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Abstract

One of the most promising non-invasive markers of the activity of the autonomic nervous system
is Heart Rate Variability (HRV). HRV analysis toolkits often provide spectral analysis techniques
using the Fourier transform, which assumes that the heart rate series is stationary. To overcome
this issue, the Short Time Fourier Transform is often used (STFT). However, the wavelet trans-
form is thought to be a more suitable tool for analyzing non-stationary signals than the STFT.
Given the lack of support for wavelet-based analysis in HRV toolkits, such analysis must be
implemented by the researcher. This has made this techniqueunderutilized.

This paper presents a new algorithm to perform HRV power spectrum analysis based on the
Maximal Overlap Discrete Wavelet Packet Transform (MODWPT). The algorithm calculates the
power in any spectral band with a given tolerance for the band’s boundaries. The MODWPT
decomposition tree is pruned to avoid calculating unnecessary wavelet coefficients, thereby op-
timizing execution time. The center of energy shift correction is applied to achieve optimum
alignment of the wavelet coefficients. This algorithm has been implemented in RHRV, an open-
source package for HRV analysis. To the best of our knowledge, RHRV is the first HRV toolkit
with support for wavelet-based spectral analysis.
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1. Introduction

Heart Rate Variability (HRV) refers to the variation over time of the intervals between consec-
utive heartbeats. Since the heart rhythm is modulated by theautonomic nervous system (ANS),
HRV is thought to reflect the activity of the sympathetic and parasympathetic branches of the
ANS. The continuous modulation of the ANS results in continuous variations in heart rate. One
of the most powerful HRV analysis techniques is based on the spectral analysis of the time se-
ries obtained from the distances between each pair of consecutive heartbeats. The HRV power
spectrum is a useful tool as a predictor of multiple pathologies [1], [2].
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Akselrod et al. [3] described three components in the HRV power spectrum with physiolog-
ical relevance: the very low frequency (VLF) component (frequencies below 0.03 Hz), which is
modulated by the renin-angiotensin system; the low frequency (LF) component (0.03-0.15 Hz),
which is thought to be of both sympathetic and parasympathetic nature; and the high frequency
(HF) component (0.18-0.4 Hz), which is related to the parasympathetic system. At present, there
is no absolute consensus on the precise limits of the boundaries of these three bands. In the
literature we can find authors who use slightly different bands’ boundaries [4].

There exist several HRV spectral analysis techniques. These techniques may be classified
as nonparametric and parametric [5]. The main advantage of the nonparametric methods is the
simplicity and speed of the algorithm used (The Fast FourierTransform). The main advantage
of the parametric methods is that they give smoother spectral components. However, paramet-
ric methods present problems regarding to correct model order selection. Although these tech-
niques are widely used, they have no temporal resolution. This severely limits their ability to
analyze non-stationary signals and transient phenomena. To alleviate this limitation temporal
windows are often used, so that small segments of the whole signal are analyzed. Among these
techniques we may highlight the Short Time Fourier Transform (STFT) [6]. However, time-
frequency resolution of the STFT depends on the spread of thewindow used. Thus, the STFT
has fixed time-frequency resolution: high frequency resolution implies poor time resolution and
vice versa. Conversely to Fourier, the wavelet transform performs time-frequency analysis and it
is recognized as a powerful tool to study non-stationary signals [7].

HRV analysis toolkits such as Kubios HRV [8] or aHRV [9] only enable HRV spectral analy-
sis based on the Fourier transform or parametric methods. Tothe best of our knowledge, the only
option for using the wavelet transform in HRV analysis is to manually implement the algorithms,
probably with the support of some general wavelet library. This is tedious, and prone to error.
Although some researchers have done this [10], [11], many more (especially those with a med-
ical background) choose to use Fourier-based tools, even when they know that the signal being
analyzed is non-stationary. A query in the PubMed database with the terms “heart rate variabil-
ity Fourier transform” returns 660 articles, while a query with the terms “heart rate variability
wavelet transform” only returns 145 articles. The lack of tools for carrying out HRV analysis
using the wavelet transform has made this potentially superior analysis technique underutilized
in comparison with the Fourier transform.

In this paper we present an algorithm to perform HRV power spectrum analysis based on the
Maximal Overlap Discrete Wavelet Packet Transform (MODWPT). The algorithm calculates the
spectrogram in any frequency band, allowing a certain tolerance for the position of the band’s
boundaries. The algorithm has been validated over simulated and real RR series. Its capability for
identifying fast changes in the RR series’ spectral components has been compared with the STFT
and a windowed version of the Burg method, showing that thesetechniques miss some transient
changes that are successfully identified by the wavelet transform. We have implemented the
algorithm in RHRV, an open-source package for HRV analysis publicly available on the Internet.
A previous version of this algorithm was published in [12].

