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Abstract

In this paper, we present a novel framework for parcellation of a brain region into

functional subROIs (Sub-Region-of-Interest) based on their connectivity pat-

terns with other brain regions. By utilising previously established neuroanatomy

information, the proposed method aims at finding spatially-continuous, func-

tionally consistent subROIs in a given brain region. The proposed framework

relies on 1) a sparse spatially-regularized fused lasso regression model for en-

couraging spatially and functionally adjacent voxels to share similar regression

coefficients; 2) an iterative merging and adaptive parameter tuning process; 3) a

Graph-Cut optimization algorithm for assigning overlapped voxels into separate

subROIs. Our simulation results demonstrate that the proposed method could

reliably yield spatially continuous and functionally consistent subROIs. We

applied the method to resting-state fMRI data obtained from normal subjects

and explored connectivity to the putamen. Two distinct functional subROIs

could be parcellated out in the putamen region in all subjects. This approach

provides a way to extract functional subROIs that can then be investigated

for alterations in connectivity in diseases of the basal ganglia, for example in
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Parkinson’s disease.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a functional neuroimaging

technique that indirectly measures brain activity by detecting associated alter-

ations in blood oxygenation (BOLD signal). In the past, most fMRI studies

focused on detection of localized neural activities by modeling the relationship

between fMRI signals and experiment stimulus, i.e., activity studies [1, 2, 3].

However, the human brain relies on efficient networks of interacting brain re-

gions [4]. Hence, interests in studying the associations between brain regions

have grown, i.e., connectivity studies [5, 6, 7]. Connectivity studies can be ex-

plored using task-related as well as resting state fMRI data, with the latter

looking at spontaneous interactions between different brain regions without re-

quiring active engagement from the subject. Resting state fMRI may therefore

be more suitable for studies involving aging and diseased populations [8] who

oftentimes suffer from sensory, motor and/or cognitive impairments rendering

them incapable of performing challenging tasks.

Connectivity studies can be conducted at either the voxel or ROI (regions-

of-interest) level. Voxel-based approaches usually involve a large number of

variables, are computationally-inefficient, and must account for the massive

amount of multiple comparisons. Such voxel-based approaches are typically

done by spatially transforming all brain volumes to the same anatomical tem-

plate. However, subtle misregistration can make the assumption that, after

registration, a given voxel will represent the same functional region across all

subjects tenuous. ROI-based connectivity analysis may reduce the number of

multiple comparisons, and does not necessarily require spatial transformation,

but requires careful consideration as to the definition of an ROI. Anatomical

ROIs may be used to infer functional ROIs [9], but a single anatomical ROI, such

as the putamen or amygdala, may in fact encompass distinct functional subROIs
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Figure 1: Illustration of functional subROIs in the putamen brain region. The figure is made

according to the graph shown in [18].

[10]. A number of attempts have been made to utilize data-driven approaches

to subdivide a given ROIs into subROIs based on functional connectivity. One

broad approach is based on cluster analysis [11] which first retrieves connectivity

features of each voxel within an ROI using general linear regression models or

Pearson’s pairwise correlation coefficients, and then applies clustering according

to the functional distances defined by the extracted features. Various clustering

methods have been adopted in previous studies, such as the fuzzy clustering

method [11], k-means clustering method [12], a self-organized mapping method

[10] and maximum margin clustering method [13]. However, in order to acquire

spatially continuous results, most clustering methods require meticulous de-

noising preprocessing methods as they are very sensitive to outliers in the data.

Another popular category of data-driven approaches is based on graph theory,

where each voxel represents one node in the graph, and methods such as the

normalized cut approach [14] and modularity detection method [15] are used to

separate the graph (and hence ROI) into distinct subROIs. Similar to clustering

3



methods, graph theory methods do not take into account spatial information,

and thus it is often difficult to obtain spatially continuous subROIs using graph

theory methods. Furthermore, most graph theory methods are only concerned

with the connectivity map between voxels within an ROI without incorporating

connectivity from other ROIs, which might limit their usefulness.

In this paper, we propose a novel framework which defines subROIs in one

ROI based on their functional connectivity to other ROIs. The proposed method

employs a fused lasso regression model [16] with a spatial regularization penalty

incorporated. The fused lasso approach encourages sparsity of the regression

coefficients as well as sparsity of their successive differences between coefficients.

We further introduce the normal lasso penalty for all voxels and the fused lasso

penalty on spatially adjacent pairs of voxels.

