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Abstract

One of the most promising non-invasive markers of the agtofithe autonomic nervous system
is Heart Rate Variability (HRV). HRV analysis toolkits oft@rovide spectral analysis techniques
using the Fourier transform, which assumes that the hetersegies is stationary. To overcome
this issue, the Short Time Fourier Transform is often usdd~{3. However, the wavelet trans-
form is thought to be a more suitable tool for analyzing ntatignary signals than the STFT.
Given the lack of support for wavelet-based analysis in HBWIKits, such analysis must be
implemented by the researcher. This has made this techaiterutilized.

This paper presents a new algorithm to perform HRV powertspecanalysis based on the
Maximal Overlap Discrete Wavelet Packet Transform (MODV)/Hhe algorithm calculates the
power in any spectral band with a given tolerance for the Isamoundaries. The MODWPT
decomposition tree is pruned to avoid calculating unnecgssavelet cofficients, thereby op-
timizing execution time. The center of energy shift cori@ttis applied to achieve optimum
alignment of the wavelet céigcients. This algorithm has been implemented in RHRV, an epen
source package for HRV analysis. To the best of our knowle@gHRYV is the first HRV toolkit
with support for wavelet-based spectral analysis.
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1. Introduction

Heart Rate Variability (HRV) refers to the variation oveng of the intervals between consec-
utive heartbeats. Since the heart rhythm is modulated bgub@nomic nervous system (ANS),
HRV is thought to reflect the activity of the sympathetic armdgsympathetic branches of the
ANS. The continuous modulation of the ANS results in contimsivariations in heart rate. One
of the most powerful HRV analysis techniques is based onpketsal analysis of the time se-
ries obtained from the distances between each pair of cotigedeartbeats. The HRV power
spectrum is a useful tool as a predictor of multiple pathigséd], [2].
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Akselrod et aI.|Il3] described three components in the HRV graspectrum with physiolog-
ical relevance: the very low frequency (VLF) componentdtrencies below 0.03 Hz), which is
modulated by the renin-angiotensin system; the low frequébF) component (0.03-0.15 Hz),
which is thought to be of both sympathetic and parasympiathature; and the high frequency
(HF) component (0.18-0.4 Hz), which is related to the pargsythetic system. At present, there
is no absolute consensus on the precise limits of the boigsdaf these three bands. In the
literature we can find authors who use slightlffelient bands’ boundaries [4].

There exist several HRV spectral analysis techniques. éltexhniques may be classified
as nonparametric and parametﬁb [5]. The main advantadeeafionparametric methods is the
simplicity and speed of the algorithm used (The Fast Fodniansform). The main advantage
of the parametric methods is that they give smoother sgextiraponents. However, paramet-
ric methods present problems regarding to correct moderaelection. Although these tech-
nigues are widely used, they have no temporal resolutions Jéverely limits their ability to
analyze non-stationary signals and transient phenomeaalldviate this limitation temporal
windows are often used, so that small segments of the whphalsare analyzed. Among these
technigues we may highlight the Short Time Fourier Tramaf¢8TFT) ES]. However, time-
frequency resolution of the STFT depends on the spread ofitheow used. Thus, the STFT
has fixed time-frequency resolution: high frequency resmtumplies poor time resolution and
vice versa. Conversely to Fourier, the wavelet transforrfopes time-frequency analysis and it
is recognized as a powerful tool to study non-stationamzﬂ'rgﬂ’].

HRV analysis toolkits such as Kubios HRV [8] or aHRY [9] onlyable HRV spectral analy-
sis based on the Fourier transform or parametric methodtheToest of our knowledge, the only
option for using the wavelet transform in HRV analysis is tamally implement the algorithms,
probably with the support of some general wavelet librarlyisTs tedious, and prone to error.
Although some researchers have done this [@, [11], mame fespecially those with a med-
ical background) choose to use Fourier-based tools, evem wWtey know that the signal being
analyzed is non-stationary. A query in the PubMed databasethe terms “heart rate variabil-
ity Fourier transform” returns 660 articles, while a querghathe terms “heart rate variability
wavelet transform” only returns 145 articles. The lack afl¢ofor carrying out HRV analysis
using the wavelet transform has made this potentially sapanalysis technique underutilized
in comparison with the Fourier transform.

