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Abstract

We present the Iterative/Causal Subspace Tracking framework (I/CST) for reducing noise in 

continuously monitored quasi-periodic biosignals. Signal reconstruction of the basic segments of 

the noisy signal (e.g. beats) is achieved by projection to a reduced space on which probabilistic 

tracking is performed. The attractiveness of the presented method lies in the fact that the subspace, 

or manifold, is learned by incorporating temporal, morphological, and signal elevation constraints, 

so that segment samples with similar shapes, and that are close in time and elevation, are also 

close in the subspace representation. Evaluation of the algorithm’s effectiveness on the intracranial 

pressure (ICP) signal serves as a practical illustration of how it can operate in clinical conditions 

on routinely acquired biosignals. The reconstruction accuracy of the system is evaluated on an 

idealized 20-min ICP recording established from the average ICP of patients monitored for various 

ICP related conditions. The reconstruction accuracy of the ground truth signal is tested in presence 

of varying levels of additive white Gaussian noise (AWGN) and Poisson noise processes, and 

measures significant increases of 758% and 396% in the average signal-to-noise ratio (SNR).
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1. Introduction

Intracranial pressure (ICP) is defined as the pressure inside the skull and is a marker of the 

brain’s ability to compensate for cerebral pathophysiological changes. Although 

intraventricular catheters and intraparenchymal sensors are widely used for ICP monitoring, 

their invasiveness presents considerable risk to the patient, and therefore are only used when 

the risks associated with a pathological increase in ICP outweighs those associated with its 

invasive monitoring. Clinically, ICP is a fundamental physiologic parameter that, if elevated, 

can lead to a pathological reduction in cerebral blood flow and possible herniation of the 

brain, resulting in irreversible brain damage or death if left untreated. Currently, the ICP 
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signal is used to diagnose dangerous increases in average pressure (computed using a 

moving average) and helps guide treatment with recommendation based on ICP greater than 

20 mmHg for more than 5 min [1]. Although the average ICP is monitored in modern 

clinical environments, subsequent higher-order analysis on the ICP pulse waveform often 

requires complex processing, expert annotations, and corrections due to egregious noise 

introduced during measurement from electronic equipment, electrode transients, 

displacement of the sensor, or even the patient shifting their posture. Such conditions make it 

difficult for real-time monitoring software to properly interpret ICP waveform data (Fig. 1).

The conventional approach to noise reduction is to filter the input signal. When noise is 

constrained to particular frequencies, such as 60 Hz tonal noise, we can retrieve most of the 

desired signal by applying bandstop (notch-type) filters. In the general case, when a model 

of the desired signal’s spectral content is known, along with an estimate of the noise 

distribution, adaptive filtering may be used to construct a mean-square optimal filter [2]. 

However, the problem is more challenging when noise has a spectral density which overlaps 

significantly with that of the desired signal. Channel estimation is fickle in this application, 

because biosignals are not easily constructed from band-limited primitives. Specifically, it is 

increasingly difficult to identify a generic noise-floor when the relevant spectral content of 

the signal is not entirely known.

Another popular approach to the broadband noise problem is to estimate the original signal 

by assuming some stochastic mixing process. A mixture model uses knowledge of the 

expected degradation to estimate the most likely values for the originally transmitted signal 

[3]. When the number of possible source-transmitted symbols is relatively low and 

discretized, expectation maximization (EM) and maximum a posteriori estimation (MAP) 

algorithms can be used to estimate the most likely source-transmitted symbol, although an 

initial characterization of both the source and noise distributions is required.

In the case of ICP waveform, the number of possible pulse shapes is not finite and assigning 

a discrete estimate from a bank of reference signals is not an optimal solution to preserve 

patient-specific features. Moreover, a static characterization of the noise distribution is not 

always possible in clinical environments, since degradations may vary between sites and 

may be introduced from a combination of sources (including patient movement, sensor 

displacement, electronic noise, type of sensor) in varying proportion. To tackle this problem, 

we present a method for reducing noise in continuously monitored quasi-periodic biosignals 

without prior knowledge of the noise distribution. Noise is reduced by reconstructing an 

estimate of the original signal from a mixture of reference signals. The references are 

selected by searching the closest neighbors of an input sample in a reduced dimensional 

space. By tracking the position of consecutive samples in the subspace, causal correction 

transformations can be iteratively applied to the collected data stream.