Our framework differentiates from other approaches in the literature [11] [12]

[13][14][15]in two main aspects. Firstly, in our proposed framework, we utilize

the functional connectivity between voxels in the task ROI and the average time

series of other related ROIs (where the task ROI and the related ROIs belong

to one neural control loop). In the literature [11][14][15], people only consider

the functional connectivity between voxels within the task ROI. Secondly, we

incorporate spatial information that is often ignored in the literature [11][14][15]

into our problem formulation. In addition, in order to limit the amount of

bias that spatial constraint could introduce, we proposed a novel algorithm

for adaptive, data-dependent parameter selection which allows us to only add

spatial constraint when it is ‘necessary’.

Functionally, in the basal ganglia-cortical loops in animals, the putamen is

connected to several cortices with a clear topography [18]. We have chosen

three reference brain regions namely the orbitofrontal (OF) cortex, cingulate

gyrus (CG) and sensorimotor cortex(SMA) to assess connectivity to the ROI of

interest, the putamen. Specifically, the DLS is more strongly connected to the

SMA while the DMS has more reciprocal connections with the OF and CG [19]

[18]. However, the spatial boundary between the DLS and the DMS is blurry and

their exact locations are unknown due to overlapped connections; Some voxels
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of the DMS also have weak connections with the SMA while the DLS, too, may

receive weak connections from the CG and OF. This scenario is illustrated in

Figure 1. In addition, as we observed in real fMRI data, due to the spatial signal

noise, head movement and other possible artifacts, the data could be spatially

corrupted with some outlier voxels. As a result, many current parcellation

methods are not able to deal with such corrupted voxels to obtain a spatially

continuous parcellation. Therefore, we plan to design an algorithm to parcellate

the putamen region not only according to functional connectivity features from

prior knowledge but also through integration of spatial information.

This pilot study aimed to investigate a novel technique to parcellate the

putamen into two subregions with distinct functional and structural connections

to the cortices of the brain. The putamen and caudate are two structurally

distinct brain regions in the brainstem with the former lying more laterally

and inferior to the latter. Due to the proximity of these two brain regions to

each other and their shared neuronal connections, together, they are known

as the striatum. Within the striatum (caudate and putamen), it has spatially

segregated functional topography. The dorsolateral striatum (DLS) consists of

the dorsal and lateral aspects of the caudate and putamen, and is associated

with control of habitual, automatic movements. On the other hand, more medial

areas within the caudate and putamen are known as the dorsomedial striatum

(DMS) and this region is functionally related to learning and execution of goal-

oriented movements. As an exploratory first step, in this paper, we chose to

parcellate the putamen into the DLS and DMS subregions.

In the remainder of the paper, we will present the proposed method in Sec-

tion 2. In Section 3.1, we investigated on a synthetic dataset to compare the

results of the proposed method with those of clustering and graph theory meth-

ods. We tested the proposed method on real resting state fMRI data set in100

Section 3.2. In Section 4, we presented a summary of our results with a conclu-

sion.
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2. Method

In this section, we will describe the proposed framework to separate a given

ROI into functionally consistent and spatially continuous subROIs. We define

the ROI to be separated as the task ROI and other ROIs used to estimate the

connections with the task ROI as reference ROIs. We intended to find subsets of

adjacent voxels (i.e., subROIs) in the task ROI that share similar connectivity

patterns to other reference ROIs and iteratively merge them into groups. In

the proposed algorithm, according to prior neuroanatomical knowledge, there

are several reference ROIs that share similar connectivity patterns with one

functional subROI in the task ROI (putamen in this paper) so that we can

obtain the functional boundary between these subROIs.

The proposed framework can be summarized in Table 1. We will now elab-

orate on the individual components of the proposed framework in the following

subsections. First, we start by describing the spatially regularized fused lasso

model.

2.1. Spatially Regularized Fused Lasso Method

Let X = [x1, x2, · · · , xn] be a (T ×n)-dimensional data matrix with n denot-

ing the number of voxels and T denoting the length of time points. X represents

the fMRI signals in the task ROI and xi, i = 1, 2, · · · , n represents fMRI time

course of voxel i. Y is a (T × 1) vector representing the signals of one reference

ROI which is acquired by averaging time courses across all voxels contained in

that reference ROI. Let β be a (n × 1) vector where each element in β repre-

sents the connectivity coefficient between one voxel and the reference ROI. A

standard linear model with one reference ROI Y is:

Y = Xβ + ε (1)

with error ε assumed to be zero mean and constant variance.

The linear regression model tries to obtain the weight for each voxel in the

task ROI in order to get the best linear fit for the reference signal, i.e., smallest
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Table 1: Connectivity-based Brain Parcellation Framework.

Input : X: T × n matrix represents task ROI signal.

Y1, Y2, . . . , Ym: Each Yi is a T × 1 vector representing time

course for reference ROI i

Step 1 : According to each reference ROI Yi, iterate until final

separation being obtained.

1) Perform spatially regularized fused lasso algorithm between

voxels in the task ROI and one reference ROI.

2) Merge adjacent voxels with similar connectivity weight

acquired from 1) into one group.

