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Abstract

The lack of large video databases obtained from real patients with respiratory disor-
ders makes the design and optimization of video-based monitoring systems quite crit-
ical. The purpose of this study is the development of suitable models and simulators
of breathing behaviors and disorders, such as respiratory pauses and apneas, in order
to allow efficient design and test of video-based monitoring systems. More precisely,
a novel Continuous-Time Markov Chain (CTMC) statistical model of breathing pat-
terns is presented. The Respiratory Rate (RR) pattern, estimated by measured vital
signs of hospital-monitored patients, is approximated as a CTMC, whose states and
parameters are selected through an appropriate statistical analysis. Then, two sim-
ulators, software- and hardware-based, are proposed. After validation of the CTMC
model, the proposed simulators are tested with previously developed video-based al-
gorithms for the estimation of the RR and the detection of apnea events. Examples of
application to assess the performance of systems for video-based RR estimation and
apnea detection are presented. The results, in terms of Kullback-Leibler divergence,
show that realistic breathing patterns, including specific respiratory disorders, can
be accurately described by the proposed model; moreover, the simulators are able
to reproduce practical breathing patterns for video analysis. The presented CTMC
statistical model can be strategic to describe realistic breathing patterns and devise
simulators useful to develop and test novel and effective video processing-based mon-
itoring systems.

Keywords

Breathing modeling, video simulation, apnea simulation, respiratory rate analysis,
apnea detection.

1 Introduction

The Respiratory Rate (RR) is a fundamental vital sign to assess the health condition of
a patient: for this reason, it may be important to monitor this parameter continuously
in several clinical scenarios. Anomalous trends or values of this parameter can be the
sign of a respiratory disease, such as Biot’s breathing [1], Kussmaul’s breathing [1],
Cheyne-Stokes’s breathing [2] or Ondine’s curse [3], also referred to as Congenital
Central Hypoventilation Syndrome (CCHS). More generally, RR abnormal behaviors
can be a sign of critical medical conditions. In some cases, they can be an indicator
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of a potentially deadly event, such as an apnea, which can be defined as a persistent
absence of breath or a too low RR. Hence, it is very important to promptly detect
these events, which may be occasionally fatal if untreated. Current measurement
systems of the RR, also used for apnea detection, are based on polysomnographic
devices, which are composed of several sensors. Nevertheless, these systems have
some drawbacks: (i) they are expensive and can be used in hospital environments
only, (ii) they require specialized staff and (iii) they are moderately invasive due to
wired sensors, especially for newborns.

Alternative monitoring systems could yield significant improvements in the welfare
of the patients. Hence, non-invasive, low-cost, wireless monitoring and diagnostic sys-
tems are under development. Thanks to the recent miniaturization of sensors, wear-
able health monitoring systems can help to monitor a patient continuously. In [4],
modern techniques for the extraction of physiological signals, also related to respi-
ration, are presented. They rely on low-cost technologies and can be a replacement
for many sensors used in the clinical environment, despite the fact that they require
a “direct connection” to the patient. Contactless RR long-term monitoring, based
on the use of ultrasonic sensors for precise distance measurements [5] or the received
signal strength in a wireless network [6], were also developed. Among contactless
monitoring systems, properly designed video-processing algorithms are of significant
interest. In [7, 8, 9], contactless monitoring systems are proposed: the first system
is embedded in a board with multiple cameras [7], the second one analyzes respira-
tory movements, but does not include automatic RR estimation [8] and the last one
makes use of infrared cameras [9]. Some recent innovative video-based systems for
RR measurement and apnea detection are based on advanced video-processing algo-
rithms to enhance small breathing motion, improve apnea event detection, and refine
RR estimation [10, 11].

A difficulty in the design of video processing-based algorithms is the lack of large
databases of relevant video recordings properly matched with reliable medical data,
due to the rarity of CCHS and severe apnea events, especially in full-term newborns.
For this reason, the development of a statistical model of RR patterns, including
the occurrence of apnea events, is of significant interest. Such a model can be very
useful in order to devise realistic simulators and create a large set of video recordings
which allow a more efficient design of automatic RR estimation and apnea detection
systems.

In the literature, some physically-based anatomical simulators have been pre-
sented. In [12], a hardware system to handle bio-mechanical movements and simulate
an anatomical and functional model of the evolution of the human trunk structures
during respiration is proposed. In [13], a system of rigid and deformable parts, which
simulates the biological function of respiration for computer animation, is presented.

In this paper, a statistical model, based on a Continuous-Time Markov Chain
(CTMC), aimed at simulating the main features of a realistic RR pattern, is derived
from medical data. The model parameters are extracted by an inference system for
continuous-time Markov random processes. Afterward, the described model is used
as background for the definition of two simulators. A software-based simulator, able
to directly manipulate video recordings of regularly breathing patients in order to
introduce artificial breathing disorders, is first presented. A hardware-based simulator
is also developed: it exploits a manikin equipped with a moving chest to physically
reproduce possible breathing disorders according to the proposed statistical model.
The developed simulators are then used to test video processing-based algorithms for
RR monitoring. This paper expands upon preliminary work appeared in [14], where
a two-state model of apnea episodes was proposed.

The rest of the paper is organized as follows. In Section 2, the CTMC-based
RR statistical model is presented. Section 3 describes the two developed simulators,
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software- and hardware-based. Section 4 addresses the validation of the statistical
model and the resulting simulators on the basis of previously developed video-based
monitoring algorithms. Finally, in Section 5 conclusions are drawn.

