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Abstract

ADHD affects a major portion of our children, predominantly boys. Upon diagnosis treatment can 

be offered that is usually quite effective. Diagnosis is generally based on subjective observation 

and interview. As a result, an objective test for the detection or presence of ADHD is considered 

very desirable.

Based on EEG, across multiple channels, using autoregressive model parameters as features, 

ADHD detection is approached here in analogy with the imposter problem known from speaker 

verification. Gaussian mixture models are used to define ADHD and universal background models 

so that a likelihood ratio detector can be designed. The efficacy of this approach is reflected in the 

traditional detector performance measures of the area-under-the-curve and equal-error-probability. 

The results – based on a limited database of males, approximately 6 years of age – indicate that 

high probability of detection and low equal error rate can be achieved simultaneously with the 

proposed approach, when using EEG collected during an attention network task. The effect of 

using contaminated data is investigated as well.
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I. Introduction

In the US, ADHD is a condition that affects approximately 9.5% of children ages 4 to 17 [1]. 

Diagnosis of ADHD is done by using the Diagnostic and Statistical Manual of Mental 

Disorders (DSM), published by the American Psychiatric Association (APA) [2], which 

provides a list of symptoms that behavioral scientists use to determine whether or not a 

subject has a mental disorder. While DSM-V (2013) recognizes three different subtypes or 

presentations of ADHD, the data available for this effort provided the binary labels of Non-

ADHD (NA) and ADHD (A) only.

Since diagnosis is done through subjective observations made by teachers, parents, and 

behavioral scientists, finding quantitative techniques to aid the diagnosis of ADHD has 

gained attention. In fact, classification of ADHD (A) and Non-ADHD (NA) has been done 
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relatively successfully [3 - 8], which implies that A and NA subjects are separable to some 

extent in several feature domains.

This study concerns the use of a Gaussian-Mixture-Model-based universal background 

model (UBM) for the classification of A and NA subjects, consisting of 6-year old males. 

UBMs have been used in the past for speaker verification and identification, and have 

achieved high levels of accuracy under different noise conditions [9, 10]. Moreover, GMMs 

and UBMs have recently been studied for the detection and classification of EEG patterns 

[11, 12].

The hypothesis addressed here is that a UBM can potentially address the shortcomings of 

other classification schemes. Over the last 30 years, the A/NA classification problem has 

been tackled by extracting features from EEG data when the subjects are resting with their 

eyes closed or performing some activity. However, when test subjects do not perform the 

activity they are instructed to perform, classification accuracy is more likely to be poor 

(perhaps even resembling guessing). Therefore, a UBM built using a large number of feature 

vectors, extracted from several activities, may make classification more robust.

To the best of the authors’ knowledge, this is the first time a GMM-UBM is used for the 

classification of ADHD (A) and Non-ADHD (NA) subjects. In this study, the features 

evaluated are AR parameters, which were extracted from time intervals where A subjects 

and NA subjects were resting or performing an attention network task (ANT). UBMs were 

trained using a training dataset associated with 2 A subjects and 2 NA subjects, and then 

tested with a dataset associated with 1 NA subject and 2 A subjects that were not part of the 

training dataset. Performance was analyzed in terms of Receiver Operating Characteristics 

(ROC) and shown to vary depending on how much of the training and testing dataset came 

from ANT. When all the training and testing feature vectors originate from ANT activity 

(100% ANT, 0% resting EEG), a mean AUC (area under curve, for ROC) of 0.97 was 

obtained, with an EER (equal error rate, P{A/NA}=P{NA/A}) of 0.082. As resting data is 

added to the UBM and ADHD models, performance decreases, resulting in a mean AUC of 

0.73 and a mean EER of 0.32 when 50% of the training and testing feature vectors come 

from ANT activity and the other 50% come from resting EEG.

The structure of this paper is as follows: Section II provides an overview of how EEG has 

been used for the discrimination between ADHD and Non-ADHD subjects. In Section III, 

the methods used are described. Section IV covers the experiments done as well as the 

corresponding results. Lastly, Section V provides the conclusions.

II. Related Work

Since 1999, advances have been made towards quantitatively finding differences between 

ADHD subjects and Non-ADHD subjects during baseline eyes closed activity. In 1999, a 

study reported that the θ/β power ratio of ADHD subjects tends to be higher than that of 

Non-ADHD subjects [7]. In that study, the power ratio was obtained by computing the PSD 

estimates from the FFT. For classification, the θ/β power ratio of Non-ADHD subjects was 

averaged, and power ratios that were more than 1.5 standard deviations above the average θ/
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β power ratio of control subjects (the threshold) were classified as associated with ADHD 

subjects, whereas those that fell below the threshold were classified as Non-ADHD. This 

simple decision rule was reported to yield 98% of sensitivity. However, another study 

replicating the methodology of the latter study, reported 84% accuracy (sensitivity + 

specificity divided by 2).