In this paper we present an algorithm to perform HRV powecspen analysis based on the
Maximal Overlap Discrete Wavelet Packet Transform (MODV/HAhe algorithm calculates the
spectrogram in any frequency band, allowing a certain éolee for the position of the band’s
boundaries. The algorithm has been validated over sinditatd real RR series. Its capability for
identifying fast changes in the RR series’ spectral comptaigas been compared with the STFT
and a windowed version of the Burg method, showing that ttexdeiques miss some transient
changes that are successfully identified by the wavelesfoam. We have implemented the
algorithm in RHRV, an open-source package for HRV analysiiply available on the Internet.
A previous version of this algorithm was published/in/ [12].

Section[2 starts with a brief review of the wavelet transfowmith particular attention to
the MODWPT, and then introduces our algorithm to perform HBver spectrum analysis.
Section Z.b provides a short description of the impleméntaif the algorithm in the RHRV
package. Sectidd 3 presents a comparison between ourtalgpothe STFT and the windowed
Burg method over simulated and real RR series. Finally, éselts of this paper are discussed
and some conclusions are given.



2. Material and methods

A brief review of some important wavelet concepts for ouioaiighm is now given. A wavelet
is a small wavey(t) (oscillating function) that is well concentrated in timehis function must
have unitary nornfiy|| = 1 and verify the so-called admissibility conditioﬁ:’:o y(t)dt = 0. y(t)
can be translated and dilated in time, yielding a set of weivahctions:
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wheres > 0 is a dilation factor, andi is a real number representing the translations. yAs
generates all, s functions, it is called mother wavelet.

A continuous wavelet transform measures the time-frequeadations of a signaf by
correlating it withy, s

wiws = [ 1u 2)

In order to make the wavelet transform implementable on apeder, both dilation and
translation factors must be discretized. This can be aeHiasg follows:
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This family is an orthonormal basis af?(R). Orthogonal wavelets dilated by 2an be
used to study signal variations at the resolutioh Zrhus, these families of wavelets originate
a multiresolution signal analysis. Multiresolution argdyprojects signals at various resolution
spaced/;. EachV; space contains all possible approximations at the resol@i'. Thus, each
decomposition level increases the spectral resolutiom@fdecomposition, at the expense of
losing temporal resolution. L€l ;}jez be a multiresolution approximation verifyingj.1 c
V; Vj € Z and letW; be the orthogonal complement\df in Vj_1: Vj_1 = V;@®W,. According
to ], the families
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are an orthonormal basis for; andW , respectively, for alf € Z. yj, are the wavelet functions
andg¢; » are the scaling functions. '
Thus, we can approximate any functibr L2(R) at resolution 2/ as

00

Py f= ) (F.gindin= . alnlg;n ®)

N=-—o00 N=—o00

and the orthogonal projection éfonto detail spackV is:

P, f= 3 (Fgiadin= . dilnlyjn ©)
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wherea;[n] andd;[n] are called the approximation and detail fit@ents, respectively.
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Mallat proved|[7] that both approximation and detail fiagents may be calculated using a
filter bank. Leth[n] andg[n] be the FIR filters that will be used to compute the approxiarednd
detail codficients, respectively. It has been prover [13] that the filfe} = (50 (%).0t-n)

and thatg[n] = (%w(%),qﬁ(t —n)). g[n] and h[n] can be regarded as an approximation to a
high-pass filter (the wavelet filter) and to a low-pass filthie(scaling filter), respectively. By
applying recursively over the approximation €ibe@ents the same filtering operation followed
by sub-sampling by two, we obtain the multiresolution esgren off. This algorithm, known
as the pyramid algorithm, is the modtieient way of computing the Fast Orthogonal Wavelet
Transform (FOWT)|_L_1|3].

2.1. MODWPT

Given that the filtering operation is only applied over th@mximation coéicients, the
FOWT only provides information on a limited set of frequetends which need not be the ones
used in the HRV analysis. A more suitable wavelet transfarmeeded for our algorithm: the
wavelet packet decomposition (WPD). Instead of dividingydhe approximation ca@cients
a;[n], both detail and approximation cfieients are decomposed successively by applying high
pass and low pass filters to each set offioents.

Among the WPD transforms we have chosen the MODWPT [14] keecitis less sensitive
to the starting point of the time series and it is applicabledn dyadic sequences. Furthermore,
the MODWPT avoids the sub-sampling step, and thereforesittha same number of wavelet
codficients in every decomposition level. This simplifies conapionhs involving diferent de-
composition levels.