2 Respiratory Rate Statistical Model

The RR is commonly defined as the number of breathing cycles per time unit, typically
expressed in breaths per minute [bpm] or, alternatively, in cycles per second [Hz],
where a breathing cycle consists of a complete sequence of inhalation and exhalation
movements. The RR changes over time, depending on physical activity and health
conditions. Normally, the RR of a patient at rest is age-dependent and typically
ranges from 30 bpm to 60 bpm (equivalent to 0.5–1.0 Hz) for newborns and from
12 bpm to 20 bpm for adults (equivalent to 0.2–0.333 Hz) [1].

In order to devise a simple model of the RR pattern, it is useful to introduce a
finite set of states S = {S0, S1, . . . , SN−1}. State Sn, with n ∈ {0, 1, . . . , N − 1},
describes breathing with a RR denoted as ̺n ∈ R

+. Occurrence of respiratory pauses
or apnea events and large random movements of the patient body are also considered.
The statistical model of the RR pattern can encompass all the following conditions.

• If the patient is regularly breathing, i.e. he/she is not suffering from
apnea events and no large random body movements appear, the states
{S0, S1, . . . , SN−1} are used to describe regular RRs, characterized by values

{̺n}
N−1

n=0
with ̺n ∈ [RL, RH ], where RL > 0, RH > RL denote lowest and

highest admissible RRs, respectively.

• If the patient is affected by respiratory pauses/apneas, then the state S0 is
reserved to represent this condition, so that ̺0 is formally set to 0, to describe
absence of breathing and states {S1, S2, . . . , SN−1} are considered for regular
breathing.

• If the patient is subject to large random body movements, during which the RR
is undetectable, the state SN−1 is reserved to represent this condition. The RR
̺N−1 is set to an arbitrary value RM much larger than the physically acceptable
ones: more precisely, ̺N−1 is set to RM ≫ RH . States {S0, S1, . . . , SN−2} are
still used to represents regular RRs.

• If the patient is both suffering from respiratory pauses/apneas and subject to
large random body movements, the states S0 (with ̺0 = 0) and SN−1 (with
̺N−1 = RM ≫ RH) are reserved for absence of breathing and random move-
ments, respectively. The remaining states {S1, S2, . . . , SN−2} are used to de-
scribe regular breathing.

The following ordering is assumed: ̺0 < ̺1 < · · · < ̺N−1. Since the RR is inherently
continuous-valued, each state represents an approximation of the real RR. Therefore,
the set S represents a finite state model of a discrete-valued process approximating the
overall RR pattern. The larger the number N of states, the better the approximation
at the cost of a higher modeling complexity.

According to the above statistical model, the RR process, denoted as X(t), is
defined as a continuous-time process with state space S. The time intervals during
which the patient is breathing with rate ̺n or is subject to apnea/respiratory pause
or large body movements, namely the sojourn times in the corresponding state Sn,
can be modeled as random variables and the introduced random process X(t) can be
generally described as a Markov process. Ignoring the influence of other vital signs
which can modify the RR of a patient over time, such as the heart rate or the oxygen
saturation in the blood, the RR pattern cannot be predicted. To derive a model that
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Figure 1: An example of RR pattern modeled by the finite set S , showing sojourn times and
jump times.

approximates this stochastic behavior, let us introduce the random variable τℓ, which
specifies the ℓ-th sojourn time, where ℓ ∈ N

+ is an index that counts the number of
state changes. Jump times can be expressed, in terms of sojourn times, as

tℓ =

ℓ∑

q=1

τq. (1)

In Figure 1, a graphical example of the modeled finite-state RR processX(t) is shown,
with highlighted sojourn times and change of state instants.

Since the influence of other vital signs is ignored, it can be assumed that the ran-
dom variables {τℓ} are independent, so that the process X(t) exhibits the memoryless
property [15]. Accordingly, the ℓ-th sojourn time, conditioned on state Sn, has the
following exponential distribution:

τℓ ∼ exp (µn) (2)

where µn is the parameter of the distribution and can be interpreted as the rate at
which the process X(t) leaves the state Sn [15, Sect. 11.4]. In Figure 2, a generic
state diagram of the proposed CTMC is shown, where λm,n, m,n ∈ {0, 1, . . . , N − 1},
denotes the transition rate from state Sm to state Sn.

The statistical behavior of a CTMC is characterized by its infinitesimal generator
(or transition rate) matrix [16]

Λ =




λ0,0 λ0,1 · · · λ0,N−1

λ1,0 λ1,1 · · · λ1,N−1

...
...

. . .
...

λN−1,0 λN−1,1 · · · λN−1,N−1


 (3)

where the entries and the parameter in (2) are related as

µm = −λm,m =

N−1∑

n=0
n6=m

λm,n. (4)

Figure 2: State diagram of the CTMC model with respective transition rates.
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At the end of each waiting time, a state transition occurs: the arrival state is deter-
mined according to the transition probabilities of the embedded Markov chain [15,
Sect. 11.4], which can be obtained by the infinitesimal generator matrix Λ in (3) as
follows:

Q = I− [diag (Λ)]−1
Λ (5)

where I is the N ×N identity matrix and [diag (Λ)]−1 is the inverse of the diagonal
matrix

diag (Λ) =




λ0,0 0 · · · 0
0 λ1,1 · · · 0
...

...
. . .