There has been significant interest in modeling the morphology of the ICP waveform [4–9]. 

One of the main findings of those studies is to characterize the relationship between the 

average ICP value and the signal morphology (up to the beat level). By clustering the 

morphology of the waveform for various levels of ICP, as we will illustrate later in this 

paper, it can be observed that the ICP waveform at the beat level has shape features that vary 
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along with the ICP. Based on this strong correlation between the ICP value and signal 

morphology, we introduce a modified nonlinear subspace learning algorithm to accent this 

correlation by warping the learned subspace to reflect constraints about time, morphology, 

and average ICP. The intuition behind the algorithm is that the level of ICP implicitly 

constraints the possible waveform morphologies which can be used to refine the denoising 

process.

The structure of this paper is as follows: we first present the dataset and the ground truth 

used during our experimental evaluation in Sections 2.1 and 2.2. The mechanics of the 

Iterative/Causal Subspace Tracking (I/CST) is presented in Section 2.3, ending with the 

formulation of a simple I/CST implementation (Algorithm 1). The performance of this 

implementation is evaluated for ICP signals in Section 2.4 and the results presented in 

Section 3. This work results in a noise reduction framework capable of real-time 

performance, which enables a more reliable analysis of continuous waveform characteristics, 

as discussed in Section 4.

2. Methods

2.1. Data source

The dataset originated from the University of California, Los Angeles (UCLA) Medical 

Center, with approval from the institutional review board (IRB) for use in this study. This is 

a retrospective study on patients who were being treated for various intracranial pressure 

related conditions including idiopathic intracranial hypertension, Chiari syndrome, and slit 

ventricle patients with clamped shunts. A total of 60 patients were considered for this study 

and their ICP and electrocardiogram (ECG) signals were recorded continuously. ICP was 

sampled continuously at 400 Hz using an Codman intraparenchymal microsensor (Codman 

and Schurtleff, Raynaud, MA) placed in the right frontal lobe. An expert researcher 

retrospectively identified intracranial hypertension (IH) episodes and annotated the time of 

the elevation onset, elevation plateau, and invasive cerebrospinal fluid drainage in each 

patient recording. Within our cohort, 30 patients did not present any IH episodes and were 

excluded from the study. An additional 5 patients were excluded due to signal drop and 

artifacts that did not let the expert identify IH episodes with a high level of confidence. A 

total of 70 IH episodes were extracted from the ICP signal of the remaining 25 patients. 

Each segment included 20-min of data, capturing the transition from a state of normal (0–20 

mmHg) to elevated ICP (>20 mmHg). The segments were time-aligned such that they 

contain 15 min of data before the plateau and 5 min after.

2.2. Pre-processing and ground truth

Individual ICP pulses were first extracted from each 20-min recording using a correlation of 

ICP with R-wave peaks in the ECG signal [10]. Because this method is dependent only 

locally on the R-wave peaks, the segmentation is sufficiently accurate and largely invariant 

to heart-rate variability [11]. The extracted pulses were distilled into 3 variables: (1) 

amplitude and length normalized vector containing pulsatile information, (2) mean value of 

the original pulse, and (3) starting time-index of the pulse relative to the elevation plateau.
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The normalization is necessary because pulses extracted by the segmentation may differ in 

length, and require a consistent size to facilitate morphological comparisons of the form ‖xi 

− xj‖.As such, each segmented ICP pulse si was normalized to a fixed-length vector xi ∈ ℛn 

taking values between 0 and 1, and placed into a matrix of vector samples X ∈ ℛm×n. If the 

length of the pulse si was larger than the chosen length n = 500, the extra values at the end of 

the pulse were ignored. If the pulse was smaller than n, the last value si[end] was repeated to 

fill the vector. As written formally,

(1)

(2)

An idealized ICP signal is then generated by accumulating similar beats and computing their 

average. The notion of similarity is subject to change here and is largely dependent on the 

intended application. In our tests, for example, beats are clustered based on their relative-

time index (i.e. by binning the pulses starting within every 3 s interval). This strategy, 

however simple, preserves a notion of morpho-temporal locality in the ICP signal, a property 

that is exploited in the tracking algorithm (Section 2.3.2). Finally, to reduce errors due to 

misaligned segmentations, the beats in each cluster are first aligned by locating peaks in 

their cross-correlations.

