequency followed by a resting
period of 1337ms. The muscle fatigue effect is clearly shown through the reduced peak force
response of the 62nd and 124th train.
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Fig. 2.
(a): Wiener-Hammerstein muscle model. (b): The middle nonlinear block can be
decomposed into three parts. (c): The simplified Wiener-Hammerstein muscle model.
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Fig. 3.
The cost function value vs. b̂1 with given â1 = 0.9.
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Fig. 4.
The cost function J(â1 (p), h(â1 (p)) vs. â1. The right plot is the zoom of the left plot with â1
∈ [0.9, 1].
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Fig. 5.
Schematic representation of the limb fixation and force measurement system
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Fig. 6.
The force response of the first (upper plots) and the last (bottom plots) three stimulation
trains for actual output (solid) and the predicted output (dashed) for subject 1.
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Fig. 7.
Wiener-Hammerstein model parameters a1, b1 and b2 for each stimulation train of the
subject 1. x's denote the predicted parameter value and dots denote parameter value
identified using non-fatigue model.
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Fig. 8.
Peak force for each stimulation train of subject 1. Dots denote the actual peak force and stars
denote the predicted peak force.
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Fig. 9.
Box plots of the gofave, R, and gofpk of fourteen subjects for Wiener-Hammerstein model
(W-H) and Hill-Huxley-type (H-H) model, respectively.
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