...
0 0 · · · λN−1,N−1


 . (6)

As the embedded Markov chain of the CTMC is assumed ergodic, the stationary dis-
tribution, described by an N -element vector π, can be obtained solving the following
system of linear equations [15, 16]:





πΛ = 0

N−1∑

n=0

πn = 1
(7)

where the last equation specifies the normalization of the probability distribution.
Setting appropriately the matrix Λ with values extracted from a real breathing

patient, it is possible to completely specify the CTMCmodel and employ it to replicate
a RR pattern with a proper statistical behavior. Given that each patient can generate
different RR patterns, depending on many factors, the infinitesimal generator matrix
must be estimated. For this purpose, the estimation of Λ is carried out in three
steps: first, the RR pattern of the patient versus time is estimated; second, the
obtained pattern is fitted to a model with N states and, finally, the transition rates
are estimated from the finite-state pattern obtained at the previous step.

2.1 Respiratory Rate Estimation

The RR is estimated by processing the pneumogram signal, which records the volume
changes of the thoracic cavity of a patient and is obtained by placing an elastic belt
around the chest. In Figure 3, an illustrative example of the pneumogram signal
relative to a newborn patient is shown. Since the pneumogram describes the whole
movements related to breathing, an algorithm to estimate the RR from this signal
is needed. Excluding possible respiratory pauses or macro-movements of the patient
under observation, the pneumogram signal is a quasi-periodic signal. A method to
estimate the RR from the pneumogram signal thus relies on the estimation of its
fundamental frequency.

To this purpose, the pneumogram signal can be modeled by the following discrete-
time signal:

p [i] = c+A cos

[
2π

f0
fs

i+ φ

]
+ w [i] (8)

where c is a constant component, A is the amplitude of the periodic component, f0
is the fundamental frequency, fs is the sampling frequency, φ is the phase and {w[i]}
is a sequence of independent and identically distributed (i.i.d.) zero-mean Gaussian
noise samples. The main goal is to estimate the fundamental frequency f0, which can
be interpreted as the RR.

A possible approach to estimate f0 relies on the application of the Maximum
Likelihood (ML) criterion on a window of signal samples. Defining the parameter
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Figure 3: An example of a recorded pneumogram signal of a newborn patient kept under
clinical observation.

vector θ = [A, f0, φ], the likelihood function J (θ) to be minimized is (see, e.g., [17]):

J (θ) =
M−1∑

i=0

(
p [i]−A cos

[
2π

f0
fs

i+ φ

])2

(9)

where {p[i]}
M−1

i=0
are now the observed samples in the considered M -sample time win-

dow. As a result of algebraic manipulations and proper simplifications [17, Sect. 7.10],
an approximate ML fundamental frequency estimator reads:

f̂0 =
fs
M

argmax
k∈{0,1,...,M−1}

|P [k]|2 (10)

where

P [k] =

M−1∑

i=0

p [i] e− 2π
M

i (11)

is the discrete Fourier transform of the observed samples. The set of discrete fre-
quencies {0, 1, . . . ,M − 1} can be associated with the physical frequencies by the

conversion factor fs/M . Once f̂0 has been obtained, it is possible to estimate the
amplitude A and determine the magnitude of the periodic component. Given (10),
an approximate ML amplitude estimator is [17, Sect. 7.10]

Â =
2

M

∣∣∣∣∣

M−1∑

i=0

p [i] e−2π
f̂0
fs

i

∣∣∣∣∣ . (12)

If the estimated RR is below the value RL or the amplitude Â is lower than a suitable
threshold, absence of breathing is assumed and f̂0 is set to 0. The frequency f̂0 is
finally declared as the RR of the patient in the observed window.

Since the pneumogram signal can be significantly noisy because of possible pa-
tient’s movements or artifacts involving other body parts, which are associated with
state SN−1 as described at the beginning of Section 2, a preliminary time-domain

check on the observed samples {p[i]}
M−1

i=0
is performed to detect such conditions. To

this purpose, the analyzed window of samples of the pneumogram signal is checked
against the condition

∃i : |p[i]| > η i = 0, 1, . . . ,M − 1 (13)

where η is a threshold to distinguish respiratory movements from other ones. Then
the estimated frequency f̂0 = RM is formally assigned so that ̺N−1 = RM .

In order to obtain a RR pattern, which represents the fundamental frequency f̂0
over time, the estimation in (10) is repeated over successive windows. Interlaced ob-
servation windows, with an interlacing interval of W samples, allow to carry out the
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Time [s]
0 6 10 12 16 22

0 1 2 ...

M ·Ts

W ·Ts(M−W )·Ts

Window j

Figure 4: An illustrative example of interlaced windows, with a window length ofM ·Ts = 10 s
and interlacing interval W ·Ts = 4 s. Window analysis is carried out every (M−W )·Ts = 6 s.

estimation every M −W samples. Figure 4 shows an example of interlacing, with
(W/M) · 100 = 40% overlap and three consecutive windows. The integer j specifies
the window index. Estimating the RR along the pneumogram by the approach de-
scribed above, it is possible to obtain a discrete-time signal X̂c [j], representing the

time evolution of the RR, where X̂c [j] is defined as the fundamental frequency es-
timated in the j-th analyzed window by the above procedure. Therefore, the RR is
estimated every (M −W ) · Ts seconds, where Ts = 1/fs is the sampling interval of
the pneumogram.

In order to quantize the estimated continuous-value RR into a finite state space, so
that the statistical model introduced in Section 2 can be used, a proper quantization
of the values of the continuous-value discrete-time signal X̂c [j] is needed. This is the
focus of the next subsection.

2.2 Respiratory Rate Signal Quantization

The first step to fit the estimated signal X̂c [j] into the model described in Section 2

is to define the N states in S by selecting appropriate RR values {̺n}
N−1

n=0
. An

automatic method to select these values is used, with specific features depending
on the presence of apnea events or random large body movements which affect the
pneumogram signal. Following the different modeling cases described at the beginning
of Section 2, different signal quantization methods are considered.