The resulting average signal X̄(Fig. 2), which still holds pulsatile information, is the “ground 

truth” that will further be used in our experiments. As it has been shown in previous works 

[9,12], the average shape of the ICP waveform is related to the ICP elevation. Pulses 

corresponding to normal ICP tend to exhibits three peaks (in blue), while higher ICP ones 

generally tend to become unimodal (in red).

For purposes of testing our algorithm, we generate two such ICP signals using similarly-

sized mutually exclusive subsets of the extracted beats; that is, X̄
1, X̄

2 such that |X1| ≂ |X2|, |

X1| ≤ |X2|, X1 ∪ X2= X, and X1 ∩ X2 = ∅. One signal (X̄
1) is used for training a subspace 

model, and one signal (X̄
2) is used for testing the tracking algorithm. We will subsequently 

refer to these two signals as the “reference” and “ground truth” respectively.

2.3. Iterative Causal Subspace Tracking (I/CST)

The primary objective of the proposed framework is to learn a manifold (i.e. subspace 

representation of the reference data) that is represented as a graph and on which consecutive 

noisy pulses can be projected and denoised continuously. A wide variety of manifold 

learning techniques exist in the literature (such as ISOMAP [13], Laplacian eigenmap [14], 

locally linear embedding [15]) and could be suitable for pulsatile data such as ICP. A key 

element of the proposed framework is to constrain the learning of the manifold to take into 

account the average ICP of the pulses and their relative position in time, as it can be seen in 
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Fig. 2 to be related to the overall shape of the pulse. By doing so, we aim that pulses with 

similar shapes and ICP, and close in time will also be close to each other in the manifold 

representation. Because the manifold will be used to track pulses over time, it is important 

that similar shapes of pulses remain close to each other for optimal reconstruction. The use 

of a graph representation allows the geodesic distance to be computed (i.e. distance in the 

graph, as opposed to Euclidean distance), from which variations between signals can be 

quantified more easily.

During training, the proposed Iterative Causal Subspace Tracking (I/CST) relies on a 

subspace learning algorithm (Section 2.3.1) followed by the construction of a graph defined 

on that space. Once learned, the graph manifold can then be used by the tracking algorithm 

(Section 2.3.2) to iteratively project successive noisy pulses on the graph, in order to 

reconstruct their mostly likely shape in the original input space.

2.3.1. Subspace learning—The subspace (Fig. 3) is obtained using a kernel discriminant 

analysis (KDA) of reference pulses, which is solved using a spectral regression (SR) 

framework [16,17]. The goal of SR-KDA in this case is to find a regression model which 

leads to similar subspace projections yi ∈ Y for input data samples (i.e. pulses) xi ∈ X that 

are morphologically similar.

SR-KDA utilizes a graph representation of the data where each vertex represents a data 

point. An affinity matrix W ∈ ℛm×m is used to represent the graph and associates a 

similarity weight Wi,j to each edge {i, j}; given a set of m samples xi=1,…,m. A graph 

embedding technique is used to represent each vertex of the graph as a vector si ∈ S that 

preserves similarities between the vertex pairs, where similarity is measured by the edge 

weight.

To obtain an optimal graph embedding, the objective is to ensure that samples that are close 

to each other in the graph are also close in the subspace representation. This can be achieved 

by minimizing the following measure ε:

(3)

(4)

where L = DW is the graph Laplacian and D is a diagonal matrix whose entries are column 

sums of W. The optimal S can be obtained by finding the largest k generalized eigenvectors 

λ of the eigen-problem:

(5)
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Once the eigenvectors λ are computed, the embedding S of the data can be used as labels, 

and the regression problem solved as a standard ridge regression:

(6)

As mentioned earlier, the proposed framework incorporates constraints on the learning of the 

subspace to take into account the average ICP of the pulses and their relative-time position. 

