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Abstract
Future generations of upper limb prosthesis will have dexterous hand with individual fingers and
will be controlled directly by neural signals. Neurons from the primary motor (M1) cortex code
for finger movements and provide the source for neural control of dexterous prosthesis. Each
neuron’s activation can be quantified by the change in firing rate before and after finger
movement, and the quantified value is then represented by the neural activity over each trial for
the intended movement. Since this neural activity varies with the intended movement, we define
the relative importance of each neuron independent of specific intended movements. The relative
importance of each neuron is determined by the inter-movement variance of the neural activities
for respective intended movements. Neurons are ranked by the relative importance and then a
subpopulation of rank-ordered neurons is selected for the neural decoding. The use of the
proposed neuron selection method in individual finger movements improved decoding accuracy
by 21.5% in the case of decoding with only 5 neurons and by 9.2% in the case of decoding with
only 10 neurons. With only 15 highly-ranked neurons, a decoding accuracy of 99.5% was
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achieved. The performance improvement is still maintained when combined movements of two
fingers were included though the decoding accuracy fell to 95.7%. Since the proposed neuron
selection method can achieve the targeting accuracy of decoding algorithms with less number of
input neurons, it can be significant for developing brain-machine interfaces for direct neural
control of hand prostheses.

Index Terms
Brain-Machine Interface (BMI); neural decoding; relative importance; neuron selection

1. INTRODUCTION
A Brain-Machine Interface (BMI) is a methodology which enables a brain to communicate
with an external device bypassing normal neuromuscular systems. Currently, a BMI has
drawn much interest as an appropriate alternative for restoring both motor control [1–4] and
sensory feedback to amputees so that they can again perceive heat, cold, pressure, and the
position of a limb in space [1]. BMI systems collect neural activities from various cortical
areas, such as the primary motor, premotor and posterior parietal cortex, and interpret the
encoded motor-intent into control commands or kinematic parameters [2–4]. Up to now,
many relevant studies have been exploited such as a closed-loop control of a computer
cursor and target tracking, reaching and grasping task of a hand [5–7].

Presently dexterous, multi fingered prosthetic limbs are under development. Neural control
of dexterous hands will require signals from a population of neurons coding for the hand and
finger movements. Hence, an important problem in neural prosthesis control is to select, and
preferably rank in terms of their relative importance, neurons coding for individual finger
movements. Solution to this problem requires a trade-offs between achieving high decoding
accuracy and low computational complexity. Since not all recorded neurons contribute
equally to the all movements, since some neurons are related weakly or not at all to the
specific movements, the use of as many neurons as possible does not guarantee high
decoding accuracy and may even degrade the performance of the decoding algorithm. In
addition, the increase in the number of input neurons puts a computational burden on finding
an optimal solution especially when the goal is to implement such decoding algorithms in an
experimental hardware [8, 9]. Therefore, developing a metric for evaluating the contribution
of neurons selected for BMI tasks is at the core of designing an efficient real-time BMI.
Researchers have developed some techniques to evaluate the relative importance and select
the best neurons coding for the information [9–12]. Sensitivity analysis and single neuron
correlation analysis through a vector linear model were proposed to quantitatively rate the
importance of neurons in neural to motor mapping [9, 10]. These analyses depend on the
decoding model and thus they are not easy to interpret from neurophysiologic points of view
[10]. In another approach, a neuron’s individual removal error was defined and then used for
representing its importance in the population vector neural decoding method [11]. Recently,
information theoretical analysis based on an instantaneous tuning model was applied to
extract the important neuron subset for neural decoding on BMI [12]. However, these
quantification methods of neurons’ importance have been developed for predicting intended
reach and cursor control and are not yet targeted towards achieving dexterous hand and
finger control. Thus, a very active area of research currently is to develop neural control of
dexterous hand prosthesis, i.e. provide realistic control strategies for actuation and control of
individual and combined finger movements [13–23]. However, methods of neuron selection
for complex finger movements, have not been well developed, and as such is the subject of
this paper.
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We present a new simple metric for quantifying the relative contribution of a neuron
towards finger movements. Based on the change in firing rate before and after the starting
moment of each instructed finger movement, we define a random variable for the change in
firing rate. Then, finding the means of each random variable over six trials for each
movement, we finally compute the variance of the means over whole movements for each
neuron. A larger variance of neural activations over each finger movement means that the
corresponding neuron is activated distinguishably for each finger movement, and it can
contribute to accurate decoding performance of all finger movements. Thus, we use these
variances as a new metric for ordering neurons. With the ordered neurons we performed
maximum-likelihood (ML) neural decoding [20] and then compared the performance with
that of randomly selected neurons. Our objective is to demonstrate an improvement in
decoding accuracy.