• If apnea events are not of interest and there are no patient random movements,
the N RR values of the model can be selected by the use of the Lloyd-Max
algorithm [18, 19], which minimizes the mean square distortion between the

signal X̂c [j] and the N -state quantized one in the range of interest [RL, RH ].

• If apnea events are of interest, the method is modified as follows: a first state
S0 with rate ̺0 = 0 is assigned to describe absence of breathing; the remaining
N−1 states {S1, S2, . . . , SN−1} are estimated by the same Lloyd-Max algorithm
used above. In this case, the overall range of interest becomes {0} ∪ [RL, RH ].

• If random body movements are considered, the algorithm assigns the N -th state
SN−1 with ̺N−1 = RM to time intervals in which the patient is moving; the
remaining N − 1 states {S0, S1, . . . , SN−2} are estimated by the Lloyd-Max
algorithm. The overall range becomes [RL, RH ] ∪ {RM}.

• If there are both apneas/respiratory pauses and large randommovements, the al-
gorithm assigns the state S0 with rate ̺0 = 0 or the state SN−1 with ̺N−1 = RM

to time intervals in which absence of breathing is detected or the patient is mov-
ing, respectively; the remaining N − 2 states {S1, S2, . . . , SN−2} are estimated
by the Lloyd-Max algorithm. The overall range becomes {0}∪[RL, RH ]∪{RM}.
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Figure 5: An illustrative example of the RR signal X̂c estimated from the pneumogram and
a quantized model with N = 5 states signal X̂ ; in this examples, a patient with possible
respiratory pauses is considered.

Once the RRs {̺n} and the corresponding states in S are defined, the pneumogram
signal is quantized to the nearest RR value ̺n present in the model, thus obtaining
the following discrete-value version of the signal X̂c [j]:

X̂ [j] = argmin
̺n∈{̺0,̺1,...,̺N−1}

∣∣∣X̂c [j]− ̺n

∣∣∣ . (14)

In Figure 5, an illustrative example of the RR pattern X̂c[j], estimated by the method

described in Section 2.1, together with the corresponding quantization X̂[j], computed
according to (14), are shown. In this example, the estimation of the RR is carried out
every second, on a temporal window of M · Ts = 10 s and with window overlapping
equal to 90% (i.e., W · Ts = 9 s).

2.3 Infinitesimal Generator Matrix Estimation

Given the N -state model and the quantized RR pattern extracted from a sample
patient, the description of the statistical model of the RR requires the definition of
the transition rate matrix Λ. The estimation of the infinitesimal generator matrix of
CTMCs is a known problem, which becomes more difficult if the estimation is carried
out on incomplete data or on sampled time series [20]. To simplify the discussion, X̂ [j],
whence the matrix Λ is estimated, is approximated as a continuous-time equivalent
signal X̂(t)—this assumption is valid, provided the RR is estimated with sufficiently
high frequency, i.e., with a small (M −W ) · Ts factor (e.g., (M −W ) · Ts ≤ 1 s).

Owing to this simplification, the estimation of the transition rates is based on
the ML estimation method [20, 21]. Assuming the process X̂(t) is observed in the
interval [0, T ], the time spent by the process in state Sn can be denoted by the random
variable Rn (T ); similarly, the number of transitions from state Sm to state Sn in the
same observation interval can be denoted as Nm,n (T ). The log-likelihood function

to derive an estimate Λ̂ of the infinitesimal generator matrix of the observed process
X̂(t) is given by [21]

log [L (Λ)] =

N−1∑

m=0

N−1∑

n=0
n6=m

[
Nm,n (T ) log (λm,n)− λm,nRn (T )

]
. (15)

By straightforward manipulations [20], the estimate of λm,n can be expressed as

λ̂m,n =
Nm,n (T )

Rn (T )
for m 6= n. (16)
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The remaining rates for m = n are obtained using (4).
Provided the observation interval [0, T ] of the RR pattern is sufficiently long, the

ML approach allows a reliable estimation of the infinitesimal generator matrix Λ.

3 Simulators

The CTMC-based statistical model presented in Section 2 can be used to derive appro-
priate simulators to reproduce respiratory movements and patient-like RR patterns.
These simulators may be useful to test and design video processing algorithms to
monitor the RR. Two simulators are proposed: the first one processes a recorded
video of a patient breathing normally with an approximately constant RR in order to
alter the RR according to the model; the second one physically reproduces breathing
movements as moving body parts of a manikin.

Simulation of random body movements is typically not of interest and is not
considered in this discussion. If the estimated model includes the state describing
patient movements (i.e., the state with ̺N−1 = RM exists), such a state is excluded
and not simulated. This can be easily achieved by removing the last row and column of
the model infinitesimal generator matrix; then, the diagonal entries are re-calculated
according to (4).

As a first step, both simulators generate sojourn times for the finite state model.
Assuming that the initial state is unknown, it can be randomly drawn according to the
stationary distribution of the CTMC defined in (7). Then, the first sojourn time τ1 in
the initial state Sm is generated according to the proper exponential distribution (2)
with parameter µm. At the end of the first sojourn time, a state transition occurs:
the arrival state is randomly drawn according to the distribution extracted from the
m-th row of the matrix Q in (5). The simulation of sojourn times {τℓ} and state
transitions continues until the desired duration of the simulation is reached. The
obtained sojourn times {τℓ} are used in the simulators to generate the RR pattern.