Section 2 starts with a brief review of the wavelet transform, with particular attention to
the MODWPT, and then introduces our algorithm to perform HRVpower spectrum analysis.
Section 2.5 provides a short description of the implementation of the algorithm in the RHRV
package. Section 3 presents a comparison between our algorithm, the STFT and the windowed
Burg method over simulated and real RR series. Finally, the results of this paper are discussed
and some conclusions are given.
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2. Material and methods

A brief review of some important wavelet concepts for our algorithm is now given. A wavelet
is a small waveψ(t) (oscillating function) that is well concentrated in time.This function must
have unitary norm‖ψ‖ = 1 and verify the so-called admissibility condition:

∫ ∞
−∞ ψ(t)dt = 0. ψ(t)

can be translated and dilated in time, yielding a set of wavelet functions:

ψu,s(t) =
1
√

s
ψ

( t − u
s

)

, (1)

wheres > 0 is a dilation factor, andu is a real number representing the translations. Asψ

generates allψu,s functions, it is called mother wavelet.
A continuous wavelet transform measures the time-frequency variations of a signalf by

correlating it withψu,s

W f(u, s) =
∫ ∞

−∞
f (t)ψ∗u,s(t)dt. (2)

In order to make the wavelet transform implementable on a computer, both dilation and
translation factors must be discretized. This can be achieved as follows:

{

ψ j,n =
1
√

2 j
ψ

(

t − 2 jn
2 j

)}

j,n ∈ Z.
(3)

This family is an orthonormal basis ofL2(R). Orthogonal wavelets dilated by 2j can be
used to study signal variations at the resolution 2− j . Thus, these families of wavelets originate
a multiresolution signal analysis. Multiresolution analysis projects signals at various resolution
spacesV j . EachV j space contains all possible approximations at the resolution 2− j. Thus, each
decomposition level increases the spectral resolution of the decomposition, at the expense of
losing temporal resolution. Let{V j} j∈Z be a multiresolution approximation verifyingV j+1 ⊂
V j ∀ j ∈ Z and letW j be the orthogonal complement ofV j in V j−1: V j−1 = V j ⊕W j . According
to [13], the families

{

φ j,n =
1
√

2 j
φ

(

t − 2 jn
2 j

)}

n∈Z
and

{

ψ j,n =
1
√

2 j
ψ

(

t − 2 jn
2 j

)}

n∈Z
(4)

are an orthonormal basis forV j andW j , respectively, for allj ∈ Z. ψ j,n are the wavelet functions
andφ j,n are the scaling functions.

Thus, we can approximate any functionf ǫ L2(R) at resolution 2− j as

PV j f =
∞
∑

n=−∞
〈 f , φ j,n〉φ j,n =

∞
∑

n=−∞
a j[n]φ j,n (5)

and the orthogonal projection off onto detail spaceW j is:

PW j f =
∞
∑

n=−∞
〈 f , ψ j,n〉ψ j,n =

∞
∑

n=−∞
d j [n]ψ j,n. (6)

wherea j[n] andd j[n] are called the approximation and detail coefficients, respectively.
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Mallat proved [7] that both approximation and detail coefficients may be calculated using a
filter bank. Leth[n] andg[n] be the FIR filters that will be used to compute the approximation and
detail coefficients, respectively. It has been proven [13] that the filterh[n] = 〈 1√

2
φ
(

t
2

)

, φ (t − n)〉
and thatg[n] = 〈 1√

2
ψ

(

t
2

)

, φ (t − n)〉. g[n] and h[n] can be regarded as an approximation to a
high-pass filter (the wavelet filter) and to a low-pass filter (the scaling filter), respectively. By
applying recursively over the approximation coefficients the same filtering operation followed
by sub-sampling by two, we obtain the multiresolution expression of f . This algorithm, known
as the pyramid algorithm, is the most efficient way of computing the Fast Orthogonal Wavelet
Transform (FOWT) [13].

2.1. MODWPT

Given that the filtering operation is only applied over the approximation coefficients, the
FOWT only provides information on a limited set of frequencybands which need not be the ones
used in the HRV analysis. A more suitable wavelet transform is needed for our algorithm: the
wavelet packet decomposition (WPD). Instead of dividing only the approximation coefficients
a j [n], both detail and approximation coefficients are decomposed successively by applying high
pass and low pass filters to each set of coefficients.

Among the WPD transforms we have chosen the MODWPT [14] because it is less sensitive
to the starting point of the time series and it is applicable to non dyadic sequences. Furthermore,
the MODWPT avoids the sub-sampling step, and therefore it has the same number of wavelet
coefficients in every decomposition level. This simplifies computations involving different de-
composition levels.