The remainder of the paper is organized as follows: In Section II, neuron selection based on
neural activity is developed and ML neural decoding with the selected neurons is
introduced. Section III shows the performance improvements with the selected neurons by
comparing ML decoding performances with and without selected neurons. We analyze the
decoding performance when both individual and combined finger movements are included.
Section IV presents the conclusion.

2. Neural Decoding Based on Neuron Selection of M1 Neurons
2.1. Neuronal Recordings from Motor (M1) Cortex

Three male rhesus (Macaca mulatta) monkeys—K, G, C—were trained to perform visually-
cued movements of individual fingers and the wrist movements. In addition, the monkey K
was trained to perform combined finger movements involving two digits in order to test the
decoding accuracy of more dexterous and complex movements. The monkeys were prepared
for single-unit recording by surgically implanting both a head-holding device and a
rectangular Lucite recording chamber that permitted access to the area encompassing M1
contralateral to the trained hand [18]. These recording were obtained using self-made, glass-
coated, Pt-Ir, microelectrodes. Recording tips were etched to be parabolic in shape and
approximately 10 μm wide 20 μm back from the tip [21]. There were 12 distinct individual
movements: flexion (f) and extension (e) of each of the fingers (1=thumb, …, 5=little), the
wrist (w) of the right hand, and six combined two-finger movements: f12, f23, f45, e12, e23,
e45. The monkeys placed their right hand in a pistol-grip manipulandum; this grip separated
each finger into a different slot. The pistol grip manipulandum was also mounted on an axis
allowing flexion and extension of the wrist. The monkeys were instructed to flex or extend a
single digit until a microswitch was closed. The duration of each trial was approximately 2
sec, and for analysis all trials were aligned such that switch closure occurred at 1 sec [18].
Throughout these investigations, the monkeys were cared for according to the “Guiding
Principles for Research Involving Animals and Human Beings” accepted by the American
Physiological Society [13]. A detailed description of the methods used to train the monkey
and the actual experimental protocols can be found in [12] and [13]. Single-unit activities
were recorded from 115 task-related neurons in the M1 cortex of the monkey. Independent
trials of each type of movements were recorded six times.

2.2. Ordering of Neurons by Relative Importance
To define the neural activity, we need a random variable representing firing rate of a neuron
for each finger movement. Let rn(m) be a random variable of firing rate of a neuron n for a
movement type of m. Specifically, rn(0m) denotes the baseline activity of the neuron n
before the movement of m. Then, we can define the neural activity considering only
movement by introducing the following random variable [20]:
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(1)

Since the random variable of xn(m) represents the change in firing rate before and after the
starting moment of instructed finger movement, it can be used as a metric of neuron’s
activation for respective movements. Considering the randomness of neural activity, we can
determine the neuron’s sensitivity to a particular finger movement m by obtaining the
ensemble average of xn(m), i.e., E[xn(m)]. The estimate of E[xn(m)] is usually computed by
averaging the recorded neural activation, xn(m, k), for possible training sets, that is