This is done via the construction the W matrix so that the weights reflect a weighted 

distance between the respective pulse waveform p, ICP c, and time index t. That is,

(7)

(8)

(9)

where wp, wc, and wt represent the weight associated with the different input modalities 

respectively, ⊙ represents the element-wise multiplication of matrices, and the value k = 5 

was chosen empirically. Multiplication by the mask G2 constrains the association of a pulse 

on the manifold to its k-nearest neighbors in the mixed-modality input space.

2.3.2. Tracking on the manifold—A requirement of the tracking framework is to be able 

to handle various levels of noise. When the noise envelope is small, the locality-preserving 

properties of the SR-KDA embedding ensure a projection to a reasonably small hyper-

volume around the expected point. Conversely, when the noise envelope is large there is no 

guarantee of locality in the graph. Since our framework should be independent of the noise 

distribution (for applicability in clinical scenarios), a method of constraining the projection 

of consecutive pulses to nearby locations is necessary.

Drawing from the observation that consecutive ICP pulses are likely to exhibit similar 

shapes, we propose to use the trajectory of consecutive samples on the manifold as a general 

constraint for the denoising process. The trajectory is obtained by projecting consecutive 

samples into the learned subspace. A sequential tracking is then applied to estimate the most 

likely coordinates of the successive samples in the subspace. The coordinates are then 

reconstructed back to the input space using an inverse mapping to produce the denoised 

waveform. In essence, the procedure achieves complex non-linear predictions by employing 

simple prediction algorithms in the reproducing kernel Hilbert space.
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Of all possible prediction algorithms, perhaps the most simple and understandable is k-

nearest neighbor regression. In this algorithm, a value is constrained to the average of the 

values of its k-nearest neighbors. In the case of ICP signals, this translates to the average of 

similar waveforms, where the notion of similarity is measured using distance in the 

computed graph. This procedure is formalized and adapted to the I/CST framework as the 

RajagopalScalzo01 (RS01) denoising algorithm and is outlined below (Algorithm 1). 

Specifically, RS01 uses an inversely weighted reconstruction to estimate the expected signal 

waveform.

RS01 is designed to improve the signal quality of continuous pulsatile signals (such as ICP) 

existing in RN by exploiting the locality-preserving properties of the SR-KDA embedding in 

the subspace Y3. The algorithm uses graph searching to find the k-nearest neighbors of noisy 

samples in a provided subspace and computes an estimate of the the expected signal using a 

mixture of waveforms. In order to enforce locality, the k-nearest neighbors of the previous 

time-sample are used rather than those corresponding to the current time-sample, thereby 

constraining the projection to nearby locations (Fig. 4).

RS01 also computes an error signal indicating the level of confidence in the real-time 

sample based on past input. The error signal is useful to identify large fluctuations in noise, 

as well as sudden deviations in signal properties (e.g. morphology).

The pseudocode is given below

Algorithm 1

RajagopalScalzo01 tracking algorithm

1: function RS01(xt−1, xt, λ, M, k)

let M be the manifold (training set in Ym)

// Project samples to subspace

2:   [yt−1, yt] ← λ · [xt−1, xt]

// Extract k-nearest neighbors in the manifold

3:   ŷt−1 ← knn(yt−1, M, k)

// Compute distance in the graph

4:   for i = 1 to k do

5:     ĝt (i) ← geodesicDist(yt, ŷt−1(i), M)

6:   end for

// Reconstruct the estimate

7:

  

8:   error ← ‖xt − x̂t‖

9: end function

2.4. Experiments

To demonstrate the effectiveness of the I/CST framework, we measure the ability to 

effectively track input waveforms that have been degraded by various levels of noise. In 
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particular, we have focused on additive white-Gaussian and Poisson noise, although the 

method is equally valid for artifact detection via the error signal (discussed in Section 4).

Our evaluation strategy compares the signal-to-noise ratio (SNR) of input waveforms 

(baseline) to those produced by various denoising kernels. The goal of these kernels is to 

remove the noise envelope from the degraded signal and return the original pressure signal. 

