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Abstract 

We propose a feature extraction method for noninvasive diagnosis of melanoma 

based on tensor decomposition of the clinical color image of skin lesion. Extracted 

features are elements of the core tensor in the corresponding Tucker3 model, and 

represent spatial-spectral profile of the lesion. In contrast to majority of methods 

that exploit either texture or spectral diversity of the tumor only, this method 

simultaneously captures spatial and spectral characteristics. The proposed 

procedure is demonstrated on a problem of noninvasive diagnosis of melanoma 

from cost-effective auto-fluorescence color images of skin lesions, with overall 

sensitivity 82.1% and specificity 86.9%. 

Key Words: Feature extraction, noninvasive diagnosis, melanoma, multispectral 

imaging, multidimensional signal processing, tensor decomposition, Tucker3 model. 



1. Introduction 

Noninvasive diagnosis of tumor is a procedure of identification and discrimination 

among various types of tumors by exploiting data that is not collected invasively, e.g. 

by biopsy. The aim of the noninvasive diagnosis is to detect malignant tumors with high 

accuracy and to simultaneously reduce the number of biopsies of the innocuous benign 

tumors. In general, methods for automated noninvasive diagnosis rely on sophisticated 

techniques for processing information present in the collected data. This data can be 

acquired by various imaging modalities, such as multispectral/hyperspectral imaging 

(MSI/HSI) [1], [2]. Diagnosis is usually obtained by classifying a set of features 

extracted from the image of the tumor. Consequently, extraction of tumor-specific 

features is of central importance for accurate diagnosis. That is in line with the 

reasoning in the machine learning community that feature extraction matters more than 

the classifier used [3], [4]. Aim of this paper is to present a novel method for feature 

extraction suitable for analysis of the MSI data, and to demonstrate it on automated 

noninvasive diagnosis of cutaneous melanoma from color red-green-blue (RGB) 

images. 

Malignant melanoma is presently among the leading cancers among the white-skinned 

population, with rapidly increasing incidence and mortality rates over the last decades 

[5], [6], [7]. While advanced form of the cutaneous melanoma is still practically 

incurable, early diagnosis can significantly increase probability of survival. In fact, very 

high degree of curability can be achieved if the surgical excision is performed early 

enough [8]. This increased occurrence along with the high lethality of the advanced 

melanoma implies a demand for a simple and accurate screening test as an alternative to 

biopsy. 



In spite of best efforts of researchers, the accuracy of the noninvasive diagnosis of the 

melanocytic lesions is still far from ideal and differentiating a malignant melanoma 

from benign melanocytic lesions without histological examination represents a 

challenge [9]. One of the most widely used methods for preliminary diagnosis based on 

visual inspection is the so called ABCDE rule. It is a semi-quantitative diagnosis 

scheme based on the asymmetry (A), border sharpness (B), color variation (C), number 

of differential structures (D) present in the lesion, and evolution (E) of the lesion. 

Unfortunately, it has a limited sensitivity in melanoma diagnosis [7], and overall 

accuracy depends on the level of expertise of dermatologists. In the case of a well-

trained dermatologist it typically yields an accuracy of 75% [10]. Since the naked eye 

inspection achieves a low accuracy of the diagnosis, epiluminiscence light microscopy 

(ELM) or dermoscopy was suggested to improve performance by evaluating 

morphological features of lesions [11]. It was reported that the accuracy of the diagnosis 

obtained by dermoscopy in case of expert dermatologists is around 75-84% [5], [12]. 

Despite the formal training of dermatologists and availability of comprehensive atlases, 

interpretation of the features acquired by dermoscopy is often subjective and not 

reproducible, especially when performed by inexperienced clinician. Still, standard 

approach for classification of skin lesions in clinical practice is visual inspection by 

dermoscopy followed with biopsy and tissue analysis if needed [7].  

To alleviate the need for highly-trained dermatologists and reduce the time required for 

diagnosis, procedures for computer-based automatic diagnosis are needed. The 

possibility to identify melanoma from visual information motivated development of 

methods based on image analysis. In this regard, in [9] a comparative performance 

analysis of twelve studies is presented, with accuracy exceeding the one attained by 



visual inspection. Use of a computer-aided diagnostic system with high level of 

sensitivity and specificity (typically above 90%) could provide a second-opinion to the 

dermatologist and also reduce the number of unnecessary biopsies. Systems for 

automatic discrimination of skin lesions based on dermoscopic imaging are described in 

[9], [13], [14], [15], [16]. 

Opposed to inspection of morphological features, another line of research in 

noninvasive diagnosis of melanoma has been focused on the MSI and HSI systems, 

where discrimination among tumors is based on their spectral profile. In [1], a 

multispectral system with 10 channels in range 430-950 nm has been designed and used 

for automatic discrimination between benign nevus and malignant melanoma by using 

auto-fluorescence of the tumor. A hyperspectral system with 21 channels between 440 

and 660 nm has been used in [2] for automatic discrimination among benign and 

malignant skin tumors on laboratory mice based on fluorescence induced by 

fluorophore. 

While automatic systems based on dermoscopic and high spectral resolution MSI/HSI 

systems show great potential, it was demonstrated in [9], as well as recently in [17] and 

[18], that automatic diagnosis of melanoma is possible using color RGB auto-

fluorescent images. Presented diagnostic methods utilizing RGB images achieved 

sensitivity in range 80-94% and specificity in range 46-95%. Results of the twelve 

studies reported in [9] as well as results from [17] and [18] are summarized in Table 1. 