(2)

where P is the number of independent training sets. As P increases, the reliability of the
metric can be also improved. However, the increase of P means that more training data are
needed and thus there is a trade-off between the data size and the metric reliability. Letting
M be the total number of tested movement types, then the neuron n has M μn(m)s and each
μn(m) represents the estimate of the neuron’s activity corresponding to the movement of m.
As a result, the value of μn(m) can be considered a straightforward metric for the absolute
degree of neural activation ascertaining how much the neuron n contributes to a particular
movement of m independent of other movements. This metric, however, cannot be directly
applied for selecting the input neurons because the goal of neural decoding is to find the
unknown movement from recorded spike signals. For any metric to be available for
ascertaining the importance of a neuron when selecting an appropriate input neuron set for
neural decoding, it should reflect the relative difference of activations among all the tested
movements, not the absolute magnitude of activation for a particular movement. To achieve
this goal, we define a relative importance of a neuron n with the inter-movement variance of
neural activities as the following equation,

(3)

where μ̄n is the mean of μn(m) for the tested movements given by

(4)

For a neuron to be distinguishably activated for each finger movement, the μn(m) of a
neuron should be separable for each m so as to mitigate the probability of false detection in
the neural decoder. That is even if the μn(m) of a neuron is large for several different
movements, there could be a case where those movements are analogous to each other, then
its contribution for neural decoding becomes relatively low as shown in Fig. 1(a). On the
other hand, Fig. 1(b) shows the opposite case where a neuron is slightly activated for most
of movements but its neural activations, μn(m)s, are separable from each other, then this
neuron has high impact contribution for neural decoding. Fig. 2 briefly describes the process
to calculate the relative importance of each neuron: we compute the estimates of the neural
activities, μn(m) (m=1, …, M), for a neuron n over each trial data and then find the inter-
movement variance of the neural activities. Specially, in the ML decoding method, the
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neural activities, μn(m), represent the estimates of the ensemble means of each likelihood
function [20]. After computing the relative importance of each neuron, Vn, we can rank
neurons by Vn for neural decoding.

2.3. Neural Decoding with Selected Neurons
Neuron selection based on the proposed method of assigning relative importance of each
neuron to a given movement is independent of the model used for neural decoding and thus
may contribute to reduction of the required number of neurons for achieving the target
performance. Several different methods have been presented for decoding finger movements
from neural activity [12–20] and we can use any of these to show the effectiveness of our
neuron selection method. Specifically, we will use the ML decoding method described in
[20] which is based on Skellam and Gaussian distributions.

ML decoding estimates an unknown parameter, m, corresponding to the intended
movement, so that the probability function Pr(x1, x2, …, xN|m) is maximized, i.e.

(5)

where N is the total number of neurons used for ML decoding. Without any preference of
neurons, we may need a large number of neurons to obtain the desired decoding
performance because N neurons should be randomly selected and thus they might include
neurons irrelevant to the movement. If the limiting factor is the total number of neurons, N,
it is best to choose neurons with high importance for the movement. We choose highly-
ranked N neurons in the neurons ordered by Vn.

In order to use (5), we need to define the probability distribution function corresponding to
the random variable xn(m). In [20], Skellam and Gaussian distributions were considered and
the performance was good for both cases. Skellam and Gaussian distributions are given by

(6)

and

(7)

where Δt is the time interval for observation of neural spikes,

(8)

Ix(z) is the modified Bessel function of the first kind,

(9)

and
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(10)

Assuming that xi and xj (j≠i) are independent [24], we get

(11)

for Skellam distribution and

(12)

for Gaussian distribution, respectively.

3. Results and Discussion
The proposed method for neuron selection was examined by comparing the performance of
the ML decoding based on Skellam and Gaussian distribution, using randomly selected
neurons and highly-ranked neurons by the proposed method. In order to test the decoding
result of various finger movements, we mainly used the spike data recorded from monkey K
trained for both individual and combined finger movements. In (1), the firing rate of rn(m)
was obtained by averaging the number of spikes for 300ms after the movement of m and the
baseline activity of rn(0m) was obtained by averaging the number of spikes for 800ms before
the movement of m. As shown in Fig. 3, six independent trials were recorded for each
movement, with five trials out of them used for training, i.e., P=5, and the remaining trial
was used for testing. Thus, six different combinations can be used for training and testing in
the form of a Jackknife test. In [20], it is shown that the converged performance of the ML
decoding based on statistical estimation with five training sets (P=5). However, to make a
reliable judgment about the validity of the proposed method, we performed the ML
decoding of individual finger movements using the spike signals recorded from the other
monkeys (G and C).