3.1 Video-Based Simulator

The video-based simulator processes a video of a regularly breathing patient and
modifies it by creating a new video with variable RRs. The RR of the framed patient
in the source video is approximated as time-invariant and defined as ̺V . The rates
associated with the various states can be described by the ratios between the rates
of the corresponding state and the RR of the patient in the original video. The
normalized RRs in the model can be expressed as:

¯̺n =
̺n
̺V

n = 0, 1, . . . , N − 1. (17)

After the waiting and jump times are generated according to the N -state CTMC, the
corresponding number of frames are obtained as follows:

τ̃ℓ = round (τℓ · fr) (18)

t̃ℓ = round (tℓ · fr) (19)

where fr is the frame rate of the video input and round (·) denotes the integer closest
to the argument (rounding function). If the RRs {̺n} are all different from the rate
̺V of the original video, it may be convenient to scale them by a factor CV chosen
so that ̺max ·CV = ̺V , where ̺max is the RR corresponding to the state with lowest
rate (minn∈{0,1,...,N−1} µn) and, consequently, longest mean sojourn time.

The simulator then starts producing a new video where the artificially generated
RR pattern is inserted. The system scans the whole video inserting breathing times
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with durations {τ̃ℓ}. The ℓ-th breathing time is simulated by processing a video block
of d̃ℓ frames starting from the t̃ℓ-th video frame, where

d̃ℓ =

⌈
τℓ
¯̺n

· fr

⌉
(20)

and ⌈·⌉ denotes the smallest integer larger than the argument (ceiling function). A
RR is generated according to the state to be simulated:

• if Sn is such that ¯̺n = 1, no video processing is needed, since the desired RR is
equal to that of the patient breathing in the original video;

• if Sn is such that 0 < ¯̺n < 1, a block of d̃ℓ < τ̃ℓ frames is extracted, in order
to slow down breathing movements of the recorded patient; the extracted video
block is “stretched” to the proper length τ̃ℓ by the use of pixel-wise interpolation
in the temporal dimension by a cubic spline [22];

• if Sn is such that ¯̺n > 1, a block of d̃ℓ > τ̃ℓ frames is extracted, in order to
speed up breathing movements of the recorded patient, “contracting” the video
block to the proper length τ̃ℓ by decimation in the temporal dimension using a
cubic spline [22];

• if S0 is such that ¯̺0 = 0, the procedure used for 0 < ¯̺n < 1 cannot be used. In
this case, the value of ¯̺0 is replaced by a new value ¯̺′0 properly chosen such that
0 < ̺′0 ≪ RL, where ̺

′
0 = ¯̺′0 ·̺V , so that the simulated RR is a convenient value

clinically considered an apnea. Then, the procedure illustrated for 0 < ¯̺n < 1
is applied with a modified ¯̺′0 value. The results described in the next section
use a value ̺′0 ≃ 0.1 Hz.

For ¯̺n < 1, the noise, present in the original video and caused by camera sensors,
wired connections and the environment, is also subject to interpolation. This means
that the noise “slows down” or, more precisely, is filtered by the interpolating filter. In
order to maintain noise characteristics similar to those of the original video, a noise
compensation algorithm has been devised. Assuming that the noise is uniformly
distributed in each frame, its statistical characterization is time-invariant and can
be modeled by additive white Gaussian noise, whose characteristics are estimated by
processing pixels with static background. Selecting a background pixel region and
assuming a static video-camera, the system first determines an estimate σ̂2 of the
noise variance by averaging the estimated variances for every pixel in the considered
region. In this process, each pixel variance is estimated by the sample variance [16].
To compensate for the noise not included because of the interpolation filter, a sequence
of uncorrelated Gaussian samples with zero mean and variance σ̂2 is generated and
then filtered by a high-pass filter with 3 dB cut-off frequency equal to that of the
interpolating filter. To update the camera noise inside the new video block, the
filtered noise sequence is added to all time-interpolated pixels. This procedure is not
necessary for the cases with ¯̺n ≥ 1, because the decimation process does not modify
the noise statistic. The overall procedure is repeated until the complete RR pattern
has been inserted into the video.

Video simulation examples of breathing newborns with varying RRs and possible
apnea episodes are provided as supplemental materials following the descriptions in
Subsections 4.1 and 4.3.

3.2 Hardware-Based Simulator

The hardware-based simulator consists of a manikin of an infant with moving parts
able to reproduce respiratory chest movements of the newborn. In Figure 6, an il-
lustrative representation of the manikin simulator is shown. It consists of a moving

10



Figure 6: Illustrative diagram of the hardware-based simulator. The moving chest is driven
by the servo-motor inside the manikin connected to a motor shield for an Arduino board.

chest coupled with the body of the manikin. The moving chest is driven by a me-
chanical arm connected to an electric servo-motor, inserted inside the body of the
manikin, and controlled by a motor shield for Arduino UNO [23], a board based on
an Atmel ATmega328P microcontroller. The controller is able to move the chest at a
user-defined frequency with asymmetric speed to distinguish inhalation and exhala-
tion movements. The servo-motor can vary the RR approximately from 2 bpm to 200
bpm, equivalent to a RR range between 0.033 Hz and 3.33 Hz, which readily allows
to simulate the RRs of a newborn.

To simulate the respiratory behavior of a newborn, times {τℓ} and corresponding
states with RRs {̺n} generated by CTMC-based simulation are passed to the micro-
controller, which drives the servo-motor to mimic the RR pattern, moving the chest
of the manikin with the selected RR for the required time. In the case of a respiratory
pause or apnea event, the servo-motor is slowed down to the minimum reachable rate
for a time duration equal to the sojourn time in the apnea state.