The jth level of the MODWPT decomposes the frequency interval [0, fs/2], where fs is the
sampling frequency of the original signalf , into 2j equal width intervals (see Fig. 1). Thus, the
nth node (beginning at zero) in thejth level of the decomposition tree, the (j, n) node, is associated
with the frequency intervalfs2j+1 [n, n+ 1]. Each node will haveN wavelet coefficients associated,
N being the length of the sampled signalf . TheN-dimensional vectorW j,n will denote theN
wavelet coefficients associated with the (j, n) node.

W0,0j=0

j=1

j=2

j=3

h g

W3,4 W3,5

W2,2

g h

W3,6 W3,7

W2,3

h g

W3,0 W3,1

W2,0

g h

W3,2 W3,3

W2,1

0 1/81/16 3/81/43/16 7/165/16 1/2

W1,0

h g

W1,1

g h

h g

0 1/8 3/81/4 1/2

0 1/4 1/2

0 1/2

Figure 1: MODWPT decomposition tree with the nodes selectedto cover the band [0, 7/16] Hz. W0,0 represents the
original signal,f (t).
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MODWPT coefficients fulfill that:

‖ f ‖2 =
2j−1
∑

n=0

‖W j,n‖2 ∀ j. (7)

Therefore, given a frequency band
[

f1, f2
]

=
fs

2j+1 [k, k′ + 1], fs being the sampling frequency
andk, k′ and j integers, the spectral power in

[

f1, f2
]

, P(
[

f1, f2
]

), can be calculated from the
appropriate MODWPT coefficients. We just need to find the nodes (j, k) and (j, k′) and compute
the spectral power in the band

[

f1, f2
]

as:

P(
[

f1, f2
]

) =
k′

∑

n=k

‖W j,n‖2. (8)

2.2. Finding a proper cover for a set of frequency bands

Equation (8) can only be applied to bands that can be written as fs
2j+1 [k, k′ + 1], fs being

the sampling frequency andk, k′ and j integers. In an HRV spectral analysis the user can be
interested in bands that cannot be written this way. This forces us to permit a certain error
when we try to cover the bands with coefficients obtained from the MODWPT decomposition.
Let [ fl , fu] be the band, and letǫl and ǫu be the maximum errors allowed for the beginning
and the ending of the band, respectively. We need to find a node( j, n) whose lower frequency
corresponds roughly tofl with the tolerance allowed byǫl , i.e.:

∣

∣

∣

∣

∣

fl −
fs

2 j+1
n
∣

∣

∣

∣

∣

≤ ǫl . (9)

Analogously, we also need to find a node (j′, n′) whose upper frequency corresponds roughly
to fu with the tolerance allowed byǫu:

∣

∣

∣

∣

∣

fu −
fs

2 j′+1
(n′ + 1)

∣

∣

∣

∣

∣

≤ ǫu. (10)

We shall refer to (9) and (10) asthe cover conditions.
The level j of the decomposition tree in which the node (j, n) that fulfills (9) is found needs

not be the same as the levelj′ in which the node (j′, n′) that fulfills (10) is found. But, (8)
requires thatj = j′. To avoid this problem we may think that, after the nodes (j, n) and (j′, n′)
have been found, we could descend the node that is at the higher level, decomposing it to the level
of the other node [12]. However, when descending to low levels in the frequency decomposition
tree, frequency resolution increases and temporal resolution decreases because of the Gabor-
Heisenberg uncertainty principle for signals:∆t∆ f ≥ 1/2 [15]. Furthermore, wavelet coefficients
suffer a circular time shift as a result of the use of wavelet filters. As we descend to lower levels,
the circular shift will be more pronounced as we perform moreconvolutions. Therefore, to obtain
a good temporal resolution, we should avoid descending to deep levels of the tree.

Let’s suppose that, when looking for a cover for the band of interest
[

f1, f2
]

, the nodes (j, n)
and (j′, n′) are selected. These nodes must fulfill the cover conditions(9) and (10) withfl = f1
and fu = f2. Generally, the nodes (j, n) and (j′, n′) are at different levels (i.e.,j , j′). Further-
more, these nodes cover the bandfs

2j+1 [n, n+ 1] ∪ fs
2j′+1 [n′, n′ + 1], but the bandfs

[

n+1
2j+1 ,

n′

2j′+1

]

=
[

f ′1, f ′2
]

remains uncovered (see nodes (1, 0) and (3, 6) of Fig. 1). The problem has been reduced
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to finding a cover for the band
[

f ′1, f ′2
]

. Thus, new nodes will be selected fulfillingthe cover
conditions(9) and (10), withfl = f ′1 and fu = f ′2. The complete cover of

[

f1, f2
]

can be achieved
applying this technique recursively. The set of nodes resulting from this cover will be referred to
asΓ.