Although a method that achieves 84% accuracy may not be accurate enough for diagnosis, it 

could be used for pre-screening. A study found that parents and teachers can detect ADHD 

with an accuracy ranging from 54% to 63%, which is equivalent to guessing, whereas the θ/

β power ratio has been claimed to achieve 84% to 97% accuracy of classification [13]. The 

latter claim has been seriously called into question recently [14].

Another study [3] used power in frequency bands along with semi-supervised learning 

during eyes closed activity in order to diagnose ADHD subjects. In this study, the power and 

power ratios in the α, β, ⍬, and γ frequency bands were computed and the mutual 

information criterion was used to choose the least redundant features for training of a 

Gaussian support vector machine (SVM). The accuracy of classification was 97%.

In our earlier publication [4], AR parameters, extracted from attention activity, and 

supervised learning were used for the classification of ADHD and Non-ADHD subjects. 

AR(7) models were computed from windows of 2 s, and a KNN classification accuracy 

between 85% and 95% was obtained. In addition, a confidence metric was derived from the 

vote count of the KNN classifier, which ranged from 91% to 99%.

The effectiveness of event-related potentials (ERPs) has also been studied [5]; 74 control and 

74 ADHD subjects performed a visual two-stimulus GO/NOGO task while their EEG data 

was recorded. Independent component analysis (ICA) was performed on the ERPs, and these 

features were used to train a SVM classifier, which achieved 92% accuracy of classification 

(90% sensitivity and 94% specificity).

UBMs have been studied for the purpose of classification and person verification. In a recent 

study, UBMs based on a multi-sphere support vector data description (MSSVDD) and based 

on GMMs were used to classify control subjects and alcoholic subjects [11]. The features 

extracted in this study were 12 power components in the 8 to 30 Hz frequency band and 

AR(21) coefficients. The EER of the GMM-UBM was found to be 0.221 and that of the 

MSSVDD was found to be approximately 0.1.

For EEG task classification, popular algorithms and frameworks involve Hidden Markov 

Models (HMM), since a task can be modeled as a sequence of mental states [15]. In fact, a 

study used HMM for mental task classification and modeled EEG as a chaotic signal. The 

models were tested using multiple datasets, and accuracy reported of approximately 72% for 

the worst case.

With the rise in popularity of deep learning, deep neural networks have been developed to 

detect patterns in EEG. With a training dataset of 50,900 feature vectors and a testing dataset 

of 500,000 feature vectors, a deep belief network (DBN) was developed for EEG anomaly 
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detection [16]. The DBN was compared to SVM for the same task, and according to the F1 

scores, DBNs slightly outperformed SVMs (0.475 vs 0.439).

Although some deep learning networks, such as recurrent neural networks (RNN), DBN, or 

long-short-term memories (LSTM) hold promise for the classification of A and NA, the 

dataset used for this paper is not large enough to be used for deep learning. To the best of 

our knowledge, there are large EEG datasets available online, such as [17], but not for 

ADHD.

III. Methods

An overview is provided in Section III.A of how the data were collected, in Section III.B of 

channel reduction, in Section III.C of details for AR modeling, and in Section III.D of 

GMM-UBMs.

A. Data Collection

Children between the ages of 6 and 8 years visited the research lab as part of an ongoing 

longitudinal study focused on frontal lobe development from infancy through childhood. 

Information regarding diagnosis of ADHD was obtained via maternal report. EEG was 

recorded using a stretch cap (Electro-Cap, Inc Eaton, OH: E1-series cap) in the extended 

10/20 system pattern. Recordings were made from 26 electrodes located equidistant across 

the scalp.

Electrode impedances were kept under 20k ohms. The electrical activity from each lead was 

amplified using separate bioamps (James Long Company, Caroga Lake, NY). During data 

collection, the high-pass filter was a single pole RC filter with a 0.1 Hz cut-off (3 dB or half-

power point) and 6 dB/octave roll-off. The low-pass filter was a two-pole Butterworth type 

with a 100-Hz cut-off (3 dB or half-power point) and 12 dB/octave roll-off. The EEG signal 

was digitized at 512 samples per second for each channel so that data were not affected by 

aliasing. The acquisition software was Snapshot-Snapstream (HEM Data Corp, Southfield 

MI). Prior to the recording of each subject, a 10 Hz, 50 μV peak-to-peak sine wave was 

input through each amplifier and digitized for 30 sec. This signal was analyzed and the 

resulting power values used to calibrate the EEGs.