4 Applications and Results

4.1 Model Validation and Simulators

First, the validation of the CTMC model is discussed. Vital sign recordings were
provided by the Neonatal Intensive Care Unit (NICU) of the University Hospital of
Parma. As examples, two recorded pneumogram samples of two different newborns,
the first suffering from apnea events and the second regularly breathing, are used for
the RR data extraction: the first record has a total length of 1 h and 42 min and the
second one of 1 h and 6 min. The fundamental frequency is estimated on temporal
windows of duration M ·Ts = 10 s (with Ts = 31.25 ms) and with a 95% overlapping,
namely W · Ts = 9.5 s. Moreover, a heuristic threshold η = 400 µV is set in (13) to
detect random movements to be assigned to the state SN−1—the selected value of η
has been experimentally optimized. This value is selected by observation of pneumo-
gram signals of several newborn patients. Fixing, as an example, the desired number
of states of the model to N = 5, the automatic state selector, described in Subsec-
tion 2.2, extracts the RR sets {0, 0.5, 0.9, 1.3, RM} and {0.44, 0.74, 1.04, 1.33, RM} for
the first and the second considered patients, respectively. Afterward, relying on the
methods described in Section 2, the algorithm derives an estimate Λ̂ of the infinites-
imal generator matrix. In Tables 1(a) and 1(b) the RR sets {̺n}, the ML-estimated

matrices Λ̂ and the corresponding stationary distributions πML derived according
to (7) for the two considered examples, are reported. It can be noticed that both
patients are affected by random body movements which cause the presence of the
state with ̺N−1 = RM .

It must be remarked that the description of large body movements or possible
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Example 1 (patient suffering from apnea events)

{̺n} =
{
0 0.5 0.9 1.32 RM

}

Λ̂ =





−0.188785 0.08972 0.04486 0.042991 0.011215

0.047083 −0.203685 0.073695 0.071648 0.011259

0.014614 0.080376 −0.22547 0.127349 0.003132

0.007717 0.019756 0.036734 −0.066677 0.00247

0.042272 0.02642 0.002642 0.002642 −0.073976





πML =
[
0.08788 0.16048 0.15736 0.53211 0.06217

]

(a)

Example 2 (patient regularly breathing)

{̺n} =
{
0.44 0.74 1.04 1.33 RM

}

Λ̂ =





−0.205567 0.124197 0.059957 0.004283 0.017131

0.020036 −0.080859 0.047943 0.003578 0.009302

0.014957 0.071581 −0.108974 0.014957 0.007479

0.015873 0.047619 0.206349 −0.317460 0.047619

0.003656 0.007313 0.006399 0 −0.017367





πML =
[
0.05644 0.32998 0.22677 0.01516 0.37164

]

(b)

Table 1: Estimated RRs sets, infinitesimal generator matrices and corresponding station-
ary distributions of (a) a newborn patient suffering from apnea events and (b) a newborn
regularly breathing.

artifacts with a specific state with rate ̺N−1 = RM in the CTMC is fundamental
in order to avoid degradation of the statistical behavior of the model. In fact, if
this state was not available, faulty estimation of the RRs might arise, with possible
wrong selection of RR values {̺n} and incorrect estimates of transition rates and
infinitesimal generator matrix.

In Figure 7, comparisons between the histograms of estimated frequencies X̂ [j],
whose probability mass function (PMF) is defined as the vector p

X̂
, and the station-

ary distributions πML relative to the ML-estimated matrix Λ̂ for both examples are
shown: Part (a) corresponds to the first example of the patient suffering from apneas
and Part (b) is related to the second example of the regularly breathing newborn. In
order to quantitatively compare the similarity of the two PMFs, the Kullback-Leibler
(KL) divergence [24] may be used:

DKL (p‖q) =
∑

n

pn log2
pn
qn

(21)

in which pn and qn denote the probability masses of the distributions p and q, respec-
tively. This quantity is a measure of the difference between the “true” distribution p

and the “assumed” distribution q; it is expressed in bits, due to the use of log2. In
both examples shown in Figure 7, the KL divergence DKL

(
p
X̂
‖πML

)
is computed:

values of 0.011 · 10−3 bits and of 6.642 · 10−3 bits are obtained for the cases (a)
and (b), respectively. The stationary distributions are very similar to the histogram-
based ones, with very low KL divergence values in both examples, confirming that
the CTMC model has a steady state behavior similar to that of the RR pattern of
the real patients.

To further verify the effectiveness of the statistical model, the effects of varying the
number of states of the CTMC is now discussed. For this validation example, a new
patient is considered: the total length of the recorded pneumogram signal is 51 min.
In Tables 2(a), 2(b) and 2(c) the extracted RR sets {̺n}, corresponding estimated
infinitesimal generator matrices and stationary distributions πML with N = 4, 5 and 6
are reported, respectively. Changes in the transition rates when the number of states
of the model is varied can be appreciated—the use of a larger number of levels allows
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Figure 7: Comparisons between histograms with automatically selected bins for the process
X̂ (pneumogram-based) with PMF p

X̂
and the stationary distributions πML relative to

(a) the example of the newborn patient suffering from apnea events and (b) the regularly
breathing newborn.

a finer representation of the RR values.
The simulators described in Section 3 have been used to generate videos of breath-

ing patients with a statistically-defined RR pattern. The video-based simulator is used
to process video streams recorded in the NICU of the University Hospital of Parma,
with cameras having a frame rate fr = 25 frame/s. Videos of the hardware-based
simulator (i.e., the “breathing” manikin) are instead recorded with cameras operating
at fr = 15 frame/s. Both simulators are employed with the state set S with RRs set

{̺n} and the matrix Λ̂ extracted as described in the previous section.
These simulators have been used to test and evaluate the performance of video

processing-based systems to monitor the RR and detect apnea events. The obtained
video sequences have been analyzed using algorithms developed in previous works.
In particular, the algorithm described in [10] uses a Motion Magnification technique
to enhance small breathing movements for Apnea Detection and is here referred to
as MMAD. The algorithm described in [11], here referred to as Spatio-Temporal
video-processing for RR Estimation (STRE), includes a spatio-temporal video pro-
cessing system to reinforce RR estimation and apnea detection. Both MMAD and
STRE algorithms can extract signals representative of breathing motion from a video
stream—they are then used to detect apnea events [10] or to estimate the RR [11].
These algorithms analyze extracted breathing signals on temporal windows of 10 s
with window interlacing equal to 90%. A detailed description of these algorithms is
out of the scope of this paper: the interested reader is referred to [10] and [11].