The j" level of the MODWPT decomposes the frequency intervaf{(®], wherefs is the
sampling frequency of the original signilinto 21 equal width intervals (see Fifll 1). Thus, the
n" node (beginning at zero) in tH& level of the decomposition tree, thgif) node, is associated
with the frequency intervafz: [n, n + 1]. Each node will havél wavelet coéficients associated,
N being the length of the sampled sigrfal The N-dimensional vectow j, will denote theN
wavelet coéficients associated with the¢ (1) node.
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Figure 1: MODWPT decomposition tree with the nodes selettecbver the band [(/16] Hz. Wq represents the
original signal,f(t).



MODWPT codficients fulfill that:

2i-1

112 = > IW P V. (7)
n=0

Therefore, given a frequency bafi, f2] = % [k, k" + 1], fs being the sampling frequency

andk, k' and j integers, the spectral power |y, f2], P([f1, f2]), can be calculated from the
appropriate MODWPT cdgcients. We just need to find the nodgsq and (j, k") and compute
the spectral power in the baf, f,] as:

¢
P([f2, fa) = > IW 2. (8)
n=k

2.2. Finding a proper cover for a set of frequency bands

Equation [[B) can only be applied to bands that can be Writaagf%a[k, k' + 1], fs being
the sampling frequency arld k' and j integers. In an HRV spectral analysis the user can be
interested in bands that cannot be written this way. Thisd®rs to permit a certain error
when we try to cover the bands with d¢beients obtained from the MODWPT decomposition.
Let [f}, fy] be the band, and leg and ¢, be the maximum errors allowed for the beginning
and the ending of the band, respectively. We need to find a (ipdewhose lower frequency
corresponds roughly tf with the tolerance allowed by, i.e.:

'f.- s ol <a )

2+

Analogously, we also need to find a nogé ') whose upper frequency corresponds roughly
to fy with the tolerance allowed hy:

fs
m—2ﬁ4n+n

< €. (10)

We shall refer to[{9) and[(10) dlse cover conditions

The levelj of the decomposition tree in which the noden) that fulfills (@) is found needs
not be the same as the levglin which the node j(, ") that fulfills (Z0) is found. But,[{B)
requires thafj = j’. To avoid this problem we may think that, after the nodegs)(and (', n’)
have been found, we could descend the node that is at therltégke decomposing it to the level
of the other nodéﬂZ]. However, when descending to low keirethe frequency decomposition
tree, frequency resolution increases and temporal résnldiecreases because of the Gabor-
Heisenberg uncertainty principle for signalgAf > 1/2 [18]. Furthermore, wavelet ctigsients
suffer a circular time shift as a result of the use of wavelet §ltéys we descend to lower levels,
the circular shift will be more pronounced as we perform noamgvolutions. Therefore, to obtain
a good temporal resolution, we should avoid descendingep tivels of the tree.

Let’s suppose that, when looking for a cover for the band wrist| f;, f2], the nodesj(n)
and (’,n’) are selected. These nodes must fulfill the cover condii@pand [ID) withf, = f;
andf, = f,. Generally, the nodeg,() and (j’, n’) are at dfferent levels (i.e.j # j’). Further-
more, these nodes cover the bagid [n,n+ 1] U 5= [V, + 1], but the bands| 53, 57| =

[fl’, fz’] remains uncovered (see nodesQ)land (36) of Fig.[1). The problem has been reduced
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to finding a cover for the banf;, f;|. Thus, new nodes will be selected fulfillirtge cover
conditions(@) and [10), withfy = f; andf, = f,. The complete cover dff;, f>] can be achieved
applying this technique recursively. The set of nodes tegpfrom this cover will be referred to
asr.

There may be overlap between the bands associated with thesrjon) and (’, n’) (the
original nodes fulfilling thecover conditions This overlap will occur if a node is the parent of
the other node or if both nodes are equal.jJh] = (j’, n’), the node covers all the band and the
search has ended. If the nodg () is a child of the nodej(n), we shall replace the nodg )
with its (unique) child verifying[(P): the nodg ¢ 1, 2n). Thus, the algorithm continues with the
nodes ( + 1,2n) and (', n"). The process shall be repeated until there is no overlapdaet the
two nodes fulfilling thecover condition Similarly, if the node {, n) is a child of the nodej(, '),
we replace the nodg’(n’) with the node {" + 1,2n" + 1).