In this context, noise is defined as any deviation from the true waveform, and is typically 

reported by magnitude (e.g. 2-norm). The SNR is calculated on a beat-by-beat basis as 

follows.

(10)

(11)

In our evaluation we used the ground truth data generated from the 70 IH episode dataset 

(Sections 2.1 and 2.2) to synthesize noisy signal streams representing various levels of 

degradation. AWGN is typically parametrized by the parameters μ = 0 and σ, which 

represent the mean and standard deviation of the distribution. As such, a zero-mean 

Gaussian distribution was sampled and its variance scaled relative to the normalized ICP 

pulse amplitude, max xnx1. This noise profile was applied additively to the full length of the 

ICP signal to generate noisy testing data. Similarly, Poisson noise is typically parametrized 

by the parameter λ which represents both the mean and variance. To generate different 

levels of Poisson-noise, the original ICP stream was used as the mean, while the variance 

was similarly scaled relative to the normalized ICP pulse amplitude.

In our tests, the RS01 algorithm is compared against various Gaussian low-pass filters 

(LPF). These generic convolutional filters (kernels) were constructed by generating several 

ideal zero-mean Gaussian distributions with variances corresponding to different levels of 

noise. The value of variance was scaled relative to the normalized ICP amplitude, and the 

length of the kernel was chosen to be sufficiently large to avoid edge effects during 

convolution. In our tests, we compare against three such generic kernels, termed LPF1, 

LPF2, LPF3, corresponding to variances of 5%, 10%, and 20% of the normalized ICP 

amplitude.

In short, our testing procedure is comprised of four steps: (1) degrade the original ground 

truth signal with the selected noise profile, (2) apply the selected denoising kernel, (3) 
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measure the SNR of each beat, (4) average the SNR over the entire ICP signal. Our results 

are presented in the next section.

3. Results

Although the generic filters do provide smoothing, we find that even the simplest I/CST 

implementation provides a significantly more desirable result. Over all our experiments, 

RS01 performed consistently well with an average SNR improvement of 758% and 396% 

for AWGN and Poisson noise respectively. The average SNR was computed from 

experiments with noise variances uniformly distributed on 5% to 35% of the normalized beat 

amplitude, and is showcased in Table 1.

One attractive feature of the RS01 algorithm is that it does not require knowledge of the 

noise profile to be effective. Although such information can be useful to effectively clean up 

the signal, the typical convolutional approach is limited for two reasons: (1) the size of the 

averaging kernel is not easily determined directly from the input data, making it impractical 

without proper calibration or channel-estimation protocols, and (2) convolution in the time 

domain corresponds to a multiplication in the frequency domain, so typical Gaussian filters 

will effectively mask potentially-useful high-frequency information. Our results demonstrate 

this via a dramatic increase in the SNR, particularly at higher noise powers (Fig. 5).

Although a given kernel may outperform RS01 at a particular noise level, RS01 significantly 

outperforms typical low-pass filters when evaluated across various noise magnitudes. This 

result is elucidated by the variable SNR performance of any-single LP filter. From these 

tests, it is evident that no single generic filter can be unanimously selected for denoising 

since its performance depends on the level of degradation, which is essentially unpredictable 

in clinical scenarios. In contrary, RS01 pays a small penalty in initially but performs 

consistently well across several noise levels, making it a practical tool for clinical data 

collection and analysis.

It should be noted, however, that RS01 underperforms at very low noise powers (less than 

3% of the signal magnitude). This is because signals are shifted slightly from their 

appropriate location by the local averaging effect. Even so, even at 5% relative noise 

amplitude, RS01 provides significant improvement to the signal quality.

The power of RS01 is evident both quantitatively from the SNR computation, and 

qualitatively by visualizing the denoised waveform (Fig. 6). In our tests, RS01 consistently 

provides a smooth signal, while various time-domain filters do not guarantee such a criteria 

particularly at the boundaries of each pulse-beat. Furthermore, generic filters seem to expose 

several local minima and maxima, which we anticipate will reduce the accuracy of 

subsequent higher-order processing algorithms, such as MOCAIP, while RS01 seems to 

match both the number, location, and amplitude of salient waveform peaks. In this respect, 

the RS01 kernel provides a result even better than that suggested by the 2-norm errors.
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4. Discussion

Generally, analyzing transformations of signals casts the problem of recovering source-

transmitted information as a class identification problem, rather than a time-domain 

denoising problem. A range of classification methods exist, typically in the form of vector 

quantization (MAP, ML, SVM) or tree-based (Bayesian neural network) decision rules. 