If N neurons are randomly selected among total 115 neurons, there are 115CN combinations
of input sets. To raise the reliability of decoding performance, 400 input sets out of 115CN
combinations were randomly selected. On the other hand, for the rank-ordered neurons, if N
neurons are used for ML decoding, there is only one input neuron set, consisting of the first-
ranked neuron to the N-th ranked one. In order to increase the possible neuron sets, we
added next-ranked L neurons to the highly-ranked N neurons, resulting in (N+L) ranked
neurons. The value of L was empirically set to L=10 in our testing. Then, a subset of N
neurons was randomly selected from (N+L) neurons. So, the possible number of selections
becomes N+LCN and thus the total number of tested movements for neural decoding was
12×6×N+LCN in the case of 12 finger movements and 6 trials.

3.1. Estimate of Neural Activity
We first computed the estimates of the neural activities μn(m), which represent the absolute
contribution impact of each neuron for the 12 individual movements. This computation was
performed to verify capability of the metric for determining neurons’ importance. Fig. 4
shows that each neuron has various values of μn(m) for some different types of movements.
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As previously mentioned, each neuron has 12 μn(m)’s and we can get 12 rank-ordered lists
as in Table I. To clearly show the effectiveness of μn(m), we chose one ordered neuron set
out of a list of 12 ranked neurons, which corresponds to one of 12 columns in Table I. Then,
we used highly ranked neurons for ML neural decoding and compared the false detection
rates over the desired movement, which we denoted as md. Since μn(m) is most highly
related to the movement m, it reflects the lowest false detection rate (FDR) when m equals
md. Fig. 5 shows the FDRs for each desired movement, using either 5 (top) or 10 (bottom)
neurons ordered by μn(1), μn(3), μn(5), as well as the case of a random selection. In the first
case, the numbers of 1, 3, and 5 denote the finger movement f1, f3 and f5, respectively. For
both N = 5 and N = 10, the FDR was lowest when the desired movement was the same as
the movement type whose neural activity was used for ordering neurons. The difference
between the lowest FDR and those of the remaining given movement types decreased with
10 ordered neurons.

The ordered result by μn(m) only shows the activity level of each neuron involved in the
particular movement m, so it does not assure the accurate neural decoding for the remaining
11 movements. Because the desired movement is not revealed in real environments, the
neural activity is not appropriate as a metric for ascertaining the importance of neurons.

3.2. Selection of Neurons
The neural activity for the specific movement gives the information mainly related to the
specific movement and thus we need to obtain the relative importance by computing the
variance of the neural activity, Vn. For the 12 individual movements, we computed Vn for
each neuron and arranged them in the decreasing order. Fig. 6 shows Vn and μ̄n for the
ordered neurons. There we can find that some neurons have larger values of μ̄n than others.
Since μ̄n is the mean value of μn(m) for all movements, it represents the estimate of the
neural activity of the neuron n. This means that some neurons with high neural activity may
have low relative importance if they have the similar contributions for all movements. From
the plot of Vn we can also find that a knee occurs near the 10th neuron, which makes us
expect that neural decoding performance would saturate around 10 neurons.

To investigate neural dependency on movement classifications, we also calculated Vn values
for combined two-finger movements and the total movements including both individual and
combined movements. To clarify the ordering criterion, let us denote the three variances of
the individual, the combined, and the total movements by Vn,I, Vn,C, and Vn,T, respectively.
Figs. 7 and 8 show the values of Vn,C and Vn,T for the combined and the total movements,
respectively. It is clear that these three types of movement classifications have different
orderings but we need to know how the ordering is changed depending on the movement
classifications. From Table II, it can be seen that some neurons have large standard
deviations and thus are differently ranked according to movement classifications. For
example, neuron ‘K20301’, which has the largest standard deviation, is ranked 6th, 101th,
and 12th for the individual, the combined, and the total movements, respectively. From this
analysis we can predict that neural decoding of combined movements with the ordered
neurons based on the individual movement does not have comparable performance to that
with the ordered neurons by the combined movements.