There may be overlap between the bands associated with the nodes (j, n) and (j′, n′) (the
original nodes fulfilling thecover conditions). This overlap will occur if a node is the parent of
the other node or if both nodes are equal. If (j, n) = ( j′, n′), the node covers all the band and the
search has ended. If the node (j′, n′) is a child of the node (j, n), we shall replace the node (j, n)
with its (unique) child verifying (9): the node (j + 1, 2n). Thus, the algorithm continues with the
nodes (j + 1, 2n) and (j′, n′). The process shall be repeated until there is no overlap between the
two nodes fulfilling thecover condition. Similarly, if the node (j, n) is a child of the node (j′, n′),
we replace the node (j′, n′) with the node (j′ + 1, 2n′ + 1).

Figure 1 illustrates the cover process for the band [0, 7/16] Hz with fs = 1 Hz andǫu = ǫl =
0.01 using the “nodes at the same level” criteria used in [12] (dashed nodes) and the “nodes at
different levels” criteria proposed here (dark nodes).

There exist multiple covers of any band
[

fl , fu
]

. Our algorithm builds a cover using the nodes
of the higher levels of the MODWPT tree. This selection criteria leads to a cover that minimizes
temporal shift and maximizes temporal resolution. Furthermore, this cover alsominimizesthe
number of nodes.

Equation (8) cannot be applied to this decomposition, because the decomposition uses nodes
from different levels. However, because of the wavelet coefficients property

‖W j,n‖2 = ‖W j+1,2n‖2 + ‖W j+1,2n+1‖2, (11)

we may write (8) as

P(
[

f1, f2
]

) ≈
k′

∑

n=k

‖W j,n‖2 =
∑

W j,n ǫ Γ

‖W j,n‖2. (12)

In practical applications, the complete MODWPT decomposition tree will be rarely needed.
In order to improve the execution time of wavelet analysis wehave developed a pruning algorithm
that we call Pruned MODWPT (PMODWPT). The PMODWPT, instead of expanding every node
of the decomposition tree will only calculate those children required to cover a frequency band.
Figure 2 illustrates the pruning performed when calculating the power of the band [0, 3/8] Hz
being fs = 2 Hz.

W0,0j=0
0 1

j=1 W1,1W1,0

0 1/2 1

j=2 W2,0 W2,1

0 1/21/4

j=3 W3,0 W3,1 W3,2 W3,3

0 1/8 1/4 1/23/8

Figure 2: Prune procedure using the PMODWPT. The crosses indicates which nodes have been pruned.

2.3. Shift correction
As a consequence of the frequency-dependent phase responseof the wavelet filters, it is

necessary to keep track of which wavelet coefficients contain the energy contribution of a given
6



portion of the signal being analyzed (see Fig. 3). That is, the wavelet coefficients must be
corrected so that they can be accurately aligned with the original time series.

Hess-Nielsen and Wickerhauser proposed in [16] a techniqueto compute shift corrections
exact for linear phase filters, and showed how to estimate theperturbation that a deviation from
linear phase produces. This suggests that the method will produce better results with filters
whose phase does not deviate much from a linear phase filter. Thus, this algorithm can be used to
compute approximate shift corrections for a wide range of wavelets, including least asymmetric
and extremal phase Daubechies, Symmlet or Coiflet wavelets.

Time shifts proposed in [16] are based on the notion of the “center of energy” of a filter. Let
al be a filter of lengthl. Its center of energy,E {al} , is given by:

E {al} =

l−1
∑

n=0
n · al [n]2

l−1
∑

n=0
al [n]2

(13)

The time shift needed for the node (j, n) of the MODWPT is always an advance (shift to the
left) of |p j,n| units that is given by [16]

|p j,n| = C j,n(E {g} − E {h}) + (2 j − 1)E {h} , (14)

whereC j,n is the bit-reversal of the binary gray code which encodes each of the MODWPT tree
nodes [16].
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MODWPT with shift correction

Figure 3: Time shift using MODWPT without (top) and with (bottom) “Center of Energy” correction. The vertical lines
indicate where spectral power should be.

2.4. Wavelet-based HRV analysis
Listing 1 shows the pseudocode of our wavelet-based HRV analysis algorithm. The function

waveletAnalysistakes as input parameters the interpolated and filtered RR series, the boundaries
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of the frequency bands, the wavelet to be used in the analysis, the sampling frequency of the
RR series and the tolerance allowed when covering the frequency bands to be analyzed. The
algorithm starts by finding the covers for each of the bands inwhich the user wants to calculate
the spectral power. ThecalculateCoverfunction implements the recursive covering algorithm
presented in section 2.2. ThegetNodefunction selects the initial nodes fulfilling the cover condi-
tions given by (9) and (10). It expands the node whose frequency interval contains the boundary
frequency (f ). If none of its children verify the cover condition forf , the child containingf is
selected and the process is repeated. ThefillGapsBetweenNodesfunction completes the cover
given a pair of initial nodes: (j, n) and (k,m) that fulfill (9) and (10), respectively. This function
distinguishes the four cases discussed in section 2.2: (j, n) = (k,m); (k,m) is a child of the (j, n)
node; (j, n) is a child of (k,m) or the general case where there is an uncovered band.