3) Treat groups from 2) as new voxels, go back to 1)

Step 2 : With more than one reference ROI, combine all

parcellation results from all reference ROIs by performing

Graph-Cut algorithm.

Output : Two spatially continuous functional subROIs from X

mean square error. So the problem could be formed as,

β̂ = arg min
β
‖Xβ − Y ‖2 (2)

For fMRI data, it is common that the number of voxels n in task ROI is larger

than the length of time points T . In this case, the problem of multicollinearity

will arise, and an optimal solution to above problem will not be unique. In order

to eliminate the effect of multicollinearity and make the solution unique, we

introduce the normal Lasso (Least Absolute Shrinkage and Selection Operator)

penalty
∑n
j=1 |βj | ≤ s1 where s1 is a tuning parameter [20]. This penalty

will encourage sparsity in the coefficient vector β, forcing small elements to

be exactly zero. In addition, it is well known in fMRI analysis that similar

connectivity patterns tend to exist in clusters of spatially adjacent voxels rather

than small isolated groups of voxels [21]. However, with only the Lasso penalty,

we cannot incorporate spatial information. Therefore, we further introduce a
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spatially regularized fused Lasso penalty
∑n
j=1

∑
j<i Cji|βj − βi| < s2, where

s2 is a tuning parameter and

Cji =

 1, if voxel j and i are adjacent

0, otherwise
(3)

This is a spatially regularized fused lasso penalty that comes from the normal

fused lasso penalty [16], and it is also a special case of a graph-guided fused lasso

model [22]. The spatially regularized fused lasso penalty will encourage sparsity

in the difference between spatially adjacent voxels, forcing adjacent voxels to

belong to the same cluster.

With the Lagrange multipliers’ method, we could form the optimization

problem of the spatially regularized fused lasso model as,

arg min
β

{
‖Xβ − Y ‖2 + λ

n∑
j=1

|βj |+ γ

n∑
j=1

∑
j<i

Cji|βj − βi|
}

(4)

where the second term encourages sparsity among elements in β, and the third

term encourages sparsity in differences between spatially successive elements.

In fMRI, usually n > T , i.e., the number of voxels within a ROI, n, is larger

than the number of fMRI time points T . However, regarding to different sizes

of ROIs and lengths of fMRI experiments, it is possible that in some ROIs we

can have n < T . For instance, in the fMRI data we have been working on, the

length of fMRI time course T (T = 240) is larger than the number of voxels n

(n is around 200) in ROI Caudate. It is commonly recognized that if n < T and

if time courses of different voxels are independent to each other, the introduc-

tion of Lasso penalty to the regression model is redundant. However, according

to realistic assumptions of fMRI data, the fMRI time series of different voxels

within one ROI are not independent and indeed neighbour voxels are generally

expected to have high correlations. Thus, many predictors suffer from collinear-

ity which would allow the coefficients of predictors to be sparse and coefficient

differences between adjacent voxels to be sparse. Therefore, the introduction

of Lasso penalty and fused-lasso penalty is not unnecessary and the proposed

algorithm is still feasible when n < T .
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Equation (4) leads to a quadratic programming problem with non-smooth

constraints. In order to solve this problem efficiently, we implemented a Smooth-

ing Proximal Gradient (SPG) method recently proposed [23].

2.2. Merge Voxels into Groups

With the lasso penalty and spatially regularized fused lasso penalty, the

inferred connectivity weights β and their differences should be sparse. In the

second step, we merged adjacent voxels that share similar connectivity weights

into groups. To better illustrate our method, we utilize some definitions from

graph theory in our description. We mapped the task ROI as a connected graph,

where each voxel is taken as one node in the graph, and the edge between two

nodes exists only when these two nodes are adjacent. In this network, adjacency

is defined by any pairs of nodes that are horizontally, vertically, or diagonally

adjacent in a 3-dimensional space, i.e., the Euclidean distance between the two

nodes is not greater than
√

3. We then merged those adjacent nodes correspond-

ing to the same connectivity weights into the same group.

After acquiring new groups, we averaged the signals contained in each group

and treated the averaged signals as new predictor variables. Then, we recal-

culated the connectivity weights of the updated predictor variables using the

spatially regularized fused lasso model. After merging of the voxels (groups),

edges in the updated graph exist only when the minimal distance between vox-

els in the two groups is not greater than
√

3. This process is repeated until the

number of groups reaches the expected number of subROIs, which is 2 in our

case. However, with real fMRI data, noise cannot be ignored and tuning param-

eters would also affect the results such that the algorithm may not converge.