Figureld illustrates the cover process for the band [06] Hz with fs = 1 Hz ande, = g =
0.01 using the “nodes at the same level” criteria use [13kled nodes) and the “nodes at
different levels” criteria proposed here (dark nodes).

There exist multiple covers of any bapfi, f,]. Our algorithm builds a cover using the nodes
of the higher levels of the MODWPT tree. This selection cigtéeads to a cover that minimizes
temporal shift and maximizes temporal resolution. Furtime, this cover alsminimizesthe
number of nodes.

Equation[(8) cannot be applied to this decomposition, bezéwe decomposition uses nodes
from different levels. However, because of the waveleffoments property

IW jall® = W 120l + W 12001l (11)
we may write [8) as
y
P([f1, Bl) ~ D IW a2 = 37 Wl (12)
n=k Wj.n el

In practical applications, the complete MODWPT decompasitree will be rarely needed.
In order to improve the execution time of wavelet analysiswaee developed a pruning algorithm
that we call Pruned MODWPT (PMODWPT). The PMODWPT, instebekpanding every node
of the decomposition tree will only calculate those chitdrequired to cover a frequency band.
Figure[2 illustrates the pruning performed when calcutatime power of the band [@/8] Hz
beingfs = 2 Hz.

j=0 Wo,0
0

o~ o

%
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Figure 2: Prune procedure using the PMODWPT. The crossésied which nodes have been pruned.

2.3. Shift correction
As a consequence of the frequency-dependent phase respbtiee wavelet filters, it is
necessary to keep track of which waveletffi@gnts contain the energy contribution of a given
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portion of the signal being analyzed (see FI[g. 3). That is, wlavelet cofficients must be
corrected so that they can be accurately aligned with thggraditime series.

Hess-Nielsen and Wickerhauser proposem [16] a techrimweempute shift corrections
exact for linear phase filters, and showed how to estimatpéhierrbation that a deviation from
linear phase produces. This suggests that the method witluge better results with filters
whose phase does not deviate much from a linear phase filtes, This algorithm can be used to
compute approximate shift corrections for a wide range ofelas, including least asymmetric
and extremal phase Daubechies, Symmlet or Coiflet wavelets.

Time shifts proposed i|ﬁi6] are based on the notion of that&reof energy” of a filter. Let
a be afilter of length. Its center of energ¥ {a} , is given by:

-1
Y n-aln]?
Ela) =" (13)
Y aln)?
n=0
The time shift needed for the nodg1f) of the MODWPT is always an advance (shift to the
left) of |p;nl units that is given bMG]
IPinl = Cin(E (g} - E{h}) + (2) - DE(h}, (14)
whereCj, is the bit-reversal of the binary gray code which encodeb eathe MODWPT tree
nodes].

MODWPT without shift correction
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Figure 3: Time shift using MODWPT without (top) and with (bwh) “Center of Energy” correction. The vertical lines
indicate where spectral power should be.

2.4. Wavelet-based HRV analysis
Listing[dl shows the pseudocode of our wavelet-based HRWaisalgorithm. The function
waveletAnalysisakes as input parameters the interpolated and filtered RE&ssthe boundaries
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of the frequency bands, the wavelet to be used in the analpgssampling frequency of the
RR series and the tolerance allowed when covering the frexyueands to be analyzed. The
algorithm starts by finding the covers for each of the bandstith the user wants to calculate
the spectral power. ThealculateCoverfunction implements the recursive covering algorithm
presented in sectidn 2.2. ThetNodedunction selects the initial nodes fulfilling the cover cend
tions given by[(P) and(10). It expands the node whose freguierterval contains the boundary
frequency €). If none of its children verify the cover condition fdr the child containing is
selected and the process is repeated. filligapsBetweenNoddanction completes the cover
given a pair of initial nodes:j(n) and &, m) that fulfill (@) and [10), respectively. This function
distinguishes the four cases discussed in seEfidn 2.8) £ (k, m); (k, m) is a child of the {, n)
node; (, n) is a child of &, m) or the general case where there is an uncovered band.