Once the cover for the bands has been found, the wavelet coefficients are computed using the
PMODWPT. Note that we use a single decomposition tree to calculate the power in all the bands.
The shift correction described in section 2.3 is computed using shiftCorrection. The target nodes
are specified to avoid applying corrections to nodes that will not be used in subsequent calcula-
tions. Since the wavelet and scaling filters are involved in (14), the wavelet used to perform the
analysis must also be specified in theshiftCorrectionfunction. Finally, the spectrogram of each
band is computed with

∑

W j,n ǫ Γ
|W j,n|2 by thegetSpectrogramfunction.

Listing 1: Pseudocode of our wavelet-based HRV analysis algorithm.

waveletAnalysis ( rr , VLFmin , VLFmax, LFmin , LFmax, HFmin , HFmax,wavelet, fs ,←֓
bandtolerance) {

VLFnodes=calculateCover ( [VLFmin, VLFmax] , fs ,bandtolerance)
LFnodes=calculateCover ( [LFmin, LFmax] , fs ,bandtolerance)
HFnodes=calculateCover ( [HFmin, HFmax] , fs ,bandtolerance)
wrr=PMODWPT ( rr ,wavelet,VLFnodes∪ LFnodes∪ HFnodes)
wrr = shiftCorrection (wrr ,wavelet,VLFnodes∪ LFnodes∪ HFnodes)
VLFpower=getSpectrogram (wrr ,VLFnodes)
LFpower=getSpectrogram (wrr ,LFnodes)
HFpower=getSpectrogram (wrr ,HFnodes)
return (VLFpower,LFpower,HFpower)

}

calculateCover ( [ fl , fu ] , fs ,error ) {
if ( fu== fl ) return ( {} )
Wj,n=getNode ( fl , fs ,error )
Wk,m=getNode ( fu , fs ,error )
return ( fillGapsBetweenNodes(Wj,n ,Wk,m , fs ,error ) )

}

getNode ( f , fs ,error , type) {
i=1
nodeToExpand= 0
while (TRUE) {

bj=nodeToExpand
∆ =

fs
2i+1

for ( j in (2 · bj ) : (2 · bj + 1) ) {
interval= [ j∆, ( j + 1)∆]
if ( f ∈ interval) nodeToExpand= j
if ( interval verifies band cover condition for f and error ) return (Wi, j )

}
i = i + 1

}
}

fillGapsBetweenNodes( Wj,n ,Wk,m , fs ,error ) {
if ( Wj,n==Wk,m ) return (Wj,n )
if ( Wk,m is Child of Wj,n ) return ( fillGapsBetweenNodes(Wj+1,2n ,Wk,m , fs ,error ) )
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if ( Wj,n is Child of Wk,m ) return ( fillGapsBetweenNodes(Wj,n ,Wk+1,2m+1 , fs ,error ) )
mediumNodes=calculateCover ( fs

[

n+1
2 j+1 ,

m
2k+1

]

, fs ,error )

return (
{

Wj,n,Wk,m

}

∪ mediumNodes)
}

getSpectrogram (wrr ,nodes) {
S{x}[m] = 0
for (Wj,n in nodes) {

dj,n[m]=getWaveletCoefficients(wrr , Wj,n )
S{x}[m] = S{x}[m] + |dj,n[m]|2

}
return (S{x}[m] )

}

2.5. Implementation of the algorithms in RHRV

RHRV is an open-source package for the R environment for statistical computing that com-
prise a complete set of tools for HRV analysis. Further details about RHRV package may be
found in [17]. Here we shall only describe the RHRV functionality which is related to the algo-
rithm presented in this paper.

RHRV imports data files containing heartbeat positions. Supported formats include ASCII
(LoadBeatAsciifunction), EDF (LoadBeatEDFPlus), Polar (LoadBeatPolar), Suunto (Load-
BeatSuunto) and WFDB data files (LoadBeatWFDB). To compute the instantaneous heart rate
seriesBuildNIHR can be used. A filtering operation can be carried out in order to eliminate
outliers or spurious points present in the HR time series with unacceptable physiological values
(FilterNIHR). A uniformly sampled heart rate signal (with equally spaced values) is obtained
usingInterpolateNIHR.