Therefore, if the number of groups remains unchanged after one iteration, we

will increase the penalty parameters to enforce the regularization and relax the

merging precision. Merging precision is controlled by a rounding parameter δ

which is defined as the precision of judging the equality of two connectivity

weights (For instance, merging precision δ = 104 means that the connectivity

weights will be compared by 4 digits after the decimal point).
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The detailed algorithm of parcellation with one reference ROI is described

in Algorithm 1.

Algorithm 1 Spatially Regularized Fused Regression Based Algorithm for

Brain Region Parcellation Algorithm.

Require:

task ROI voxel level signal X,the mean time course Y of the reference ROI,

the lasso penalty parameter λ, the fused lasso penalty parameter γ and the

merging precision parameter δ.

Initialization:

(1)Run spatially regularized fused regression model on all voxels in task

ROI, get connectivity weights β for all voxels.

(2)Round β by δ, merge adjacent voxels with same connectivity weights into

one group, get m groups. Before iteration, save original merging precision

parameter, δinitial ← δ.

Ensure:

1: while m 6= 2 do

2: Take groups as nodes, use mean value to represent groups signal. Run

spatial regularized fused lasso regression on all nodes;

3: Round β by δ, merge adjacent nodes who have same connectivity weights

into one group, get m groups.

4: if m = 1 then

5: γ ← γ/2, λ← λ/2, δ ← δ × 10, redo 2 and 3;

6: else

7: if m remain unchanged then

8: γ ← γ + 1, λ← λ+ 1,δ ← δ/10, redo 2 and 3;

9: end if

10: else

11: δ ← δinitial, continue

12: end if

13: end while
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2.3. Assign Voxels Using the Graph-Cut Optimization

In our study, three reference ROIs were used for parcellation of the task

ROI, i.e., the putamen. After obtaining parcellation based on each reference ROI

respectively, there were some overlapped voxels with different group assignments

around the boundaries of all parcellation results. In order to further define the

boundary between the DLS and DMS, we combined all information from the

reference ROIs, and applied the Graph-Cut algorithm to assign those voxels

into two groups.

The Graph-Cut algorithm is mostly applied in the field of computer vision,

where it could be used for image smoothing, segmentation, and many other

computer vision problems which could be categorised under energy minimiza-

tion problems. It is basically a combinatorial optimization technique based

on network flow theory (i.e., max-flow min-cut theory [24]). Once an energy

minimization problem is formulated in terms of a network flow problem, many

energy functions can be solved through the Graph-Cut algorithm.

In our framework, there were two determined subROIs and several voxels

around the boundary to be assigned, so our goal is to assign those voxels into two200

groups. Firstly, we formalized the voxel assignment problem as the minimization

of the following energy function,

min
f
E(f) =

∑
v

Dv(fv) +
∑

{v,q}∈N

V (fv, fq) (5)

where f represents labels for all voxels, fv is the label of voxel v,
∑
vDv(fv) is

data energy which measures the cost of labeling voxel v as fv,
∑
{v,q}∈N V (fv, fq)

is the smooth energy that measures the extent to which the labeling f is not

piecewise smooth and N is the set of all pairs of adjacent voxels. In summary,

the first term in equation (5) tries to ensure that each voxel has been labeled cor-

rectly while the second term maintains the continuity of parcellation. Secondly,

in order to solve the above energy minimization problem, we have to formulate

the problem as a network flow problem and define Dv(fv), V (fv, fq). Here we

construct the voxel assignment problem as network flow problem based on [25]
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Figure 2: Illustration of graph example in the voxel assignment problem, where each small

cube represents one voxel in an overlapped part of the task ROI. α and β are labels of two

determined subROIs in the task ROI. Link ei,j between voxels exist if voxel i and voxel j

are neighbours. tαi and tβi represent links between voxel i and determined subROI α and β

respectively.

and solve it using the αβ-swap algorithm described in [26]. In our application

of Graph-Cut, we define,

Dv(fv) = 1− ρ(v, fv) (6)

V (α, β) = T (α 6= β) (7)

where ρ(v, fv) is the Pearson’s correlation between voxel v and region fv, region

signal is calculated as mean time course of the obtained subROI fv, and T (.) is

Potts model.

In the αβ-swap algorithm, initial label f must be given. Here we initialize

the label fv for voxel v as α if the number of voxel v labeled as α (nα) is

larger than the number of that labeled as β (nβ), vice versa. If nα = nβ , we

set the initial label randomly. Then we try to find a labeling f̂ that minimize

equation (5) over all labeling by swapping the labels for all voxels one by one.