4.2 Analysis of RR Estimators by Simulated Breathing

Video processing-based RR estimators can be tested comparing estimated rates with
the ones simulated by the statistical model. The performance of the STRE algorithm
in RR estimation is here assessed considering two performance metrics: (i) the Root
Mean Square Error (RMSE) between the simulated rate and that estimated by the
video processing-based algorithm and (ii) the probability of correct estimation of RR,
defined, according to medical practice, by the condition that the RR falls inside a
tolerance range of ±15% with respect to the correct true value. First, a video with a
total length of 17 min and 54 s, generated by the software-based simulator, is analyzed.
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CTMC model with N = 4

{̺n} =
{
0.49 0.88 1.27 RM

}

Λ̂ =





−0.196532 0.109827 0.023121 0.063584

0.021876 −0.058898 0.012621 0.024401

0 0.105263 −0.144044 0.038781

0.006814 0.021124 0.003407 −0.031346





πML =
[
0.0605 0.38942 0.05555 0.49453

]

(a)

CTMC model with N = 5

{̺n} =
{
0.44 0.73 1.03 1.32 RM

}

Λ̂ =





−0.227545 0.083832 0.023952 0.023952 0.095808

0.011161 −0.071429 0.035714 0.001116 0.023438

0.010604 0.067869 −0.123012 0.012725 0.031813

0 0.021978 0.076923 −0.131868 0.032967

0.003406 0.014986 0.011580 0.001362 −0.031335





πML =
[
0.02902 0.29355 0.15485 0.02781 0.49477

]

(b)

CTMC model with N = 6

{̺n} =
{
0.41 0.65 0.88 1.11 1.35 RM

}

Λ̂ =





−0.263566 0.093023 0.015504 0.015504 0.031008 0.108527

0.015102 −0.133765 0.084142 0.006472 0.002157 0.025890

0.005735 0.061649 −0.131900 0.035842 0 0.028674

0.007828 0.003914 0.101761 −0.164384 0.027397 0.023483

0 0 0.067227 0.100840 −0.201681 0.033613

0.002723 0.008850 0.013615 0.005446 0.000681 −0.031314





πML =
[
0.02143 0.1547 0.22708 0.08513 0.01818 0.49348

]

(c)

Table 2: Estimated RR sets and infinitesimal generator matrices for a newborn patient with
different values of the number of states N .

The simulated video is obtained by processing a video sample of a sleeping newborn
breathing regularly with an approximate rate ̺V = 0.69 Hz. The RR is correctly
estimated in 940 out of 1074 temporal windows (i.e., with a probability of correct
estimation equal to 0.875), with a RMSE equal to 0.063 Hz. By normalizing the
RMSE with respect to the average value of the simulated RR, one finds an average
relative error of 10.2%. Then, a video sample of the hardware-based simulator is
analyzed: the recording has a total length of 8 min and 48 s, during which the
manikin simulates a breathing newborn. In this case, the RR is correctly estimated
in 460 out of 528 temporal windows (i.e., with a probability of correct estimation
equal to 0.871), with a RMSE equal to 0.083 Hz, which, normalized with respect to
the average value of simulated RR, corresponds to an average relative error of 9.7%.

4.3 Simulation of Apnea Episodes

Clinically, an apnea event is defined as an episode of absence of breathing lasting at
least 20 s or between 10 s and 20 s, if it is associated with other clinical signs or
symptoms [1]. In the following, adopting a conservative approach, these two condi-
tions are not distinguished and any episode of absence of breathing of at least 10 s
is considered as apnea. The absence of breathing for less than 10 s is considered as
a respiratory pause and is not clinically relevant. The statistical model described in
Section 2 can be used to simulate apnea episodes and respiratory pauses, in both
software- and hardware-based simulators, provided that the state S0 is associated
with the rate ̺0 = 0. A simple statistical model is a two-state CTMC (N = 2),
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Figure 8: Examples of breathing signals of a newborn: (a) normal breathing pattern, (b) a
software-simulated respiratory pause and (c) a real respiratory pause in the same patient,
lasting approximately as the simulated one.

where states {S0, S1} describe the presence of an apnea/respiratory pause and reg-
ular breathing, respectively. Corresponding sojourn times {τℓ} denote the durations
of respiratory pauses and normal breathing, conditionally on the corresponding state.
The software-based simulator operates on a video of a regularly breathing patient to
produce a new video with artificially introduced respiratory pauses. The estimation
method of the 2 × 2 infinitesimal generator matrix and the video-based simulator
described in Subsection 3.1 are used with only two states: ¯̺n = 1 if regular breathing
occurs and ¯̺n = 0 in the presence of apneas/respiratory pauses.