Spectral power HRV analysis is performed with theCalculatePowerBandfunction. This
function computes the spectrogram of the heart rate series in the ULF, VLF, LF and HF fre-
quency bands. Boundaries of the bands may be chosen by the user. If boundaries are not spec-
ified, default values are used: ULF, [0, 0.03] Hz; VLF, [0.03, 0.05] Hz; LF, [0.05, 0.15] Hz; HF,
[0.15, 0.4] Hz. Until now, CalculatePowerBandused the STFT to compute the spectral power
(window size, window shift and zero padding may be specified by the user). The wavelet analysis
algorithm presented in this paper was included in this function in such a way that we maintain
backward compatibility. Thus, both Fourier and wavelet analysis may be used with theCalcu-
latePowerBandfunction. Type of analysis can be selected by the user by specifying the type
parameter (“fourier” or “wavelet”).

When using wavelet analysis, in addition to the frequency bands, an error for the boundaries
(default value is 0.1 in absolute terms) and a mother waveletcan be specified by the user. Some
of the most used wavelets are available: “haar”, extremal phase (“d4”, “d6”, “d8” and “d16”)
and the least asymmetric (“la8”, “la16” and “la20”) Daubechies, and the best localized (“bl14”
and “bl20”) among others. Default value is “d4”. Listing 2 shows all the RHRV code required to
perform a typical wavelet-based spectral analysis.

Listing 2: HRV wavelet-based analysis in RHRV.

md = CreateHRVData ( )
md = LoadBeatAscii ( md , ” B e a t P o s i t i o n s . b e a t s ”)
md = BuildNIHR ( md )
md = FilterNIHR ( md )
md = InterpolateNIHR ( md , freqhr = 4)
md = CreateFreqAnalysis ( md )
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md = CalculatePowerBand ( md , indexFreqAnalysis=1 , ULFmin = 0 , ULFmax =0.03 , VLFmin←֓
= 0 . 03 ,VLFmax = 0 . 05 , LFmin = 0 . 05 , LFmax = 0 . 15 , HFmin= 0 . 15 , HFmax =0.4 ,←֓
type=” wa ve le t ” , wavelet=” d4 ” , bandtolerance=0.01)

PlotPowerBand ( md , indexFreqAnalysis=1)

3. Results

3.1. Temporal resolution

In order to compare the temporal resolution of the HRV analysis techniques based on our
algorithm with those based on the Fourier transform (the STFT) and parametric estimation (the
windowed Burg method), simulated RR series will be used. Simulated signals are used instead of
real signals because when using real signals, it is difficult to know which is the “correct” result.
Therefore, we use simulated signals to know exactly what spectral components they have at each
instant.

The Integral Pulse Frequency Modulation (IPFM) model [18],[19] is a widely accepted
technique used to generate RR series. The IPFM model simulates the sino-atrial node (SA)
modulation by using a modulating signalm(t) and the SA function as trigger of the cardiac
contraction by using a threshold̂T. We shall use a signal with several fast (every 16 seconds)
spectral changes as modulating signal:

m(t) =































0.3 sin (2π · 0.09375· t) 0 ≤ t < 16 s
0.3 sin (2π · 0.03125· t) 16≤ t < 32 s
0.3 sin (2π · 0.09375· t) 32≤ t < 48 s
0.3 sin (2π · 0.03125· t) 48≤ t < 64 s
0.3 sin (2π · 0.09375· t) 64≤ t < 80 s

The idea is to test the time-frequency transforms in a non-stationary scenario. To obtain a
more realistic simulation, white noise was added to them(t) signal.

Figure 4 shows how the wavelet transform correctly finds mostof the spectral power in the
first band between 16 s and 32 s, and between 48 s and 64 s; and in the second band between 0 s
and 16 s, between 32 s and 48 s and between 64 s and 80s, while theother methods cannot track
the spectral changes. The wavelet analysis was performed using a least asymmetric Daubechies
filter of width 8. The tolerance was set to 0.01. The selectionof the window parameters for the
STFT and the Burg method is not trivial. Note that the minimumsize of the window for the
STFT should be approximatelyT ≈ 1/0.03125= 32 s. However, there is a spectral change
every 16 seconds. The results shown in Fig. 4(a) were obtained using a 30-second window
with a 1-second shift. In the Burg method, we may use smaller windows, provided that we take
enough points to estimate the model in each segment. The parametric analysis shown in Fig.
4(b) was performed using a 16-second window with a 1-second shift. The selected value for the
model order was 16 [20]. It can be appreciated how the STFT andthe Burg method cannot track
changes on this signal. Using smaller length analysis windows did not improve these results.
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(a) Spectrogram using STFT HRV analysis.

0 20 40 60 80

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

time (s)

po
w

er

[0,0.0625] Hz

0 20 40 60 80

0.
05

0.
15

0.
25

time (s)

po
w

er

[0.0625,0.125] Hz

(b) Spectrogram using parametric HRV analy-
sis.
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(c) Spectrogram using wavelet HRV analysis.

Figure 4: Spectrogram analysis of the simulated RR series.