As described in Figure 2, let Pαβ be the set of voxels to be assigned. There

are two links connecting each voxel with terminal α and β, noted as tαp and tβp

where p indicates the voxel p. There is another possible link connecting adjacent

12



voxels p and q together, noted as e{p,q}. According to [25], the weights assigned

to the links are,

tαp = Dp(α) +
∑

q∈Nv, q /∈Pαβ

V (α, fq) for v ∈ Pαβ (8)

tβp = Dp(β) +
∑

q∈Nv, q /∈Pαβ

V (β, fq) for v ∈ Pαβ (9)

e{p,q} = V (α, β) for {v, q} ∈ N and v, q ∈ Pαβ (10)

where Nv is the set of adjacent voxels of v, N is the set of all pairs of adjacent

voxel. Therefore, the energy function (5) can be solved through maximum-flow

algorithm on this graph [27].

2.4. Extension to Regions with Three or More SubROIs

Although the aforementioned algorithm was applied to our fMRI dataset

where the task ROI is assumed to have two subROIs, the method can be easily

extended to other brain regions that may contain three or more subROIs, with

some small modifications: First, for the parcellation of the task ROI according to

one reference ROI, we only need to modify the stop criteria. The algorithm will

stop merging groups when the number of groups reaches the expected number

of subROIs. Second, the Graph-Cut approach is still applicable in this case. In

the case with two subROIs, the αβ swap algorithm only applies on one pair of

labels, while in any case with three or more subROIs, the αβ swap algorithm

needs to run on all pairs of labels. For each pair, the process is exactly the same

as described earlier.

3. Results

3.1. Synthetic Data Set

In this section, we first tested the proposed method on synthetic datasets

by comparing its performance with those of k-means clustering as well as the

modularity detection approach.
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Figure 3: Illustration of the synthetic data generation. 1,2,3 indicate three connected reference

ROIs. Y1, Y2, Y3 represent signals in reference ROIs 1,2,3 respectively. XA represents signal in

region A. XB represents signal in region B. Y and Z are source signals generated from normal

distribution with zero mean and unit variance. In order to comply with real fMRI signal, we

further perform temporal Gaussian smoother on the source signal. Here we set β = 1 and

α = 0.2.

In order to ensure our simulations are compliant with real fMRI conditions,

we generated three reference ROIs which are connected to each other and one

cubical task ROI in which one spatially continuous subROI had strong con-

nectivity to all three reference ROIs and the other part had weak connections

with all reference ROIs. The boundary was set to separate these two subROIs.

The process of generating the synthetic dataset was shown in Figure 3. The

10×10×10 cubic task ROI contains 1000 voxels, and the sample length of each

voxel was 300. Similarly, each reference ROI contained 300 voxels with data

length of 300.

In the simulation, two different scenarios were considered. In the first case,

the dataset was generated with the same signal to noise ratio (SNR) for all

voxels (syn-data 1). Here SNR = σ2
signal/σ

2
noise where σ2 was the variance of

the data. In the second simulation, we randomly chose 75 voxels in each subROI

of the task ROI in synthetic data set 1. Then, we assigned those voxels with

smaller SNR, i.e., partially corrupted by outliers (syn-data 2). In order to ensure
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the boundary is clear in synthetic dataset 2, we chose the outlier voxels that are

away from the boundary. Results from the two datasets were compared with

those of the k-means clustering method and the modularity detection method.

Each procedure was repeated fifty times and the averaged performance of each

algorithm was evaluated by looking at its error percentage, which is defined as,

Error Percentage =
# of all negative assigned voxels

# of all voxels in task ROI
(11)

To implement the k-means algorithm according to [12], we first computed

the Pearson’s correlation coefficients between the task ROI and each reference

ROI at the voxel level. Then, we transformed the Pearson’s correlation ρ into

Fisher’s z statistics,

z = 0.5× log
1 + ρ

1− ρ
(12)

Then, each voxel of the task ROI will have a corresponding feature vector where

each element represents the z score between current voxel and one voxel in a

reference ROI. k was set to 2 and Euclidean distance measure was chosen in

the simulation. For modularity detection method in [15], we constructed the

undirected weighted graph by considering all voxels as nodes and their pairwise

Pearson’s correlation coefficients as edge weights. Since all algorithms perform

well on syn-data 1, in this paper, we only demonstrated one representative result

from syn-data 2 in Figure 4.

In addition, we performed k-means clustering with spatial regularization to

further compare with our spatially regularized algorithm. In this paper, ac-

cording to [28], we perform the spatially regularized k-means clustering method

by extending the feature vector of each voxel in task ROI with three spatial

coordinates, multiplied with a parameter p indicating the weights given to the

spatial information. Figure 5 shows the performance of algorithm on syn-data2

with different values of parameter p, form which we could infer that with spa-

tial information incorporated result could be improved. However, the choice of

parameter p is crucial and a larger value would cause loss of robustness.