Practical importance of these results is in demonstration that an accurate automatic 

diagnosis of melanoma is possible using affordable RGB auto-fluorescence imaging. 

To this end, this paper proposes a method for feature extraction from multi-way data 

using tensor decomposition-based data analysis [19], [20]. The proposed method is 



applied on low-dimensional MSI data (e.g. RGB color images). For this purpose 

experimental multispectral medical image is represented by a Tucker3 tensor model, 

and features are obtained through decomposition of a tensor. Dimensionality analysis 

yields that extracted features simultaneously contain spatial and spectral information 

about the object in the image. To account for possibly nonlinear nature of acquired MSI 

data, before decomposition images are nonlinearly mapped into a reproducible kernel 

Hilbert space (RKHS). The feature extraction scheme is demonstrated on noninvasive 

diagnosis of melanoma from clinical auto-fluorescent color (RGB) images, and 

sensitivity and specificity are estimated in a statistically rigorous manner performing 

two-fold stratified cross-validation (CV). 

 

Table 1: Comparative performance analysis of fifteen studies related to digital image 

analysis based automated diagnoses of melanoma. Full references to first twelve studies 

are given in [9]. 

Source Sample 

size 

Melan. 

[%] 

Method of 

analysis1 

Sens. Spec. 

Green et al, 1991 70 7 Single set 80 91 

Cascinelli et al, 1992 88 49 Single set 83 60 

Claridge et al, 1992 88 49 Single set 91 69 

Schindewolf et al, 1993 353 61 ten-fold CV 94 88 

Green et al, 1994 164 11 Single set 89 89 

Ercal et al, 1994 214 56 Single set 80 86 

Schindewolf et al, 1994 404 59 ten-fold CV 90 88 

                                                            
1 The method of analysis reffers to a procedure used to validate statistical significance of the method. 
Single set means that the crossvalidation procedure was not used to asses the quality of classification, and 
that the reported performance was based on a result of prediction on a single test set. However, we 
performed a two-fold CV to obtain better estimate of the performance of our method. 



Bono et al, 1996 43 42 Single set 83 72 

Cristofolini et al, 1997 176 20 Single set 78 46 

Seidenari et al, 1998 90 34 Single set 93 95 

Smith et al, 2000 60 47 Single set 86 94 

Farina et al, 2000 237 28 Single set 80 46 

Tabatabaie et al, 2008, [17] 160 50 Single set 82.5 92.5 

Wadhawan et al, 2011, [18] 1300 30 ten-fold CV 80.7 85.6 

Tabatabaie et al, evaluated herein 180 50 two-fold CV 79.9 79.1 

Proposed method 180 50 two-fold CV 82.1 86.9 

 

 

2. Preliminaries 

This section contains a brief review of notions and basics of multi-way analysis, as well 

as definition of nonlinear mappings related to kernels. Also, interpretation of MSI as a 

tensor is presented, with focus on low-dimensional MSI such as color RGB image. We 

will denote tensors by underlined bold letters (e.g. X ), matrices by bold capital letters 

(e.g. X ), vectors by bold lowercase letters (e.g. x ) and scalars as lowercase italic 

letters (e.g. x ). 

 

2.1. Tensor Algebra and Tucker3 Model 

Tensors are generalization of matrices and vectors. A tensor can be represented as a 

multi-way array with arbitrary number of indices, e.g. an N-mode tensor has N indices. 

For clarity, and motivated by application in RGB image analysis, we will mostly focus 

on 3-way tensors. In this paper image in RGB color space is represented as a 3-way 

tensor 1 2 3
0
I I I 
X  , that consists of elements   1 2 3

1 2 3
1 2 3

, ,

0 , , 1

I I I

i i i i i i
x  

 , where 0  denotes the 



set of nonnegative real numbers. Each index in tensor is called a way or mode, and 

number of levels on a mode represents dimension of that mode, e.g. dimension of mode-

1 is 1I . This is the standard notation used in multi-way analysis [21]. RGB image X  is 

a set of 3 3I   spectral images, corresponding to red, green and blue color channels 

[22]. Each spectral image consists of 1 2I I  pixels, where each element 
1 2 3i i ix  represents 

brightness intensity. Consequently, two modes of tensor X  are used for the spatial 

information, i.e. rows and columns of the color image, and third mode is for the spectral 

band. Sub-tensors can be defined by fixing some of the indices for a general N-way 

tensor. In case of 3-way tensor we can have slices and fibers. Tensor slice is a matrix 

(two dimensional array) obtained by fixing a single index in a 3-way tensor. For 

example, frontal slice of 3-way tensor X  is obtained by fixing index 3i  and denoted as 

3::iX  or 
3i

X . An nth mode vector of a tensor X  is called nth mode fiber, and it is an nI  

dimensional vector obtained by fixing all indices except ni . For example, a mode-3 fiber 

of X  at position 1 2( , )i i  is a vector denoted as 
1 2i ix  or 

1 2 :i ix  [19]. For illustration, fibers 

and slices for 3-way tensor are displayed on Fig. 1. 

 

Fig. 1: Fibers in (a) mode-1; (b) mode-2; (c) mode-3; and (d) horizontal; (e) lateral; and 

(f) frontal slices. 