Table 1: Relative power per frequency and per zone for STFT, windowed Burg method and wavelet analysis.

(a) Fourier Analysis

band\time(s) [0,16) [16,32) [32,48) [48,64) [64,80)
VLF 0.209 0.235 0.067 0.217 0.272
LF 0.128 0.147 0.384 0.224 0.117

(b) Parametric Analysis

band\time(s) [0,16) [16,32) [32,48) [48,64) [64,80)
VLF 0.180 0.245 0.083 0.259 0.233
LF 0.228 0.124 0.288 0.167 0.193

(c) Wavelet analysis

band\time(s) [0,16) [16,32) [32,48) [48,64) [64,80)
VLF 0.040 0.400 0.041 0.447 0.072
LF 0.270 0.071 0.344 0.077 0.238
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For each of the two bands, and for each of the five zones with different spectral components,
we calculated the ratio of the power that the band presents ineach zone divided by the overall
power of the band in the five zones. Theoretically, the power in the VLF band should be dis-
tributed among the 2nd and 4th zones, whereas the power in the LF band should be distributed
among the 1st, 3rd and 5th zones. Therefore, the ideal ratios if perfect time-frequency discrimi-
nation is obtained are (0, 0.5, 0, 0.5, 0) and (1/3, 0, 1/3, 0, 1/3). Tables 1(a), 1(b) and 1(c) show
the real ratios for the STFT, the Burg method and wavelet analysis, respectively. We can see that
the wavelet ratios are closer to the theoretical values.

3.2. Computational burden

The top of Fig. 5 compares execution time (as a function of thesignal size) of HRV analysis
algorithms based on MODWPT, PMODWPT (our algorithm) and theSTFT. The input signal
to these algorithms was generated randomly. In order to compare Fourier with wavelet-based
analysis, two configurations of the STFT typically used on HRV analysis were selected. First
Fourier analysis used a window size and a displacement valueof 5 minutes and 30 s, respectively
(“Typical Fourier” in Fig. 5). The second Fourier analysis used a shorter window in order to
achieve a higher temporal resolution. Window size and displacement took a value of 30 s and
2.5 s, respectively (“High Resolution Fourier” in Fig. 5). Wavelet analysis was performed using
least asymmetric Daubechies of width 8 (“la8”) and extremalphase Daubechies of width 4 (“d4”)
since the efficiency depends on the filter length.

PMODWPT and “Typical Fourier” STFT are much more efficient than MODWPT and “High
Resolution Fourier” STFT when analyzing HRV signals (see the top of Fig. 5). The bottom of
Fig. 5 shows that the performance of the PMODWPT is comparable to the “Typical Fourier”
analysis.
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Figure 5: Performance of HRV analysis using PMODWPT, MODWPTand STFT.

3.3. Validation on real data

We have tested the algorithms presented in this paper on the recordings of the Apnea ECG
database used in the PhysioNet/Computers in Cardiology Challenge 2000 [21]. Obstructive Sleep
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Apnea-Hypopnea (OSAH) Syndrome is a sleep-breathing disorder characterized by the presence
of total (apneas) and/or partial (hypopneas) cessations of respiratory airflow while the patient
is asleep. There is an interest in developing low-cost OSAH screening tests that can be carried
out in the patient’s home and that can decrease the workload of hospitals’ Sleep Units. This is
related to the goal of the Computers in Cardiology Challenge2000: to develop a diagnostic test
for OSAH from a single ECG lead. The dataset for this challenge is divided into a learning set
and a test set. Each of these sets consist of 35 recordings of the modified lead V2 of the patients
ECG recorded during nocturnal rest. Both training and test sets are made of 20 recordings of
patients suffering from OSAH, 5 recordings of patients who were on the borderline between
normality and OSAH, and 10 recordings of control patients who did not suffer from the disorder.
Each recording includes minute by minute annotations indicating the presence or absence of
apneas during that minute.

The goal of the second part of the challenge, the one which will be addressed here, is to detect
whether or nor the patient has suffered an apnea during each minute of nocturnal rest. To this
end we shall use two algorithms previously published in the bibliography which are based on the
calculation of a ratio between HRV spectral power in two different bands. Specifically, we have
computed the Drinnan ratio (Rd) [22] and the Otero ratio (Ro) [23]. The Drinnan ratio and the
Otero ratio are defined asRd =

P([0.005,0.01 Hz])
P([0.01,0.05 Hz]) andRo =

P([0.026,0.06 Hz])
P([0.06,0.25 Hz]) , respectively. Both ratios

were computed with RHRV using both wavelet and Fourier analysis.
The ratios obtained for each minute of the recording were fedto a support vector machine

(SVM) [24]. The SVM was trained using the learning set and validated on the validation set
of the Apnea ECG Database. The scores (percentage of minuteslabelled correctly) obtained in
the minute by minute apnea classification usingRd, Ro and (Rd,Ro) as SVM parameters when
the spectral power in the bands was calculated using wavelets were: 74.9%, 68.4% and 78.5%,
respectively. When using Fourier, the scores were 71.4%, 66.8% and 75.4%, respectively.