Once the cover for the bands has been found, the wavelitaiepts are computed using the
PMODWPT. Note that we use a single decomposition tree tattkethe power in all the bands.
The shift correction described in sect[onl2.3 is computéugshiftCorrection The target nodes
are specified to avoid applying corrections to nodes thdtneil be used in subsequent calcula-
tions. Since the wavelet and scaling filters are involve@#),(the wavelet used to perform the
analysis must also be specified in gteftCorrectionfunction. Finally, the spectrogram of each
band is computed Wity ¢ r IW % by thegetSpectrograrfunction.

Listing 1: Pseudocode of our wavelet-based HRV analysisrign.

waveletAnalysis(rr, VLFmin, VLFmax, LFmin, LFmax, HFmin, HFmax,wavelet fs,<
bandtolerancg {

VLFnodes:calculateCover([VLFmin VLFmaj, fs,bandtolerancg
LFnodes-calculateCover([LFmin LFmax, fs,bandtolerancg
HFnodes-calculateCover([HFmin HFmax, fs,bandtolerancg
wrr=PMODWPT (rr ,wavelet,VLFnodesJ LFnodesu HFnodeg
wrr = shiftCorrection(wrr,waveletVLFnodesJ LFnodesu HFnodeg
VLFpowergetSpectrogram(wrr,VLFnodeg
LFpower=getSpectrogram(wrr ,LFnodeg
HFpower=getSpectrogram(wrr ,HFnodeg
return (VLFpower, LFpower, HF power)

}

calculateCover ([ fi,f,], fs,error) {

if (fy==fi ) return({})

Wijn=getNode (fi, fs,error)

Wim=getNode (fy, fs,error)

return (fillGapsBetweenNodes(Wjn , Wim , fs,error))
}

getNode (f,fs,error,type) {
i=1
nodeT oExpand: 0
while (TRUE) {
bj=nodeT oExpand
A= s
o+1
for (j in (2-bj):(2-bj+1))¢{
intervak [JA, (] + 1)A]
if (f € interval) nodeToExpand]
if (interval verifies band cover condition for f and error) return (W)
}

i=i+1
}
fillGapsBetweenNodes(Wjn,Wim, fs,error) {

if (Wjn==Wkm) return(W,)
if (Wem is Child of Wj,) return(fillGapsBetweenNodes(Wj 120, Wkm . fs,error))
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| if (Wj, is Child of Wim) return(fillGapsBetweenNodes(Wjn, Wii1om1, fs,€rror)) |
| mediumNod%calculateCover(fs[;ﬁ, Zk%] , fs ,error) |
return({Wj\n,Wk\m} U mediumNodes

}

getSpectrogram(wrr ,nodeg {
Spy[m =0
for (W, in nodeg {
djn[m=getWaveletCoefficients(wrr, Wjy)
Spalml = Spg[m] + ‘dj.n[m“2

}
return (Sp[m])
}

2.5. Implementation of the algorithms in RHRV

RHRYV is an open-source package for the R environment fasstal computing that com-
prise a complete set of tools for HRV analysis. Further ¢etout RHRV package may be
found in [17]. Here we shall only describe the RHRV functibityavhich is related to the algo-
rithm presented in this paper.

RHRV imports data files containing heartbeat positions. pduied formats include ASCII
(LoadBeatAsciifunction), EDF {oadBeatEDFPIug Polar (oadBeatPolay, Suunto [oad-
BeatSuuntpand WFDB data filesl(oadBeatWFDR To compute the instantaneous heart rate
seriesBuildNIHR can be used. A filtering operation can be carried out in ordegliminate
outliers or spurious points present in the HR time serieb witacceptable physiological values
(FilterNIHR). A uniformly sampled heart rate signal (with equally sphwalues) is obtained
usingInterpolateNIHR

Spectral power HRV analysis is performed with tGalculatePowerBandunction. This
function computes the spectrogram of the heart rate seri¢isei ULF, VLF, LF and HF fre-
guency bands. Boundaries of the bands may be chosen by thdfussundaries are not spec-
ified, default values are used: ULF, [D03] Hz; VLF, [0.03,0.05] Hz; LF, [0.05,0.15] Hz; HF,
[0.15,0.4] Hz. Until now, CalculatePowerBandsed the STFT to compute the spectral power
(window size, window shift and zero padding may be specifietihb user). The wavelet analysis
algorithm presented in this paper was included in this fiendh such a way that we maintain
backward compatibility. Thus, both Fourier and waveletigsia may be used with th€alcu-
latePowerBandunction. Type of analysis can be selected by the user byifgper the type
parameter (“fourier” or “wavelet”).