In Figure 8, a direct comparison between motion signals extracted from the three
possible videos using the STRE algorithm are depicted. In Part (a), the breathing
signal extracted from a newborn without respiratory pauses is shown, where a RR
approximately equal to 1.17 Hz can be recognized. In Part (b), the breathing signal,
obtained by inserting a simulated respiratory pause into the video stream related
to Part (a), is shown. In this example, the simulated pause begins at time instant
7.3 s and lasts approximately 6.2 s. For comparison purposes and to demonstrate
the effectiveness of the software-based simulator, in Part (c) the breathing signal
extracted from the video of a child suffering from CCHS, containing a real respiratory
pause lasting approximately 6.26 s, is shown. The similarity of the breathing signal in
Figure 8(c) with the signal embedding the simulated respiratory pause in Figure 8(b)
can be appreciated.

4.4 Analysis of Apnea Detectors by Simulated Breathing

Finally, the two simulators have been used to generate videos of newborns suffering
from apnea events to test the previously proposed algorithms [10], [11]. The software-
based simulator has been used to generate a video lasting approximately 1 h. The
obtained video includes 74 simulated respiratory pauses, with 13 events, lasting at
least 10 s each, which can be interpreted as apneas. The total duration of simulated
apnea events is 166 s, with an average duration of 14.55 s and a maximum duration of
35 s. The hardware-based simulator is used to record a video lasting approximately
46 min. The simulation includes 33 simulated respiratory pauses, with 12 events
lasting at least 10 s each. The total duration of simulated apnea events is 220 s, with
an average duration of 17.08 s and a maximum duration of 33 s.

The obtained videos are processed by the algorithms MMAD [10] and STRE [11],
which implement automatic apnea detection systems, introduced at the end of Sub-
section 4.1. As described at the beginning of Subsection 4.3, the two algorithms focus
only on events lasting at least 10 s. The performance of these detection systems is
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Figure 9: ROC curves for algorithms MMAD and STRE: (a) video-based simulator and (b)
hardware-based simulator.

investigated considering a binary test, which classifies results as “presence of apnea”
(positive event) or “normal breathing” (negative event). The performance results are
presented in terms of sensitivity and specificity [25], defined, respectively, as

α ,
TTP

TTP + TFN

(22)

β ,
TTN

TTN + TFP

(23)

where TTP, TTN, TFP, and TFN denote, respectively, the total length of the time
intervals with apnea correctly detected (True Positives), regular breathing correctly
detected (True Negatives), regular breathing incorrectly reported as apnea (False Pos-
itives) and apnea incorrectly reported as normal breathing (False Negatives). Sensi-
tivity and specificity can be interpreted, respectively, as the fraction of apnea time
which is correctly classified and the fraction of regular breathing time which is cor-
rectly identified. As a global measure of test performance, the Diagnostic Odds Ratio
(DOR) [26] can also be employed, defined as

∆ ,
TTP/TFN

TFP/TTN

=
α

1− α
·

β

1− β
. (24)

In Figure 9, the performance results, in terms of Receiver Operating Characteristic
(ROC) curves [27], are presented. The curves are obtained testing the algorithms for
various values of the decision thresholds for presence/absence of periodicity related
to the breathing signal [10, 11]. Specifically, in Figure 9(a) and Figure 9(b) the ROC
curves for MMAD and STRE algorithms tested on videos generated by software-
based and hardware-based simulators are shown, respectively. As concise performance
indicator, in Figure 9 the values of the Area Under Curve (AUC) parameter [27]
associated with the considered algorithms and simulators are also shown—the higher
the AUC, the better the performance.

Optimum values of decision thresholds can be defined considering the point of the
ROC curve with minimum Euclidean distance to the point (0, 1) which describes the
ideal detector. Considering optimum threshold values for both algorithms, sensitivity,
specificity and DOR for the video streams obtained above are shown in Tables 3 and 4
for the software- and hardware-based simulators, respectively. These results show that
the sensitivity is high for both algorithms—MMAD and STRE can effectively identify
patients suffering from apneas. However, the specificity is higher with STRE than
with MMAD—STRE can identify patients breathing normally more efficiently than
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Algorithm α [%] β [%] ∆

MMAD 88.8% 82.9% 38.4

STRE 91.0% 86.9% 67.1

Table 3: Detection performance on software-based simulator.

Algorithm α [%] β [%] ∆

MMAD 95.1% 78.7% 71.7

STRE 92.3% 89.6% 103.3

Table 4: Detection performance on hardware-based simulator.

MMAD. The global measure DOR has clearly higher values for STRE, indicating the
better overall performance of this algorithm with respect to MMAD.

An in-depth comparison between MMAD and STRE is beyond the scope of this
paper. Nonetheless, the presented results highlight the importance of the proposed
breathing CTMC statistical model and simulators for performance analysis and opti-
mized design of video-based monitoring systems.

5 Conclusion

In this paper, a CTMC statistical model describing the breathing behavior of a pa-
tient, healthy or suffering from breathing disorders, is presented. The values of the
model parameters are estimated from the analysis of vital signs of hospital-monitored
patients, in order to realistically describe RR patterns. The proposed CTMC model
is used to implement two simulators, software- and hardware-based, useful to develop
and test video processing-based algorithms to monitor the RR and detect possible
apnea events.

The statistical model is validated and the simulators are tested with previously
developed systems for RR estimation and apnea event detection. The results show
that the presented model provides a reliable and realistic method to simulate breathing
patterns and respiratory pauses/apneas. This statistical model can be strategic to
create extended video databases, useful to design and test video processing-based
algorithms for automatic breath monitoring.

Standard Protocol Approvals, Registrations, and Patient Consents

In accordance with current practice at our Institution, an informed consent form was
signed by a parent of each newborn patient, and the aforementioned document was
stored in the patients’ hospital chart. Analysis and use of biomedical signals and
video recordings was approved by the Ethical Local Committee.
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