3.3. Differences in Decoding Accuracy According to Selection of Neurons
The effect of neuron selection is evaluated by the ML decoding performance with ordered
neurons and with randomly selected neurons. Fig. 9 shows the improved decoding
performance by incorporating the proposed neuron selection methods. The criterion for the
neuron selection was the variance of the individual movement activity, Vn,I. As predicted in
the previous section, the decoding accuracy with only 5 neurons approaches 86.8% while the
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use of randomly selected neurons yields an accuracy of 62.3% with the same number of
neurons, and it shows a performance improvement of decoding accuracy by 24.5%. In case
of using 10 neurons, the decoding accuracy is also improved by 9.2% compared to the case
of randomly-selected neurons. Also, we know that the proposed neuron selection method is
robust to decoding algorithms because the performance improvement using Gaussian
distribution is similar to that of Skellam distribution. In addition, Fig. 9 shows the better
decoding performance than the previous selection method using the tuning depth of a
neuron, which was defined as the difference between the maximum and minimum values in
the cellular tuning [10]. In addition, we performed the ML decoding using the spike signals
recorded from the other subjects (monkey G and C) to generalize the validity of the
proposed method. In both cases, the decoding results using the selected neurons by the
proposed method show better decoding accuracies compared to the case of using randomly
selected neurons as shown in Fig. 10.

We also checked the possibility of using the estimate of the neural activity for neuron
selection. As addressed in the previous section, each estimate depends on the corresponding
movement type and thus we have to choose one of 12 estimates of μn(m) which are related
to the 12 individual movements, respectively. Fig. 9(a) shows the ML decoding performance
of individual movements using different neuron groups chosen by different criteria. As
discussed in section III. A, the use of μn(m) does not give any remarkable merit for neural
decoding because it is the partial information only corresponding to the specific movement.

Next, we tried to test the availability of the neuron selection method for decoding of the six
combined two-finger movements. Fig. 11 shows the ML decoding performance of combined
movements using the different neuron selection methods. For decoding combined
movements, the neuron-selection based on the relative importance of the combined
movement activity produced an outstanding improvement in decoding performance of
98.3% with 10 neurons. On the other hand, neuron-selection based on the relative
importance of individual movements in combined movements does not perform as well, as it
yielded an accuracy of 93.5% with 10 neurons. This means that, in order to achieve the
improved performance, we need training data for obtaining the required parameters.

Finally we tested the neuron selection methods for total movements. Fig. 12 shows the ML
decoding performance of total movements using ordered neurons or not. In this case, the
decoding performance does not converge to 100% for any of the neuron selection methods,
not even when the number of neurons was increased. Because the usual grasping or control
of an object is synthesized by the combination of many individual finger movements, the
accurate neural decoding of total finger movements is essential to implement more practical
BMI applications and requires further analysis.

3. 4. Neural Activity for Multi-Finger and Single-Finger Movements
The average decoding accuracy approaches 99.5% with only 15 neurons when individual
movements (Fig. 9(a)) and combined-finger movements (Fig. 11) are separately decoded.
However when decoding total movements, the decoding accuracy saturates at 95.7% even
with 40 neurons. This phenomenon insinuates that there may be some interrelations between
the individual and combined finger movements which confuse the decoder when decoding
total movements.

To investigate this problem, we analyzed the main cause of false detections. Table III
summarizes the total movement decoding results for each of the individual and combined
two-finger movements using 40 neurons. False detections happened mostly in decoding the
combined-finger movement tasks of f23, f45, e45 and the individual movement tasks of f5, e2,
e5. The detection-rate table shows why the two-finger flexion task of ring and little fingers
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has the poorest performance. The false detection falls mainly into the little finger flexion, f5,
which shows that control independence of finger movements affects brain activity. When the
subjects intend to flex only a little finger, the ring finger also flinches irrespective of our
intention. Therefore, the flexion of the little finger might have similar neural activity to
those of both ring and little fingers. Table III verifies our conjecture because the most false
detections for f5 appeared at f45. In the same way, we can explain the poor decoding
performance for the cases of the two-finger extension task of ring and little fingers, e45 and
of the individual extension task of the little finger, e5. Control dependence also occurs when
monkey intends to extend only the index finger corresponding to e2. In that case, the middle
finger also flinches irrespective of monkey’s intention. This makes the decoder confused in
finding the correct solution between e2 and e23. As a result, the poor decoding accuracy for
the total finger movements is likely caused by confusion between some individual
movements and combined two-finger movements.