From the results, we noted that, without the incorporation of spatial infor-
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Table 2: Synthetic data sets

SNR Configuration

syn-data1 0.5 normal spatial noise

syn-data2 0.5(full)+0.1(part) data with few outliers

Table 3: Best error percentage from synthetics data sets

syn-data1 syn-data2

Spatially Regularized Fused Lasso 0 1%

K-means Clustering 0 10.90%

Modularity detection 0 11.30%

Table 4: Average Error Percentage from Synthetics Data Sets

syn-data1 syn-data2

Spatially Regularized Fused Lasso 0.10% 2.9%

K-means Clustering 0.11% 11.83%

Modularity detection 0.09% 12.47 %

mation, it was difficult to deal with noise that was not normally distributed and

the outliers can not be eliminated. As a result, a spatially continuous parcella-

tion could not be guaranteed. Nevertheless, the spatially regularized fused lasso

model with the spatial regularization term can provide reliable parcellation with

spatially continuous and functionally consistent subROIs.

3.2. Real FMRI Data Set

3.2.1. Data Description

9 healthy subjects were recruited from the Pacific Parkinson’s Research Cen-

tre (PPRC)/Movement Disorders Clinic at the University of British Columbia

(UBC). All experiments were approved by the Ethics Board at UBC, and all

subjects provided informed consent prior to experiment participation. During

the experiment, all subjects were required to lie on their back in the scanner
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(a) (b)

(c) (d)

Figure 4: One example of parcellation results from syn-data2. (a) ground truth. (b) results of

the proposed spatially regularized fused lasso algorithm. (c) results of the k-means clustering.

(d) results of the modularity detection.

with their eyes closed and keep awake.

MRI data were collected from a Philips Achieva 3.0 T scanner (Philips, Best,

Netherlands) equipped with a headcoil. A whole brain three-dimensional T1-

weighted image consisting of 170 axial slices with high resolution were acquired300

to facilitate the anatomical localization for each individual. Blood oxygenation

level-dependent (BOLD) contrast echo-planar (EPI) T2*-weighted images were

taken with the following specifications: repetition time 1985 ms, echo time 37

ms, flip angle 90◦, field of view (FOV) 240.00mm, matrix size 128×128, and

pixel size 1.9 mm×1.9 mm. The duration of each functional run was 8 min

during which we obtained 240 time points of 36 axial slices with 3 mm thickness

and 1 mm gap thickness. The FOV was set to include the cerebellum ventrally

and the dorsal surface of the brain.
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Figure 5: Simulation results from spatially regularized k-means methods with different param-

eter p chosen. The results are shown from average error rate perspective and also minimum

error rate perspective. The upper line (blue) shows the average error rate changing with

spatial regularization parameter p, while the lower line (red) shows the minimum error rate

trending.

Figure 6: Initial parcellation results for 9 normal subjects according to 3 reference ROIs. Each

column shows the results from the same subject according to 3 different reference ROIs, while

each row represents results from the same reference ROI across different subjects. In each

scatter plot, voxels are shown as small circles with different colors representing groups, and

the red color demonstrates significantly stronger correlations. It is worth noting that in our

fMRI data, as a result of not using the common spatial template, the spatial coordination of

the putamen region changes from subject to subject.
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After acquiring the raw fMRI data, we utilized our own optimized prepro-

cessing pipeline of the fMRI data[29], which includes SPM-based slice timing cor-

rection, isotropic reslicing (based on algorithms generated by our team), SPM-

based motion correction and FSL-derived registration. 54 regions-of-interest

(ROIs) were derived from the open source Freesurfer program (http://freesurfer.net/)

for time course extraction. Rather than warping brain images into a common

template for connectivity analysis, all data analysis were done on the unwarped

images (in the native space) on a subject-by-subject basis.

3.3. Region of Interest(ROI) Extraction

We employed the open source Freesurfer program and the available stan-

dard atlases for cortical parcellation and subcortical segmentation. Freesurfer

uses a high-dimensional registration process by utilizing probabilistic atlases for

cortical and subcortical labelling. The labels are then propagated back to the

subjects native space by relying on the template label and the subjects trans-

formed voxel value obtained from T1-weighted structural scans. Based on our

experience, this ROI-based segmentation method is superior to manually-drawn

ROIs and voxel-based method as it minimises registration error particularly in

subcortical brain regions such as the putamen.

For highly accurate structural analyses of subcortical structures, we have

in the past used Large Deformation Diffeomorphic Metric Mapping (LDDMM)

[28]. However, we note that we are using the Freesurfer segmentation of the

high-resolution structural scans (1x1x1mm) to provide ROI-based binary masks

to the relatively low-resolution fMRI scans (3x3x3 mm). We have found the

Freesufer segmentations well-suited for this purpose. The extracted ROIs are

visually checked by experienced neurologists if needed.

Table 5 lists all four of the regions-of-interest (ROIs) extracted from both

sides of the brain. For simplicity, the right column contains only Freesurfer and

Human Motor Area Template (HMAT) labels from the left side of the brain.