 

Tensor is often transformed to a matrix and vice-versa. Procedure of rearranging the 

elements of tensor into a matrix is known as unfolding or matricization. The mode-n 

unfolding of tensor X  produces matrix ,

( )

n k
k k n

I I

n


 
X   which consists of mode-n fibers 

stacked in the matrix as columns. There are various possibilities for ordering of mode-n 

fibers into columns of ( )nX , but particular ordering is not important, as long it is 

consistent through all computations [23], [19]. Useful notion is the n-rank of a tensor, 

defined as the dimension of the space spanned with columns of ( )nX . If N-way tensor 

has n-ranks equal to J1, J2,…, JN we say that it is a rank-( J1, J2,…, JN) tensor. Mode-n 

product of a tensor X  and matrix M  is defined when number of columns of matrix is 

equal to the dimension of the tensor in mode n. It results in a new tensor n Y X M , 

expressed in unfolded form as ( ) ( )n nY M X  [19]. For example, mode-2 product of a 3-

way tensor 1 2 3I I I X   and a matrix 2D IM   is a 3-way tensor 

1 3I D I
n

   Y X M  , calculated element-wise as 

 
2

1 3 1 2 3 2

2

, , , , ,
1

I

i d i i i i d i
i

y x m


  . 

Tensor decompositions are valuable tools for analysis of multi-way data, and are used in 

image and signal analysis, neuroscience, chemometrics and psychometrics [19], [23]. 

Basic model for decomposition of general N-way tensor is Tucker model. The Tucker 

decomposition for 3-way tensors is often referred to as Tucker3 decomposition, and is 

illustrated in Fig. 2. The sample tensor X  is modeled by a core tensor of reduced 



dimension 1 2 3J J J G  , and three factors  3( )

1

n nI Jn

n




A  . The Tucker3 model of 

tensor X  on level of a single element can be expressed as: 

 1 2 3

1 2 3 1 2 3 1 1 2 2 3 31 2 3

(1) (2) (3)

1 1 1

J J J

i i i j j j i j i j i jj j j
x g a a a

  
        (1) 

where ( )

n n

n
i ja   is element of the matrix ( )nA  on the position ( , )n ni j , and J1, J2, and J3 

are dimensions of the core tensor. The model (1) can be expressed in more compact 

form as 

 (1) (2) (3)
1 2 3   X G A A A . (2) 

In practice, it is common that the core tensor G  is smaller than the original tensor X , 

i.e. n nJ I , and if not stated otherwise we will assume this is fulfilled in remainder of 

the paper. Then tensor X  is modeled by a low-rank tensor on the right side of (2), and 

dimensions of the core tensor G  determine the mode-n ranks for the low-rank model. 

By representing the original tensor X  with a rank-(J1,J2,…,Jn) tensor consisting of the 

core and factors we effectively perform model reduction. This is the reason why low-

rank approximation is of practical interest. Decomposition (2) of X  can be seen as a set 

of directional bases (1) (2) (3), ,A A A  in modes 1, 2 and 3, and a set of weights contained 

in G . The elements in the core can then effectively be considered as features describing 

a sample contained in tensor X . For example, when X  represents an RGB image the 

elements of the core connect spatial bases (in modes 1 and 2) and spectral basis in mode 

3. 



 

Fig. 2: Tucker3 decomposition of a 3-way tensor 

 

The Tucker3 model is flexible in modeling complex interactions within the data because 

the core tensor allows interplay of factors from all modes [24]. However, the Tucker 

decomposition is in general not unique. Proof of uniqueness exists in the special case 

when the core tensor is diagonal (i.e. 
1 2 3

0j j jg   only for 1 2 3j j j  ), resulting in the 

canonic polyadic decomposition (CPD), known also as parallel factor analysis 

PARAFAC model, that is unique (up to scale and permutation) under mild conditions 

[25]. Constraints such as nonnegativity, sparsity and orthogonality are commonly 

imposed on the factor matrices and the core tensor in order to attain unique 

decomposition of the data tensor X  into Tucker model (2). Particular constraints are 

used to narrow down the solution space and yield a virtually unique decomposition. 

Exemplary orthogonality constrained decomposition is the higher order singular value 

decomposition (HOSVD), a multilinear generalization of the matrix singular value 

decomposition2 (SVD) [26]. The HOSVD implements decomposition of the data tensor 

to its Tucker model (2) with n nJ I  while imposing orthogonality for factor matrices 

( )nA , i.e. ( ) ( )n T n A A I . The factor matrix in n-th mode is estimated by performing 

                                                            
2 Note that the HOSVD does not give a low-rank model of the data tensor. It is an exact decomposition in 
a set of orthonormal bases. 



SVD of the n-th mode unfolding of the data tensor, i.e. ( )nA  is equal to the left singular 

vectors of the unfolded tensor ( )nX . Then the core tensor is calculated as 

      (1) (2) (3)
1 2 3

T T T
   G X A A A  (3). 

As noted earlier, we are mainly interested in low rank approximation of the original 

tensor. In this regard, algorithms usually seek for a rank-(J1,J2,J3) tensor that is optimal 

approximation of the data tensor X  in the least-squares sense with n nJ I . This can be 

performed by minimizing the Frobenius norm between the data tensor X  and its low-

rank Tucker3 model: 

   2(1) (2) (3) (1) (2) (3)
1 2 3, , ,

F
D        X G A A A X G A A A  (4) 

while at the same time imposing orthogonality constraints on factors (1) (2) (3), ,A A A . 