These schemes, when applied to waveforms which map to a discrete symbol distribution, 

have demonstrated incredible improvements in both the symbol-detection accuracy and 

effective signal-to-noise ratio in the presence of degradations [18–20]. Unfortunately, 

biosignals generally do not map to a discrete distribution and such estimates are not easily 

extended to the high-dimensional large multi-class problem. Organic signals, such as ICP, 

tend to exhibit a range of features that are locally temporally correlated, but vary 

continuously with the waveform [21]. In this light, our goal was to develop a robust 

information-processing system for analog biosignals.

In contrast to previous works [22,9], our method captures the continuously varying 

characteristics of ICP waveforms. This was accomplished by characterizing the morphology 

of ICP waveforms via clustering, warping the subspace using continuous valued statistics 

(DC value and expert annotations), and tracking the progression of waveforms within the 

proposed I/CST framework. In developing this methodology, we discovered a way to 

reconstruct a likely estimate of the original signal in noisy scenarios using a mixture of 

waveforms (Algorithm 1). By searching the k-nearest neighbors of a sample in the learned 

subspace, we effectively constrain and denoise the analog estimate. The benefit of such a 

scheme was demonstrated by significant increases in the average and peak SNR of a 20-min 

ICP recording.

The resilience of RS01 to high-levels of noise (particularly AWGN) can perhaps be 

attributed to the averaging characteristic of the chosen mapping metric (Euclidean distance). 

Because deviations at any position in the signal contribute to the error during morphological 

comparisons, the error can be minimized by choosing waveforms that match the natural 

oscillations present in the noisy signal. However, the averaging characteristic can also be 

detrimental when the original waveform is largely smooth with few local oscillations. In this 

respect, the Euclidean metric is somewhat naive. In particular, although the peak and mean 

SNR are higher, our implementation suffers from errors primarily in regions where the 

source transmitted signal is unimodal (after the IH elevation plateau). This is evident by 

tracking the SNR of each time interval. This issue could remediated by defining an 

alternative morphological comparison metric, which can be easily supplied to both RS01 

and the I/CST framework.

More broadly, I/CST provides a convenient framework to improve the quality and analysis 

of measured biosignals by providing a mechanism for triggered analysis and qualification of 

noisy samples. The benefit of this solution is that new samples can be projected in real-time, 

and subsequent analysis can be performed in parallel to qualify the trajectory and properties 

of projected nodes. One of the main insights in this design is that the trajectory (i.e. a 

directed path on a graph) of consecutive samples can be used to augment tracking and 

analysis algorithms. Furthermore, I/CST’s ability to operate hierarchically on N-dimensional 

Rajagopal et al. Page 10

Biomed Signal Process Control. Author manuscript; available in PMC 2017 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observations in real-time, as opposed to retrospectively, provides a robust platform for 

developing automated adaptive software systems, including control and learning systems 

which rely on programmed routines but require live observation-based triggers.

One pitfall of our presented implementation is that it is heavily reliant on the training period. 

A careful characterization of the ICP signal, typically done via clustering, is required to 

accurately reconstruct signals using their projections. In particular, we find that the frame-

width is considerably important; coarse divisions may detract from tracking ability, while 

fine divisions may detract from accurate quantization solutions. In our work, we chose to 

cluster ICP signals based on their distance from an expert annotation (IH plateau) since we 

hypothesized this to be a relevant marker; so, in this work the window size corresponds to 

time intervals, empirically chosen to be 3.75 s and producing a constellation of 320 symbols. 

Such a decision must be made a posteriori, and thus requires domain-specific knowledge.