HMAT labels are in bold. In this study, the orbitofrontal gyrus (OF) is defined

by both the medial and lateral orbital frontal cortices, the cingulate gyrus in-
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Table 5: List of ROIs Used in This Paper

Regions of Interest (ROI) Freesurfer and HMAT labels

Sensorimotor Area (SMA) ctx-lh-postcentral, L S1 L M1

Cingulate gyrus (CG) ctx-lh-caudalanteriorcingulate,

ctx-lh-posteriorcingulate

Orbitofrontal gyrus (OF) ctx-lh-medialorbitofrontal,

ctx-lh-lateralorbitofrontal

Putamen Left-Putamen

clude the anterior and posterior cingulate gyri, and finally the somatosensory

area consists of the primary motor cortex as well as the somatosensory cortex.

3.3.1. Algorithm Application

In the real fMRI data application, in this pilot study, we only applied our

algorithm on the left hemisphere. We choose OF, CG and SMA as reference

ROIs as discussed before, to separate the putamen region into two functional

striatal subROIs - the DLS and DMS. We assumed the motor control loops of

the DLS and DMS were independent. Before performing any analysis, we first

removed the global mean artifact in the putamen region and all three reference

ROIs through linear regression. Then, in order to exploit the partial corre-

lation between each reference ROI and the putamen region, we also removed

artifacts from the SMA in the OF and CG and artifacts from the CG and OF

in the SMA using the same method. The DLS is assumed to be functionally

connected to the SMA. Therefore, we take SMA as a reference ROI to define

the DLS in the putamen region. In order to determine DLS, we calculated

the correlation coefficients between each voxel contained in the putamen and

mean time course of SMA. After transferring correlation coefficients to Fisher’s

z-statistics, a one-sided Welch’s t-test is applied on magnitude of z-statistics to

test whether one region has significantly stronger (under 5% significance level)

correlation with the SMA and the region with stronger correlation is defined

as the DLS. Similarly, to define the DMS in putamen region, OF and CG are
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selected as the reference ROIs according to prior knowledge. The Graph-Cut

algorithm is essential in this case to combine two parcellation results based on

connections to the CG and OF. Figure 6 shows initial parcellation results from 9

normal subjects respectively with SMA, CG and OF as the reference ROI. Each

point represents one voxel in 3-dimensional coordinates in Figure 6. Red and

green colors denote two functional subROIs respectively with red representing

stronger correlation. Figure 7 demonstrates the final definition of the DLS and

DMS from 9 normal subjects with red representing the DMS and green repre-

senting the DLS. In Figure 8, we showed our parcellation result of one subject

(N003) with registration on the structural image.

3.3.2. Performance and Group Consistency Evaluation

Since we have no access to the ground truth of parcellation of real fMRI

data, we have to indirectly validate our results anatomically or functionally.

Firstly, under the assumption that functional subROIs exist in the putamen

region, it is reasonable to assume that the anatomical boundaries across normal

subjects are stable. However, since our data do not use a common spatial

template for all subjects, spatial coordination of the putamen region changes

subtly from subject to subject. As a result, it is not easy to evaluate the

consistency of anatomical segmentation. The final parcellation results in Figure

7 show that the DMS region (red) is consistently located on the right side of

the putamen region while all DLS points (green) are on the left side. Our

results show that clear boundaries are consistently observed in normal subjects,

however the specific positions of the boundaries vary from subject to subject

probably due to the inter-subject variability. In addition, since our proposed

algorithm already incorporates prior knowledge (as shown in Figure 1) into the

optimization process, the definition of the DLS and DMS is strongly consistent

with prior knowledge. The results demonstrate that we could obtain spatially

continuous and functionally consistent subROIs and suggests that the proposed

method could provide a promising way for brain parcellation.

The adaptive changes of parameters of the proposed algorithm is shown in
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Figure 7: Final parcellation results from 9 normal subjects, where red points represent DMS

region defined by combining initial results from CG and OF, green dots represent DLS region

defined by initial results from SMA. Since DLS and DMS are defined by different parcellation

region, the two groups could be totally spatially separated or overlapped. For reference, the

first graph(upper left) shows the full putamen region in subject N003 without any parcellation.

Note that although the original accurate anatomical definition of putamen region may change

subtly from subject to subject, their geometrical shapes remain almost the same.

(a) Coronal (b) Saggital (c) Axial

Figure 8: One example of parcellation results in structural image from N003. Here the red

region represents the DLS while the yellow region shows the DMS.