When using wavelet analysis, in addition to the frequenaydisaan error for the boundaries
(default value is 0.1 in absolute terms) and a mother waeealete specified by the user. Some
of the most used wavelets are available: “haar”, extremabkph(“d4”, “d6”, “d8” and “d16")
and the least asymmetric (“la8”, “lal6” and “la20”) Daub&x) and the best localized (“bl14”
and “bl20”) among others. Default value is “d4”. Listibp 2osts all the RHRV code required to
perform a typical wavelet-based spectral analysis.

Listing 2: HRV wavelet-based analysis in RHRV.

md
md
md
md
md
md

CreateHRVData( )

LoadBeatAscii(md, "BeatPositions.beats)
BuildNIHR(md)

FilterNIHR(md)

InterpolateNIHR(md, freghr = 4)
CreateFreqAnalysis(md)



md = CalculatePowerBand(md, indexFreqAnalysis=1, ULFmin = O, ULFmax=0.03, VLFmine
= 0.03 ,VLFmax = 0.05, LFmin = 0.05, LFmax = 0.15, HFmin= 0.15, HFmax =0.4,~
type="wavelet”, wavelet="d4”, bandtolerance=0.01)

PlotPowerBand (md, indexFreqAnalysis=1)

3. Results

3.1. Temporal resolution

In order to compare the temporal resolution of the HRV arigliechniques based on our
algorithm with those based on the Fourier transform (theTl3Bhd parametric estimation (the
windowed Burg method), simulated RR series will be used.u&ited signals are used instead of
real signals because when using real signals, itftecdit to know which is the “correct” result.
Therefore, we use simulated signals to know exactly whattspleeomponents they have at each
instant.

The Integral Pulse Frequency Modulation (IPFM) model [][@] is a widely accepted
technigue used to generate RR series. The IPFM model siesulaé sino-atrial node (SA)
modulation by using a modulating signalt) and the SA function as trigger of the cardiac
contraction by using a threshold We shall use a signal with several fast (every 16 seconds)
spectral changes as modulating signal:

0.3sin(2r-0.09375:1) 0<t<16s
0.3sin(2r-0.03125-t) 16<t<32s
m(t) ={ 03sin(2r-0.093751) 32<t<48s
0.3sin(2r-0.03125-t) 48<t<64s
0.3sin(2r-0.09375:1) 64<t<80s

The idea is to test the time-frequency transforms in a natiestary scenario. To obtain a
more realistic simulation, white noise was added tortii® signal.

Figure[4 shows how the wavelet transform correctly finds mbghe spectral power in the
first band between 16 s and 32 s, and between 48 s and 64 s; dedsiedond band between 0 s
and 16 s, between 32 s and 48 s and between 64 s and 80s, widtbd¢henethods cannot track
the spectral changes. The wavelet analysis was perforniegl aseast asymmetric Daubechies
filter of width 8. The tolerance was set to 0.01. The seleatibtne window parameters for the
STFT and the Burg method is not trivial. Note that the minimsize of the window for the
STFT should be approximately ~ 1/0.03125= 32 s. However, there is a spectral change
every 16 seconds. The results shown in Hig. ]4(a) were olstaising a 30-second window
with a 1-second shift. In the Burg method, we may use smaliedews, provided that we take
enough points to estimate the model in each segment. Thenp#iia analysis shown in Fig.
[4(B) was performed using a 16-second window with a 1-sechifid $he selected value for the
model order was 1@0]. It can be appreciated how the STFTtemBurg method cannot track
changes on this signal. Using smaller length analysis wirsdtid not improve these results.
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Figure 4: Spectrogram analysis of the simulated RR series.

Table 1: Relative power per frequency and per zone for STHidewed Burg method and wavelet analysis.