Actually, it is enough to find factor matrices that maximize the function 

2(1) (2) (3) (1) (2) (3)
1 2 3( , , ) T T T

F
g    A A A X A A A , and the core tensor is given with (3) 

[27]. Several algorithms address this problem, such as the higher order orthogonal 

iteration (HOOI) [27], and algorithms based on the Newton method on Grassmannians 

(NG) [28], [29]. Both HOOI and qNG seek for the best multilinear rank-(J1,J2,J3) 

approximation with orthogonality constraints on factors, and the HOOI has proved to be 

a "workhorse" algorithm in various applications of tensor decompositions [20]. 

However, note that minimization of (4) is a non-convex optimization problem with 

multiple local minima [27], [29]. Additionally, algorithms based on alternating least 

squares (such as HOOI) can even have problems in finding stationary points. Still, in 

most situations orthogonality constrained best low-rank approximation produces a 

virtually unique decomposition [30]. 



Another way to obtain a low-rank approximation of the data tensor X  is to use 

truncated HOSVD (trHOSVD) decomposition. This decomposition can be easily 

computed in two steps: (i) For n=1, 2, 3 unfold tensor to a matrix ( )nX , and calculate the 

standard SVD, i.e. ( )

( ) ( ) ( )
n

n n n TX U S V . The orthogonal factors ( )nA  are Jn leading left 

singular vectors of ( )nX , i.e. first Jn columns of ( )nU ; (ii) Compute the core tensor using 

(3). For a general N-way tensor, this decomposition is calculated using N matrix SVD's 

and can be very fast, even for large-scale problems. The truncated HOSVD (as opposed 

to the matrix SVD) does not give the optimal rank-(J1,J2,J3) decomposition, but it is a 

good approximation with error bound given in [26]. It has proved to be very useful in 

various applications since it is computationally light and does not have problems with 

local minima. For comparison, we performed several experiments using HOOI and 

qNG, but did not obtain better overall performance in terms of discrimination of 

malignant vs. benign skin lesions. Therefore, the experimental section of this paper we 

used trHOSVD for decomposition of tensors. 

 

2.2. Dimensions of the core tensor 

One of the essential problems when describing data X  using Tucker model is the size 

of the core tensor. Since in our approach elements of the core tensor 1 2 3J J J G   will 

represent features, the number of features per sample directly depends on dimensions of 

the core tensor, i.e. rank of the Tucker3 model. Estimation of the rank of a tensor is 

essential but still very difficult problem in multi-way analysis. This problem is also 

known as intrinsic dimensionality problem or model order selection, and several 

methods have been developed in recent years with various applications within signal 



processing and data analysis [31]. Estimation of rank in each of the modes can be based 

on the gap in a sequence of parameters, e.g. eigenvalues of the covariance or correlation 

matrix. Methods in this group are GAP [32], [33], RAE (ratio of adjacent eigenvalues) 

[34], SORTE (second order statistic of the eigenvalues) [33], [32], RAESORTE [34], 

and EIF (empirical indicator function) [35], [36]. Former methods estimate mode-n rank 

from the unfolded tensor ( )nX  by searching for dominant eigenvalues of the Gramm 

matrix ( ) ( )
T

n nX X  according to some criterion, e.g. gap between adjacent eigenvalues or 

ratio of adjacent eigenvalues. Also, information theoretic avenue can be used, resulting 

in model order selection methods based on Akaike's information criterion (AIC) [37], 

Kullback-Leibler information criterion (KIC) [38], and minimum description length 

(MDL) [39]. When applied to tensors, these methods also analyze corresponding 

unfolded tensor ( )nX  resulting in estimation of intrinsic dimension in mode-n. Other 

approaches can be derived using Bayesian estimation, an example being automatic 

relevance determination (ARD) method for multi-way models [40]. The ARD method 

directly estimates dimensions of the core for the Tucker model. 

All of the mentioned methods have been used in diverse applications, such as detection 

of number of clusters [33], dimensionality reduction using principal component analysis 

(PCA) [41], and the choice of number of sources in linear model [42], as well as in 

feature extraction [20]. However, due to different theoretical assumptions as well as 

noise distributions in the real-world data, they often yield significantly different 

estimations when applied to the same problem [34].  

Another related problem arises from the fact that clinical images of skin lesions used in 

our experiments do not have equal spatial dimensions, i.e. dimensions in modes 1 and 2 

are not the same for all images of benign nevus and melanoma. This causes large 



variation among estimated dimensions of the core tensor for each sample. Therefore, 

results of described approaches for mode-n rank estimation will be presented and 

commented in more detail in the experimental section of the paper. 

 

2.3. Nonlinear mapping 

Representation of the MSI by the multilinear model (2) can be questioned on the basis 

of a number of arguments, see [43], [44] for multi- and hyperspectral remote sensing. 

Taking into account possible nonlinear relationships in the data is expected to improve 

final classification accuracy. This assumption is supported by the Cover's theorem [45]. 

In a nutshell, this theorem states that a set of samples that are not linearly separable in 

the original (low-dimensional) space, are more likely to be linearly separable after being 

nonlinearly mapped into some higher-dimensional space. Consequently, we expect that 

linear model holds with high probability for the data nonlinearly mapped in a higher-

dimensional space. 