4. Conclusion
We have presented a neuron selection method by defining the relative importance of each
neuron contributing to motor movements. Neuron selection improved the neural decoding
performance remarkably due to the use of highly-tuned neurons. Furthermore, neuron
selection may decrease the required number of neurons for neural decoding and as a result
the number of electrodes needed and the computational power to decode neural activity for
achieving dexterous finger actuation in a neuroprosthetic system. By analyzing the improved
decoding performance of single- and multi-finger movements, we have taken a step towards
the strategy of neural control of dexterous multi-fingered hand.
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Highlights

• We define the relative importance as a variance of averaged neural activation
over each stimulus.

• This can be a good measure of the separability of neural activity over each
stimulus.

• Decoding accuracy increases if highly-ranked neurons are used for neural
decoding.
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Fig. 1.
Examples of the probability distributions of the neural activities : (a) the neuron n1 is highly
activated for the movement types, m=1, 2 and 3 but it has similar expected neural activations
over each movement, (b) the neuron n2 has relatively small neural activations for the three
movements but they are activated distinguishably.
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Fig. 2.
Two steps for computing the relative importance of each neuron. P and M denote the
number of trials for training and the number of finger movements, respectively.
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Fig. 3.
Measurement of the firing rates before (rn(0m)) and after (rn(m=e2)) the starting moment of
instructed finger movement for a neuron ‘K13409’.
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Fig. 4.
Estimates of the neural activities of six randomly-selected neurons recorded from the
monkey K for each of the five individual-finger movements.
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Fig. 5.
False-detection rate for each given movement using 5 neurons (top) and 10 neurons
(bottom). Neurons are ordered by μn(1), μn(3), μn(5) and were randomly-selected.

Kim et al. Page 16

Biomed Signal Process Control. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Variance and mean of μn(m) of each neuron for 12 individual movements.
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Fig. 7.
Variance and mean of μn(m) of each neuron for 6 combined two finger movements.

Kim et al. Page 18

Biomed Signal Process Control. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Variance and mean of μn(m) of each neuron for total movements.
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Fig. 9.
Performance of the ML decoding methods in individual finger movements: (a) with ordered
neurons by the relative importance, the difference between minimum and maximum value,
the estimate of the neural activity (μn(1), 1=f1), and without any ordering based on Skellam
distribution, (b) with ordered neurons by the relative importance, the difference between
minimum and maximum value, and without any ordering based on Gaussian distribution.
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Fig. 10.
Performance of the ML decoding methods in individual finger movements with ordered
neurons by the relative importance, the estimate of the neural activity (μn(1), 1=f1), and
without any ordering based on Skellam distribution : (a) in the case of the monkey G, (b) in
the case of the monkey C.
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Fig. 11.
Performance of the ML decoding method in combined movements with ordered neurons by
the variance of the combined-finger activity, the variance of the individual movement
activity, and without any ordering.
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Fig. 12.
Performance of the ML decoding method in total finger movements based on Skellam
distribution using ordered neurons by the relative importance and randomly selected
neurons.
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Table II

Ranked list of neurons for three combinations of movement types.

Rank Individual Combined Total

1 K30803 Std= 1.1 K33600 K30803

2 K33600 0.5 K33504 K33600

3 K16301 10.1 K30803 K33504

4 K33504 1.0 K14203 K16301

5 K11800 2.8 K31702 K11800

6 K21301 56.2 K35301 K14203

7 K19205 0.0 K19205 K19205

8 K22406 0.0 K22406 K22406

9 K19500 13.3 K11600 K14801

10 K22704 6.0 K11800 K13010

: : : : :

12 K14801 K23304 K21301

: : : :

101 K13901 K21301 K13208

: : : :
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