(a) Fourier Analysis
bandtime(s) [0,16) [16,32) [32,48) [48,64) [64,80)
VLF 0.209 0.235 0.067 0.217 0.272
LF 0.128 0.147 0.384 0.224 0.117

(b) Parametric Analysis
bandtime(s) [0,16) [16,32) [32,48) [48,64) [64,80)
VLF 0.180 0.245 0.083 0.259 0.233
LF 0.228 0.124 0.288 0.167 0.193

(c) Wavelet analysis
bandtime(s) [0,16) [16,32) [32,48) [48,64) [64,80)
VLF 0.040 0.400 0.041 0.447 0.072
LF 0.270 0.071 0.344 0.077 0.238
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For each of the two bands, and for each of the five zones wfifardnt spectral components,
we calculated the ratio of the power that the band presergadéh zone divided by the overall
power of the band in the five zones. Theoretically, the powehé VLF band should be dis-
tributed among the™ and 4" zones, whereas the power in the LF band should be distributed
among the ¥, 3 and 3" zones. Therefore, the ideal ratios if perfect time-freauyetiscrimi-
nation is obtained are (0.5,0,0.5,0) and (¥3,0,1/3,0,1/3). Table§ 1(3), 1(b) arid Ijc) show
the real ratios for the STFT, the Burg method and waveletyaiglrespectively. We can see that
the wavelet ratios are closer to the theoretical values.

3.2. Computational burden

The top of Fig[’b compares execution time (as a function osiheal size) of HRV analysis
algorithms based on MODWPT, PMODWRPT (our algorithm) and $7é&T. The input signal
to these algorithms was generated randomly. In order to eoenpourier with wavelet-based
analysis, two configurations of the STFT typically used orvHialysis were selected. First
Fourier analysis used a window size and a displacement edkieninutes and 30 s, respectively
(“Typical Fourier” in Fig. [3). The second Fourier analysiged a shorter window in order to
achieve a higher temporal resolution. Window size and dishent took a value of 30 s and
2.5 s, respectively (“High Resolution Fourier” in FId. 5)aV¢let analysis was performed using
least asymmetric Daubechies of width 8 (“la8”) and extrepirlse Daubechies of width 4 (“d4”)
since the #&iciency depends on the filter length.

PMODWPT and “Typical Fourier” STFT are much moi@igent than MODWPT and “High
Resolution Fourier” STFT when analyzing HRV signals (seettp of Fig.[5). The bottom of
Fig. [3 shows that the performance of the PMODWPT is compartbthe “Typical Fourier”
analysis.
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Figure 5: Performance of HRV analysis using PMODWPT, MODWAR@ STFT.

3.3. Validation on real data

We have tested the algorithms presented in this paper oreteedings of the Apnea ECG
database used in the PhysiofMimputers in Cardiology Challenge 2000/[21]. Obstructieef
12



Apnea-Hypopnea (OSAH) Syndrome is a sleep-breathingdisaharacterized by the presence
of total (apneas) aridr partial (hypopneas) cessations of respiratory airflovileMte patient

is asleep. There is an interest in developing low-cost OSéidening tests that can be carried
out in the patient’s home and that can decrease the worklibadspitals’ Sleep Units. This is
related to the goal of the Computers in Cardiology Challe2@@0: to develop a diagnostic test
for OSAH from a single ECG lead. The dataset for this chakeisgdivided into a learning set
and a test set. Each of these sets consist of 35 recordiniye ofadified lead V2 of the patients
ECG recorded during nocturnal rest. Both training and tett are made of 20 recordings of
patients stfering from OSAH, 5 recordings of patients who were on the bdiite between
normality and OSAH, and 10 recordings of control patientswid not sdifer from the disorder.
Each recording includes minute by minute annotations atdig the presence or absence of
apneas during that minute.

The goal of the second part of the challenge, the one whidlbe/hddressed here, is to detect
whether or nor the patient hasfiered an apnea during each minute of nocturnal rest. To this
end we shall use two algorithms previously published in ib&dgraphy which are based on the
calculation of a ratio between HRV spectral power in twfietent bands. Specifically, we have
computed the Drinnan ratidz{) [IZ] and the Otero ratioR,) [@]. The Drinnan ratio and the
Otero ratio are defined & = % andR, = W, respectively. Both ratios
were computed with RHRV using both wavelet and Fourier aigly

The ratios obtained for each minute of the recording weretdeal support vector machine
(SVM) [@]. The SVM was trained using the learning set anddaked on the validation set
of the Apnea ECG Database. The scores (percentage of miabtked correctly) obtained in
the minute by minute apnea classification usig R, and R4, R,) as SVM parameters when
the spectral power in the bands was calculated using wavelkste: 74.9%, 68.4% and 78.5%,
respectively. When using Fourier, the scores were 71.498%@nd 75.4%, respectively.

Wavelet-based analysis performs slightly better than iEotnased analysis in all scenarios.
This may be due to the non-stationary nature of the signalgoanalyzed, and the fact that the
higher temporal resolution of the wavelet analysis can h@hlimize the spectral contributions
of apneas which have occurred outside the minute in questitrclose to the end of the previous
minute or to the beginning of the following one.