In this regard, an implicit nonlinear mapping of original image into RKHS is performed, 

based on kernel techniques. Description of kernel-based nonlinear mapping will be 

given herein, but for detailed theoretical treatment interested reader is referred to [46]. 

Let :k S S    be a real, positive definite kernel, and IS    a nonempty set. Then 

map : SS   can be defined as ( ) : (., )k s s s , where  : :S f S    is a set 

of all functions from S  to  . In this way each input sample Ss  is mapped into a 

function ( ) s  defined on input space, which is possibly an infinite dimensional object. 

However, it is possible to obtain an approximation of the map   by evaluating it only 

on a set of points, since the mapped data is embedded in a subspace of RKHS [46], [47]. 



Let  1, , D Sv v  be a set of points in the input space. Then we define mapping 

: D
D S    as  

 1: ( , ), , ( , )
T

D Dk k s v s v s   

and call it the empirical kernel map with respect to a set of points  1, , Dv v  [46]. In 

this way nonlinearly mapped data is projected onto a D dimensional subspace of RKHS, 

while at the same time all calculations are performed on the original data from the input 

set IS   . It is obvious that D I  must hold in order to exploit benefits stipulated by 

the Cover's theorem. Complex problem of selection of points  1, , Dv v  is known as 

basis selection. Various basis selection methods were previously proposed, such as 

kernel PCA [48] and feature vector selection [49]. In our experiments we have used k-

means clustering to estimate basis vectors as centroids of D clusters, as in [47]. 

In this paper we perform nonlinear mapping of the sample tensor X  along the mode 3, 

i.e. each mode-3 fiber (corresponding to a single pixel composed of intensities at 

wavelengths corresponding to red, green and blue colors), will be nonlinearly mapped 

to a new D dimensional vector, 
1 2 1 2 1 2 1 2: : 1 : :( ) ( , ), , ( , )

T

i i D i i i i D i ik k    x x v x v x  . Using 

this procedure we can define nonlinear map for tensor objects 

 
 

1 2 3 1 2: I I I I I D
D

D

    

X X

 


 

that maps a 3-way tensor X  to a new 3-way tensor ( )D X  by replacing each 3I -

dimensional mode-3 fiber 
1 2 :i ix  with its nonlinearly mapped image, a D dimensional 



mode-3 fiber 
1 2 :( )D i i x 3. As mentioned, basis points  1, , Dv v  are estimated by k-

means clustering of mode-3 fibers  
1 2 :i ix  into D clusters. Now, a low-rank tensor model 

can be used to represent nonlinearly mapped data as: 

   (1) (2) (3)
1 2 3D    X G A A A . (4) 

Since 3D I  the core tensor in the low-rank model (4) can have greater dimension 3J  

than the core tensor in the low-rank model (2). In experimental section we have used 

most common kernel known as the Gaussian kernel or Gaussian radial basis function 

 2 2( , ) exp /k   x y x y . Additionally, other kernels such as Laplacian 

 2( , ) exp /k   x y x y  and polynomial  ( , ) 1 ,
d

k  x y x y  were used, but did 

not yield better results than the Gaussian kernel. 

 

3. Proposed feature extraction method 

The proposed feature extraction scheme is summarized in Algorithm 1. Let us assume 

that our dataset consists of K samples (e.g. RGB images of skin lesions), each 

represented by a 3-way tensor ( )kX , k=1,…,K. Also, let a class label ( )kc  be assigned to 

each sample, e.g. ( ) 1kc   if k-th sample belongs to class 1 (benign nevus), and ( ) 2kc   

if it is from class 2 (melanoma). The proposed feature extraction procedure consists of 

nonlinear mapping of each sample ( )kX , followed by tensor decomposition using 

trHOSVD algorithm. Core tensor is calculated directly from the nonlinearly mapped 

                                                            
3 This is actually a sligt abuse of notation, since map D  was originally defined for vectors, not tensors. 

The notation ( )D X  can be interpreted in the following sense: we take mode-3 unfolded tensor (3)X , 

perform nonlinear map of each column, and then rearrange columns (tensorise) back to a 3-way tensor. 



data sample by projecting the mapped tensor  ( )k
D X  onto factors (1)

kA , (2)
kA  and 

(3)
kA  obtained by the trHOSVD. Finally, features are obtained by rearranging elements 

of the core ( )kG  into a vector ( )kg 4. Note that feature extraction is performed on each 

sample ( )kX  separately, but with the same values of parameters. 

From the feature extraction point of view it is important that the core tensor ( )kG  

connects two spatial modes with spectral mode of the RGB image. In this way, the core 

tensor represents a spatial-spectral profile of the lesion present in the image ( )kX  while 

each element 
1 2 3

( )k
j j jg  of the core tensor can be viewed as a spatial-spectral characteristic 

of the lesion. Therefore it is conjectured that the core tensor viewed as a set of features 

can be used for robust and accurate noninvasive diagnosis of melanoma. 

Proposed feature extraction method differs from the one recently published in [20], 

where simultaneous tensor decomposition is performed for all samples in the training 

set to find projection filters that are applied on unknown data sample. Consequently, it 

is required that all images in the data set have the same dimensions (both in spatial and 

spectral modes). However, this requirement is not easily met in practice, and method 

proposed here allows greater flexibility when acquiring clinical images for analysis. 