Wavelet-based analysis performs slightly better than Fourier-based analysis in all scenarios.
This may be due to the non-stationary nature of the signal being analyzed, and the fact that the
higher temporal resolution of the wavelet analysis can helpminimize the spectral contributions
of apneas which have occurred outside the minute in question, but close to the end of the previous
minute or to the beginning of the following one.

4. Discussion

We have presented an algorithm to perform HRV power spectrumanalysis based on the
MODWPT. The computational load of the our algorithm is comparable to the load of widely
used STFT-based algorithms. The algorithm has been validated over simulated RR series with
known spectral components. We have shown that the STFT and the windowed Burg method miss
some quick changes that are successfully identified by the MODWPT. These results suggest that
wavelet-based analysis is a better tool to analyze fast transient phenomena in the RR time series
than other techniques based on windowing.

In order to obtain optimal temporal resolution, we should avoid descending to deep levels of
the PMODWPT decomposition tree. In RHRV, a warning is generated if the band cover needed
for the analysis requires expanding more than log2(N/(L − 1) + 1) levels,N being the number
of samples of the signal andL the filter length. A careful selection of the frequency bandsto be
analyzed provides some control over the depth of the tree. For example, if the RR time series is
sampled at 4 Hz, and we want to obtain the power in the band [0.27, 0.5] Hz with a tolerance in
the position of the band’s boundaries of 0.01, our algorithmwill need to descend seven levels on
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the tree. However, to calculate the power in [0.26, 0.5] Hz with the same tolerance our algorithm
only needs to descend three levels. In this way, we obtain a good estimate of the power in the
band [0.27, 0.5] Hz without compromising the temporal resolution of the results.

A corollary of the phenomenon described in the previous paragraph is that, in order to achieve
optimum temporal resolution (and therefore maximize the chance of identifying fast transient
phenomena), the spectral bands used in HRV analysis with wavelets will probably have to differ
from those traditionally associated with VLF, LF and HF. This opens the question of what may
be the pathophysiological significance of spectral bands different from those which have already
been widely studied in the literature.

The mother wavelet used in HRV analysis also influences the time-frequency resolution be-
cause it determines the filter shape. Further study on how themother wavelet influences the re-
sults of the HRV analysis is required. For example, our initial tests suggest that shorter wavelets
have greater time resolution than the larger wavelets, whereas the latter have a better filtering
behavior than the first ones.

When performing a wavelet analysis, a careful choice of the bands is needed to avoid heavy
computations, as well as a choice of the mother wavelet. Whenusing STFT analysis we also have
to choose the frequency bands (although we have more flexibility in the choice), as well as the
window size, window displacement and zero padding size. Overall, more parameter choices need
to be made when using the STFT. Furthermore, the selection ofthe STFT parameters is complex,
not only because of the computation efficiency, but also because the use of a certain window size
influences the temporal resolution and the frequency bands available to the analysis. To address
this issue, some authors use different windows for each frequency band. This makes the analysis
process heavy. Moreover, the results obtained in each of thebands are not comparable since they
have been obtained using different windows. The need for tuning a lower number of knobs, and
the possibility of using the same parameters in the analysisof all the HRV frequency bands are
two additional advantages of using wavelets in HRV studies.

The algorithm described in this paper has been implemented in the RHRV package for the R
environment in its 3.0 version. To the best of our knowledge,RHRV is the first HRV analysis
toolkit that supports wavelet-based spectral analysis of the RR time series. This software can be
freely downloaded from [25]. The availability of this package will enable researchers to carry out
HRV power spectrum analysis based on the wavelet transform in a simple manner (see Listing
2). We hope that this will help increase the number of HRV studies that use the higher temporal
resolution wavelet-based techniques.
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Figure captions

• Figure 1: MODWPT decomposition tree with the nodes selectedto cover the band [0, 7/16]
Hz. W0,0 represents the original signal,f (t).

• Figure 2: Prune procedure using the PMODWPT. The crosses indicates which nodes have
been pruned.

• Figure 3: Time shift using MODWPT without (top) and with (bottom) “Center of Energy”
correction. The vertical lines indicate where spectral power should be.

• Listing 1: Pseudocode of our wavelet-based HRV analysis algorithm.

• Listing 2: HRV wavelet-based analysis in RHRV.

• Figure 4: Spectrogram analysis of the simulated RR series.

• Table 1: Relative power per frequency and per zone for STFT, windowed Burg method
and wavelet analysis.

• Figure 5: Performance of HRV analysis using PMODWPT, MODWPTand STFT.
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