4. Discussion

We have presented an algorithm to perform HRV power spectinalysis based on the
MODWRPT. The computational load of the our algorithm is conajde to the load of widely
used STFT-based algorithms. The algorithm has been vedldater simulated RR series with
known spectral components. We have shown that the STFT anitidowed Burg method miss
some quick changes that are successfully identified by th®WeT. These results suggest that
wavelet-based analysis is a better tool to analyze fassisahphenomena in the RR time series
than other techniques based on windowing.

In order to obtain optimal temporal resolution, we shouldidwlescending to deep levels of
the PMODWPT decomposition tree. In RHRV, a warning is geteer# the band cover needed
for the analysis requires expanding more than(bdg(L — 1) + 1) levels,N being the number
of samples of the signal aridthe filter length. A careful selection of the frequency batudise
analyzed provides some control over the depth of the treeeXample, if the RR time series is
sampled at 4 Hz, and we want to obtain the power in the ba2d,[0.5] Hz with a tolerance in
the position of the band’s boundaries of 0.01, our algorithithneed to descend seven levels on
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the tree. However, to calculate the power it2[® 0.5] Hz with the same tolerance our algorithm
only needs to descend three levels. In this way, we obtairoa gstimate of the power in the
band [027, 0.5] Hz without compromising the temporal resolution of theuks.

A corollary of the phenomenon described in the previousgragzh is that, in order to achieve
optimum temporal resolution (and therefore maximize thencle of identifying fast transient
phenomena), the spectral bands used in HRV analysis witkle@wvill probably have to tler
from those traditionally associated with VLF, LF and HF. §bpens the question of what may
be the pathophysiological significance of spectral banfiisréint from those which have already
been widely studied in the literature.

The mother wavelet used in HRV analysis also influences the-frequency resolution be-
cause it determines the filter shape. Further study on homtitber wavelet influences the re-
sults of the HRV analysis is required. For example, ourahtésts suggest that shorter wavelets
have greater time resolution than the larger wavelets, @dsethe latter have a better filtering
behavior than the first ones.

When performing a wavelet analysis, a careful choice of tiredls is needed to avoid heavy
computations, as well as a choice of the mother wavelet. Whierng STFT analysis we also have
to choose the frequency bands (although we have more fligxiloilthe choice), as well as the
window size, window displacement and zero padding sizer&lyenore parameter choices need
to be made when using the STFT. Furthermore, the selectihre TFT parameters is complex,
not only because of the computatiafiegency, but also because the use of a certain window size
influences the temporal resolution and the frequency bavalighble to the analysis. To address
this issue, some authors usééient windows for each frequency band. This makes the aralys
process heavy. Moreover, the results obtained in each dfgheds are not comparable since they
have been obtained usingidgirent windows. The need for tuning a lower number of knobd, an
the possibility of using the same parameters in the anabfsall the HRV frequency bands are
two additional advantages of using wavelets in HRV studies.

The algorithm described in this paper has been implementt#teiRHRV package for the R
environment in its 3.0 version. To the best of our knowled®dRYV is the first HRV analysis
toolkit that supports wavelet-based spectral analysis®RR time series. This software can be
freely downloaded fron@S]. The availability of this pagjeawill enable researchers to carry out
HRV power spectrum analysis based on the wavelet transforansimple manner (see Listing
[2). We hope that this will help increase the number of HRV igsithat use the higher temporal
resolution wavelet-based techniques.
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Figure captions

Figure 1: MODWPT decomposition tree with the nodes seleittedver the band [7/16]
Hz. W represents the original signdl(t).

Figure 2: Prune procedure using the PMODWPT. The crossésaiied which nodes have
been pruned.

Figure 3: Time shift using MODWPT without (top) and with (bmt) “Center of Energy”
correction. The vertical lines indicate where spectral @oshould be.

Listing 1: Pseudocode of our wavelet-based HRV analysisratgn.
Listing 2: HRV wavelet-based analysis in RHRV.
Figure 4: Spectrogram analysis of the simulated RR series.

Table 1: Relative power per frequency and per zone for STHidewed Burg method
and wavelet analysis.

Figure 5: Performance of HRV analysis using PMODWPT, MODWARd STFT.
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