After the EEG electrodes were applied, children participated in eyes open, eyes closed, and 

quiet VIDEO baseline events to collect resting EEG data. Then the children completed a 

battery of cognitive tasks designed to assess various aspects of attention [18] using the child 

version [19] of the Attention Network Task (ANT) and various aspects of cognition 

associated with executive functions (e.g., number Stroop, Dimensional Change Card Sort 

Task, Digit Span Task). Data from the ANT were used in the analyses that are the focus of 

this report.

The ANT was designed to assess Posner’s brain-based attention networks [18] and yields 

measures of conflict, alerting, and orienting. The test requires the child to respond to a 

central target (a yellow fish on a light blue background) displayed on a computer screen and 

indicate whether the fish is facing left or right. The child is instructed to look at the fixation 
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point, above or below which the target will appear. The target may appear with or without 

flankers (other fish), which may or may not be congruent with respect to direction they are 

facing. Reaction time responses to the alert cues, spatial cues, and flankers are manipulated 

to provide an assessment of the efficiency of each of the attention networks. The ANT is 

divided into 3 blocks of ~5 minutes each, with a brief rest period between blocks. The EEG 

during the first block and second block were used in these analyses.

After the research visit, EEG data were analyzed using EEG Analysis software developed by 

the James Long Company. Data were re-referenced via software to an average reference 

configuration and then analyzed with a discrete Fourier transform (DFT) using a Hanning 

window of 1 second width and 50% overlap. Power values were computed at each electrode 

site for theta (4-7 Hz) and beta (13-30 Hz) frequency bands. Power was expressed as mean 

square microvolts.

The EEG data available for this study was for 7 subjects, 4 with ADHD diagnosis and on 

medication, and 3 not diagnosed as ADHD. All 7 subjects were about 6 years of age and all 

were males. No ADHD subtype information was available for these subjects. However, 

statistically speaking the inattentive/hyperactive or combined subtype is most prevalent in 

boys, which could mean that our ADHD subjects form a relatively homogeneous group.

B. Channel Reduction

To reduce the number of channels to be used for the analyses described herein, the aim was 

to determine five channels that probably will provide good discrimination. Previous research 

indicates that resting state eyes-opened and eyes-closed theta/beta power ratios (TBPR) tend 

to be higher for ADHD subjects than for Non-ADHD subjects [7, 8]. The preliminary step of 

channel reduction is therefore executed based on TBPR; however TBPR were evaluated here 

during ANT activity for all recorded channels, for all subjects, i.e. not during resting state. 

The next step was computation of all cross ratios, defined as the ratio of TBPR-ADHD over 

TBPR-Non-ADHD. Figure 1 reflects the distribution of cross-ratios for each of the EEG 

channels, in the form of boxplots.

The red lines in the middle of boxes represent the means, while the top and bottom sides of 

the boxes represent the 75th and 25th percentiles respectively, with the upper and lower 

horizontal lines representing the maximum and minimum values respectively. The cross 

ratios fall between 0.9 and 1.15. Based on this preliminary analysis step, the channels 

chosen to proceed with are Fc2, Fc1, Fc5, Cp6, and C3. This choice does not necessarily 

mean that these five channels produce the very best possible discrimination; after all, the 

performance of various methods is yet to be analyzed, and the results of such analysis may 

indicate that optimization of the channel choice needs refinement when targeting a specific 

application.

C. Feature Extraction

The features used are the autoregressive (AR) parameters ak, extracted from finite length 

observation records for the selected channels, according to the following model.
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xn = − ∑
k = 1

p
akxn − k + εn (1)

where p is the order of the AR model and εn is the prediction error process. The Burg 

method [20] was used for AR parameter estimation, after finding a reasonable order for the 

model by using Akaike’s Information Criterion [21]:

AIC(p) = N ln(σ2) + 2p (2)

where N is the number of observed samples, and σ2 is the estimated prediction error 

variance. The “best” AR model order is the one that minimizes the value of AIC(p).