Figure 9 with the red line representing the number of groups, green and blue

lines representing tuning parameters. Recall that in our algorithm, if the number

of groups could not be reduced, we will increase the penalty parameters. It’s

worth noting that in the last few iterations, γ and λ increase dramatically since

the algorithm is trying to combine those isolated outliers into the groups which

22



Figure 9: The iteration process in one parcellation (parcellating putamen according to SMA

of one normal subject). The red line shows the change of number of groups in each iteration,

the green and blue lines represent the change of the spatially regularized lasso parameter γ

and the normal lasso parameter λ respectively.

demands large tuning parameters in the last several iterations,.

4. Discussion and Conclusion

In this paper, we presented a novel framework for parcellating one brain

ROI into distinct functional subROIs using fMRI based functional connectivity

patterns with other reference ROIs. The proposed approach applies the spatially

regularized fused lasso model to obtain functional connectivity between voxels400

in the task ROI with other reference ROIs. With the learned connectivity

patterns, we grouped adjacent voxels with similar connectivity weights together.

Then, groups containing similar connectivity adjacent voxels will be treated as

new voxels and the process repeated until the expected number of subROIs are

obtained as described in Table 1. Lastly, the Graph-Cut algorithm is applied to

assign voxels by combining the parcellation results from several reference ROIs.

Several parameters are included in this proposed method. First, the param-

eter λ controls the sparsity of elements in the connectivity coefficient vector, β.
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This parameter can be set to 0 in order to consider only the sparsity difference.

Assigning a larger λ to the algorithm does mean a higher tolerance of noise,

however, it can also increase the possibility of merging all voxels into one group.

In our simulation on synthetic data, we set it to 1 while on real dataset, it was

set to 10. Second, the parameter γ controls the sparsity of difference between

successive elements in the connectivity vector β. It is important to note that γ

can not be set as 0, as otherwise, the algorithm cannot converge. If the initial γ

value is set too high, too many voxels will be merged in the first step, resulting

in possibly biased final results. In our experiment, we set γ to 10 on synthetic

dataset whereas on real fMRI dataset, due to the existence of different spatial

noises in different subjects, we adjusted the parameter on a subject by subject

basis. An appropriate choice of this parameter is recognized by well-balanced

grouping results; there should not be a single group that contains less than 10

voxels or be located in the middle of other groups. The third parameter is the

merging precision parameter, δ, which as its name suggests, controls the preci-

sion of merging two adjacent voxels with similar connectivity weights. If δ is

set too small, it risks merging of all voxels into only one group whereas a large

δ would make it difficult for the algorithm to converge. In our applications on

synthetic and real data, we set the initial value of δ to 104. It is worth noting

that even though we have adaptively adjusted all parameters, we still have to

choose the initial value carefully. Inappropriate choices of initial parameters

may lead to ill-balanced results.

We have tested the proposed algorithm on synthetic datasets and compared

the result with two other state-of-the-art methods. It is shown that the proposed

algorithm is comparable with these algorithms in general. In particular, the

proposed method is better-suited to deal with cases which do not have normally

distributed noise or datasets corrupted with outliers. In a real fMRI data, we

applied the proposed framework to nine healthy subjects in order to define two

functional subROIs of the putamen known as the DLS and DMS. The results

are consistent with prior knowledge.

We are motivated to develop this novel method to address the need in neurol-
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ogy and neuroscience research, i.e., to parcellate the putamen into two functional

parts (DLS and DMS) based on its connectivity with three other reference ROIs.

The proposed algorithm is applicable to a set of neurological problems where

there exist one task ROI to be parcellated into several functional subROIs and

a few reference ROIs that have different connectivity patterns with these func-

tional subROIs. The proposed algorithm could be applied to both task-related

data sets as well as resting fMRI data sets. Furthermore, with suitable parame-

ter adjustments, we do not require the sophisticated signal denoising procedure.

However, it is worth mentioning that, although our algorithm can better deal

with outliers compared with other two methods, outlier detection and removing

is still essential for many connectivity analysis problems.

Since the proposed method is based on functional connectivity, people may

argue that the results for subsequent connectivity analysis may be biased. We

could reduce such risks of bias by separating time signals into two parts (e.g.,

the odd-indexed points as one part and the even-indexed points as the other

part), and use one part to obtain consistent parcellation results and then use

the other part of data for further connectivity analysis. We could also benefit

from this two-part idea for the validation of the parcellation results: We can

parcellate the functional ROI with one part of the fMRI time-series signals and

validate the functional parcellations with the other part of the fMRI signals.

Consistency measures such as the discrete entropy can be employed to evaluate

the consistency of the parcellation results from using different parts of the fMRI

signals.

The proposed method can be applied to study geriatric and neuro-diseased

populations. The extracted functional subROIs themselves are of great interest

to study the influence of aging and neurodegenerative diseases. In future study,

we plan to use the proposed method to investigate the changes of DLS subROIs

in subjects with Parkinson’s disease, where it may serve as a potential biomarker

of Parkinson’s disease.
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