Also, separate decomposition of each sample enables us to easily update training set 

when new labeled sample is available, since it is decomposed independently of other 

samples previously present in the training set. 

 

                                                            
4 The vectorization procedure was performed by stacking mode-1 fibers of the core tensor. However, 

ordering of the elements of the core tensor is not important, as long as the same procedure is used for each 

sample. 



 

 

Classification system built around the proposed feature extraction method is displayed 

in Fig. 3. Feature extraction is performed for each sample in the data set with the same 

values of parameters σ, D, and nJ , n=1,2,3. In this way all of the K core tensors have 

the same dimensions and for each sample we obtain 1 2 3L J J J    features used for 

classification. Validation step consists of partitioning the K samples  ( ) ( ),k kcg  into two 

sets: training set with TRK  samples  ( ) ( ),k k
TR TRcg  and test set with TEK  samples  ( ) ( ),k k

TE TEcg

. In experimental section we used linear support vector machine (linSVM) classifier, 

and nonlinear SVM with the Gaussian kernel (rbfSVM) and polynomial kernel 

(polySVM), although other classifiers can be used as well. 

 

Input: sample (autofluorescent RGB image) represented by a 3-way tensor 

1 2 3( )
0
I I Ik  
X   

Parameters: kernel map (σ, D), core size (J1, J2, J3) 

Output: features 1 2 3( )ˆ J J Jk  g   

1) Nonlinear mapping 

( ) ( )( )k k
DX X  

2) Tensor decomposition into Tucker3 model (by trHOSVD) 

 ( ) ( ) (1) (2) (3)
1 2 3

k k
D    X G A A A  

3) Feature extraction 

       ( ) ( ) (1) (2) (2)
1 2 3

T T Tk k
D    G X A A A

 

4) Vectorization of the core tensor

Algorithm 1: Proposed method for feature extraction 



 

Fig. 3: Flow chart diagram for classification system based on the proposed method 

 

In order to obtain a reliable estimate of classification performance on an independent 

data set, we performed a two-fold cross-validation (CV). In general, the cross-validation 

procedure uses a part of the data set to train the classifier and remaining part to test it 

[4]. In K-fold CV the data set is divided into K equally sized parts so that each contains 

the same proportion of each type of class labels. Then in the k-th step classifier is 

trained on K-1 parts of the data set and tested on k-th part of the data set. We repeat this 

for k=1,…,K and then combine the K obtained estimates to give a final estimation of the 

classification performance. For example, in case of a two-fold CV, samples are divided 

into two equal sized data sets, each consisting of 50% of samples from class 1, and 50% 

of samples from class 2. In order to obtain a more reliable estimate of prediction 

performance, CV is repeated several times and the validation results are averaged. 

Even though the number of features L is significantly smaller than the number of 

elements in each of the tensors ( )( )k
D X , it can still be large. Thus it is reasonable to 



perform a feature selection (FS) step to identify significant features obtained by the 

proposed method. We ranked features based on the Fisher score [20], albeit other 

information criteria can also be used for ranking [50]. For each feature Fisher score is 

calculated using only samples in the training set as: 

 
   

 ( )

2 21 1 2 2
, , , ,
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, ,

1

( )
TR k

TR

TR TR i TR i TR TR i TR i

K
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TR i TR i
k

K g g K g g
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



  

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where c
TRK  denotes the number of training samples belonging to the c-th class (c=1,2), 

( )
,

k
TR ig  is i-th feature of k-th training sample, ( )k

TRc  label of the k-th sample, ,
c
TR ig  is the 

mean of the i-th feature calculated over training samples from class c, and ,TR ig  is the 

mean of the i-th feature calculated over all training samples. Larger value of Fisher 

score means that the feature is more discriminative. 

 

4. Experimental results 

Proposed method for feature extraction is demonstrated on noninvasive diagnosis of 

melanoma. Autofluorescent RGB images of benign nevus and superficial melanoma 

were made available by courtesy of [51], [52], [53], [54]. All calculations in the 

experiments presented below have been carried out in MATLAB environment on a 

desktop computer with 2.4GHz clock speed and 4GB of RAM. Before feature 

extraction, each RGB image has been cropped around the tumor region to prevent 

extracting features from the non-tumor related areas of the image. A more sophisticated 

approach would be to use segmentation to extract the part of the image corresponding to 

lesion, as in [17], [18], but it would introduce additional computational cost and 

compromise reproducibility of the method. We performed experiments on cropped 



images to show that the proposed method is robust when a small amount of image is 

occupied by healthy skin. Also, no hair removal was performed, since the images did 

not contain a large amount of hair. The data set for the experiments consisted of 180 

RGB clinical images with 90 images of benign nevus and 90 images of superficial 

melanoma. Few examples of analyzed images are displayed in Fig. 4. Since the data 

was collected from various archives we had no control over parameters of the 

acquisition. Images in the data set differed in size and aspect ratio, depending on the 

size of the lesion and parameters of the acquisition procedure, where the smallest image 

had dimensions 38x36 pixels to largest with 912x671 pixels. Thus, mode-1 and mode-2 

dimensions were in the range 1,min 38I   to 1,max 912I   and 2,min 36I   to 2,max 671I  . 