One way to generalize the I/CST approach to generic signals (i.e. processing without 

domain-specific knowledge) is to first employ morphological clustering and subsequently 

learn the subspace with continuous annotations. The morphological clustering can be 

domain-specific, but it is not necessary. A method of N-dimensional k-means clustering and 

regression could be applied to identify several possible distinct symbols which vary 

proportionally with some statistic (mean, variance, kurtosis, etc), although an appropriate 

clustering procedure is highly non-trivial. Obviously, the statistics used should be relevant to 

the waveforms being compared for optimal performance, but this criteria is not necessary for 

the basic operation of the algorithm.

In this sense, the I/CST framework is sufficiently general and by itself does not require any 

domain-specific knowledge. As such, I/CST can be easily extended to other quasi-periodic 

biosignals given an appropriate clustering and comparison strategy. Examples include 

electrocardiogram (ECG), transcranial Doppler (TCD), and generic pulsatile signals such 

hormone or protein sensors.

5. Conclusion

The elementary operations employed by I/CST and RS01 are not new. They are, however, 

employed in a novel way. In a sense, this work demonstrates that linear (or other) prediction 

algorithms need not be constrained to a particular domain, such as time or frequency. These 

domains are typically used because they make apparent certain features that aid in the 

discrimination of signals (such as amplitude and frequency peaks, or phase dispersion). We 

generalize this concept to show that signals, such as ICP, can be cast into an arbitrary 

discriminative domain where previously-developed elementary algorithms are still effective. 

In particular, by reducing the dimensionality of the subspace where signals are projected, the 

operation of such algorithms is considerably improved (both in complexity and accuracy) 

due to the low dimensionality of the search hyper-volume. This result can be exploited by 

medical and biological analysis software for the purpose of state-prediction and active 

denoising.
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Fig. 1. 
Illustration of a typical intracranial pressure signal (ICP) recorded in clinical conditions. ICP 

typically exhibits significant noise on its envelope that challenges its morphological analysis.
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Fig. 2. 
(a) The average and standard deviation of pulsatile ICP clusters at each time point relative to 

hypertension onset. Panel (b) depicts the morphology of time-localized ICP clusters. Three 

groups of such clusters are illustrated for the baseline (c), transition (d), and hypertensive 

regions (e). (For interpretation of the references to color in the text, the reader is referred to 

the web version of this article.)
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Fig. 3. 
Projection of a set of ICP beats onto the first two dimensions (ω1 and ω2)of the manifold. 

Each dot represents a 3-s cluster extracted from the training set. The transition from normal 

(blue) to elevated (red) ICP is depicted by a colormap that represents the temporal-index 

relative to the elevation plateau. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 4. 
RS01 operates by projecting the current sample onto a subspace defined by a training 

constellation (a), and constraining this projection to a mixture of the k-nearest neighbors of 

the previous sample (b). The final estimate is a smooth signal (c) which demonstrates 

significant improvements over generic filters (d) in terms of smoothness, mean-square error, 

and distinguishable morphology such as the number and location of local maxima and 

minima.

Rajagopal et al. Page 17

Biomed Signal Process Control. Author manuscript; available in PMC 2017 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
SNR at various AWGN and Poisson-noise magnitudes.
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Fig. 6. 
Denoising of an idealized ICP stream corrupted by AWGN noise of variance σ = 4%. (a) 

Signals are projected to the subspace and (b) denoised using the RS01 algorithm using 

geodesic constraints. (c) The estimate is compared to various generic filters.
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Table 1

The average signal-to-noise ratio (SNR) across tests, with variance ranging from 5% to 35% of the normalized 

beat amplitude. RS01 outperforms generic filters as the noise magnitude increases.

Kernel AWGN Poisson noise

5% 15% 25% 35% 5% 15% 25% 35%

Baseline 10.1539 3.3948 2.0354 2.0337 11.1322 6.4324 4.9938 4.9791

RS01 28.3347 25.8013 25.5826 25.8380 19.0380 24.2369 25.8184 25.9031

LPF1 38.3530 14.2530 8.5328 8.6612 41.0770 26.2788 20.8863 20.7245

LPF2 30.1515 17.9025 11.7249 11.8329 30.7207 26.0763 23.2576 22.9546

LPF3 13.3555 12.4608 10.9168 10.9168 13.4938 13.2455 13.0712 13.0037

Bold indicates the highest SNR for each given experiment.
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