To demonstrate performance of the proposed method for automated diagnosis of 

melanoma we compared it against approach based on independent component analysis 

(ICA) [17]. This approach uses separate spectral and spatial features of skin lesion 

present in the image. Spectral features for each sample are calculated as mean and 

variance of red, green and blue channel from RGB image of the lesion. In order to 

obtain spatial characteristics of the lesion, original RGB image is converted to 

grayscale. Then spatial features are extracted from the grayscale image using ICA-

learned filters. Firstly, a set of patches (16x16 pixels) was selected from the images in 

the training set. The preprocessing step was performed, including mean removal for 

each patch, followed with data whitening and dimensionality reduction using PCA. 

After preprocessing, as described in [17], ICA was used to obtain spatial filters as rows 

of the unmixing matrix obtained from a set of patches, for nevus and melanoma 

independently. Specifically, 100 ICA filters were obtained for melanoma and 100 filters 

for benign nevus, resulting in a filter bank with 200 filters. Finally, spatial features were 



calculated as the energy of the response of each grayscale image to a filter. The original 

paper [17] used FastICA algorithm [55] with tanh nonlinearity to estimate spatial filters. 

However, it is important to address the problem of stability of the FastICA algorithm. 

Since the algorithm uses a random initial point for the optimization of the cost function, 

it is possible to end up in different local minima due to a different starting point. To 

alleviate this problem we used Icasso software package [56] that runs FastICA 

algorithm M times with different initial points, and the unmixing matrix (i.e. filters) is 

obtained by clustering the estimated unmixing matrices from each run5. In our 

experiments for ICA-based method we used M=30. 

As reported in [9], the ICA-based feature extraction scheme performed better than 

twelve studies compared here in Table 1. Thus, we implemented and tested the 

described procedure on the same data set as our method. To make comparison fair, ICA 

approach has been applied on the same images as the proposed tensor-based feature 

extraction method, i.e. no hair removal preprocessing has been done. The reason is that 

presence of hair was very limited and we believe that good feature extraction method 

should exhibit robustness without requiring special type of preprocessing. Also, no 

image segmentation has been performed to separate lesion from the healthy skin. The 

reason is that the images of the melanoma and nevus were already cropped around the 

lesion area and, thus, area occupied by the healthy skin was small. 

                                                            
5 Although we used Icasso, the obtained results did not differ significantly compared with application of 
FastICA without stability analysis. 



 

Fig. 4: Examples of clinical RGB images: three benign nevi (left) and three malignant 

melanomas (right). Border of the region cropped for analysis is also displayed. (Color 

online) 

 

The classification performance was measured in terms of sensitivity and specificity, 

which are standard metrics for binary classification. Higher sensitivity and specificity 

mean better classification performance. For our experiments accuracy of classification 

can be calculated as the arithmetic mean of the two. 

For a start, we tested all methods for automatic rank selection (i.e. dimensions of the 

core tensor) described in section 2.3. Estimations of rank in mode-1 and mode-2 for 

images in the data set using MDL, ARD and GAP method are displayed in Fig. 5. As 

expected, estimation results highly depend on the dimension of the clinical image. This 

is not acceptable since the proposed method requires that the core tensor has the same 

dimensions for all samples. Additionally, different methods produced very different 

results for the same image. As can be seen in Fig. 5, GAP method estimation is very 

close to the dimension of the image, while ARD method gives very small estimation. 

Results for other methods fall in between these two extreme cases (only MDL is 

displayed in the image).  



 

Fig. 5: Estimation of mode-1 and mode-2 rank for images in the data set using MDL 

(square), GAP (triangle) and ARD (circle): estimated rank 1̂J  vs. mode-1 dimension 1I  

(left); and estimated rank 2Ĵ  vs. mode-2 dimension 2I  (right). (Color online) 

 

Due to this we could not find optimal dimensions of the core tensor either by a single 

method or as consensus of several methods. Thus, we employed wrapper-like procedure 

for determination of the optimal dimensions: performance of the classification was 

estimated through cross-validation for different dimensions of the core tensor, and 

dimensions that produced the best result were selected as optimal6. To be more precise, 

feature extraction was performed with dimensions of the core tensor from a grid defined 

by 1 1,min1 J I  , 2 2,min1 J I   and 31 J D  , and classification performance was 

estimated using CV with 30 random partitions. Dimensions that produced the smallest 

CV error were selected for further analysis. Experiments also showed that feature 

extraction method is not sensitive to choice of parameter D, as long as it is large enough 

(in comparison with 3 3I  ) so we fixed it to D=40, while kernel parameter was 

                                                            
6 To measure performance we used rbfSVM as classifier, with parameter σC tuned through CV. 



optimized to σ=0.8 through CV. These values for D and σ were used in further 

experiments. 

The best classification performance was achieved for dimensions of the core tensor 

10x12x12 and 11x12x10. We selected these dimensions as optimal, although there were 

several other combinations with just slightly inferior performance. The proposed 

method was thoroughly evaluated for core tensor with selected optimal dimensions 

through two-fold CV with 100 random partitions. The obtained results can be found in 

Table 2 in terms of sensitivity and specificity (mean  standard deviation). Overall, 

equal accuracy of 84.5% using the whole core tensor was obtained with dimensions 

10x12x12 and 11x12x10. 

Since the number of features for selected dimensions of the core was still quite large 

(above thousand), a feature selection procedure was utilized. Elements of the feature 

vector were ranked in a descending order based on their Fisher scores, and only 

significant features were selected for classification. Results of this analysis for core 

sizes 10x12x12 and 11x12x10 are displayed in Fig. 6. It can be seen that in the 

beginning adding more features improved performance significantly, but after a certain 

number accuracy was not drastically increased. Thus, selection step can be used to 

reduce the number of features without affecting the overall performance of the method. 

For examples in Fig. 6 we obtained almost the same performance with only 40% of the 

most significant features. 

The ICA-based approach yielded sensitivity of 79.9% and specificity of 79.1%, 

exhibiting a significant decrease in performance compared to the original paper [17]. 

The reasons for that could possibly be a larger and more diverse dataset used here, and 

the rigorous two-fold CV used in the experiments. Thus, results obtained by tensor 



factorization approach proposed here outperform the ones produced by the ICA-based 

approach. Performance of the proposed approach is also comparable with the one 

reported in [57], that, however, has been obtained using melanoma specific marker 

expressions extracted from biopsy tissues, where (depending on the type of gene 

marker) area under the curve varied between 0.94 and 0.5. 

 

Table 2: Performance of the proposed method and ICA-based method estimated by 

two-fold CV with 100 random partitions (in %, meanstandard deviation). Parameters d 

(degree of the polynomial) and σC= were selected though CV. 

Method 
linSVM polySVM rbfSVM 

Sens. Spec. Sens. Spec. Sens. Spec. 
Core: 10x12x12 20.06.2 96.23.1 8.34.1 99.41.1 81.85.2 87.24.1 

 d=2 σC=18 
Core: 11x12x10 18.46.7 95.03.2 8.24.1 99.80.6 82.15.2 86.94.2 

 d=2 σC=19 
ICA 79.95.6 79.16.8 57.213.2 58.917.4 75.77.4 72.46.5 

 d=5 σC=3.4 
 

 

Fig. 6: Classification performance vs. number of features. Feature selection based on 

Fisher score was applied on the core tensor with dimensions: 10x12x12 (left) and 

11x12x10 (right). Rbf SVM classifier was used, with width of the kernel tuned through 

CV. (Color online) 



 

5. Conclusions 

Tensor representation of a multi-spectral image enables extraction of features that 

simultaneously capture spatial and spectral characteristics of object present in the 

image. Multimodal features are obtained by decomposing the image according to the 

Tucker3 model, and the proposed approach uses computationally light and scalable 

trHOSVD algorithm.  As demonstrated, the proposed method for noninvasive diagnosis 

of melanoma from auto-fluorescent RGB images acquired by cost-effective RGB 

cameras compares favorably with the state of the art results reported in the literature. 

Automated system based on a cost-effective, and nowadays ubiquitous, RGB camera 

could possibly be used for preliminary screening in distant areas and areas without 

appropriate medical care, e.g. by implementing software with diagnostic algorithm on 

some of the widespread smartphone platforms or as application-specific low-cost 

device. 
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Summary 

Noninvasive diagnosis of tumor is a procedure of discrimination among various types of 

tumor by exploiting noninvasively collected data, e.g. data acquired by various imaging 

modalities. The aim of the computer-based automatic noninvasive diagnosis is to utilize 

information processing algorithms to analyze collected data in order to correctly classify 

the tumor. Usually, automatic diagnosis is obtained by classifying a set of features 

extracted from the image of the tumor. In case of automatic diagnosis of cutaneous 

melanoma research has been done dominantly along two lines: inspection of 

morphological features of the suspicious lesion; and inspection of spectral 

characteristics of the lesion. Morphological features are usually analyzed from images 

obtained by skin microscopy, so called dermoscopy. On the other hand, spectral profile 

of the lesion is usually acquired by a multispectral or hyperspectral imaging system. 

However, both approaches use special imaging systems that are available only in 

specialized clinics, and often must be operated by a trained individual. 

In contrary, recent results reported in the literature demonstrate that automatic diagnosis 

of melanoma is possible using red-green-blue (RGB) color autofluorescent clinical 

images. These findings are of great practical importance, since they demonstrate that an 

accurate diagnosis of melanoma is possible using affordable RGB color imaging. In this 

way an automated system based on cost-effective and nowadays ubiquitous RGB 

camera could possibly be used for preliminary screening in areas without trained 

dermatologist and/or specialized equipment. 

To this end, we propose a feature extraction method for noninvasive diagnosis of 

melanoma based on tensor decomposition of the clinical color image of skin lesion. The 

image of the suspicious skin lesion is represented by a multi-way array, i.e. by a tensor.  



The image tensor is modeled by Tucker3 model, a standard model in the multi-way 

analysis. Extracted features are elements of the core tensor in the corresponding 

Tucker3 model, and represent spatial-spectral profile of the object in the image. In 

contrast to majority of methods that exploit either texture or spectral diversity of the 

tumor only, this method simultaneously captures spatial and spectral characteristics. 

The proposed procedure is demonstrated on a problem of noninvasive diagnosis of 

melanoma from cost-effective auto-fluorescence color images of skin lesions, with 

overall sensitivity 82.1% and specificity 86.9%, and compare favorably with the state of 

the art results reported in the literature. It is also important to note that the proposed 

feature extraction procedure is based on a computationally efficient and scalable 

multilinear generalization of singular value decomposition. Thus, diagnostic system 

based on this feature extraction method could be easily implemented on some of the 

widespread smartphone platforms, or as an application-specific low-cost device. 

 