D. GMM-UBM

A Gaussian Mixture Model (GMM) is a model for a probability density function (pdf) 

expressed as a weighted sum of Gaussian probability density functions. The main reason for 

using GMMs for classification problems is that Gaussian distributions can approximate any 

arbitrary pdf [10]. The pdf of a GMM λ is thus expressed as

p(v ∣ λ) = ∑
m = 1

M
wmgm(v ∣ μm, Σm) (3)

where v is an N-dimensional feature vector, wm are the weights, and gm the individual N-

variate Gaussian pdf, which have the following form:

gm(v ∣ μm, Σm) = 1
(2π)N 2 ∣ Σm ∣

exp − 1
2(v − μm)TΣm

−1(v − μm) (4)

where μm is an N-dimensional mean column vector and Σm is a diagonal covariance matrix 

of the feature element variances.

To train the GMMs, i.e. finding the model parameters, the expectation maximization (EM) 

algorithm was used. In the expectation-step (E-step) of the EM algorithm, the a posteriori 

probabilities ψt,c,m of a feature vector νt belonging to the Gaussian mixture model λc, also 

known as class membership weights, are computed in this fashion:

ψ t, c, k = P(wc, k ∣ vt, λc, i) =
wc, kgk(vt ∣ μc, k, i, Σc, k, i)

∑m = 1
M wc, mgm(vt ∣ μc, m, i, Σc, m, i)

(5)
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where i=1,2, ⋯, I, c=1,2, ⋯, C, m=1,2, ⋯, M, and t=1,2,⋯,T, where I is the total number of 

iterations, C is the total number of classes, M is the total number of mixture components, 

and T is the total number of feature vectors.

In the maximization step (M-step), the weights, means, and covariance matrices that 

parameterize the Gaussian mixture models λc are computed as follows:

wc, k, i + 1 = 1
T ∑

t = 1

T
ψ t, c, k (6)

μc, k, i + 1 =
∑t = 1

T ψ t, c, kvt
Twc, k, i + 1

(7)

Σc, k, i + 1 =
∑t = 1

T ψ t, c, k(vt − μc, k, i + 1)2

Twc, k, i + 1
(8)

With every iteration i the likelihood for which the parameters are computed increases, so 

that a maximum in the likelihood occurs at the last iteration; however, that maximum may 

have reached a plateau at an earlier iteration. In other words,

l(vt ∣ λc, i + 1) ≥ l(vt ∣ λc, i) (9)

In this study, EM was executed for a maximum of 15 iterations. This number represents a 

safe choice. For speech data, when the parameters are initialized randomly, the number of 

iterations needed tends to be over 10 [9], whereas the number of iterations needed is 

approximately 7 when using k-means clustering for initialization [9], as is used here.

Once the GMMs have been formed, a UBM λUMB can be created based on the GMMs. In 

order to do so, each GMM λc that will be part of the UBM is adapted by performing the 

maximum a posteriori (MAP) adaptation. This is done by, first, computing the posterior 

probabilities of each feature vector belonging to the UBM.

ψ t, c, k = P(wc, k ∣ vt, λUBM) =
wc, kgk(vt ∣ μc, k, Σc, k)

∑m = 1
M wc, mgm(vt ∣ μc, m, Σc, m)

(10)

In our classification problem, C = 2. Therefore, there will be 2 GMMs, λADHD and 

λnon–ADHD, and λnon–ADHD will be adapted to form λUBM.
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Sufficient statistics are then computed to obtain the weights, means, and variances of λUBM. 

These parameters are the count, first, and second moment of the posterior probabilities 

found in (10).

nc, k = ∑
t = 1

T
ψ t, c, k (11)

Ec, k(vt) =
∑t = 1

T ψ t, c, kvt

∑t = 1
T ψ t, c, k

(12)

Ec, k(vt
2) =

∑t = 1
T ψ t, c, kvt

2

∑t = 1
T ψ t, c, k

(13)

Once the sufficient statistics have been computed, the weights, means, and variances are 

adapted by using (14) through (16)

wc, k =
ac, k, wnc, k

T + (1 − ac, k, w)wc, k ψ t, c, k (14)

μc, k = ac, k, uE(vt) + (1 − ac, k, μ)μc, k (15)

σc, k
2 = ac, k, σEc, k(vt

2) + (1 − ac, k, σ)(σc, k
2 + μc, k

2 ) − μc, k
2 (16)

where am,w, am,μ, am,σ are the adaptation coefficients for the weights, means, and variances 

respectively. These coefficients can be computed by using the following formulae:

ac, k, w =
nc, k

nc, k + αw
(17)

ac, k, μ =
nc, k

nc, k + αμ
(18)
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ac, k, σ =
nc, k

nc, k + ασ
(19)

where αw, αμ, ασ are the relevance factors of the weights, means, and variances. In this 

study, relevance factors were set to 10. Relevance factors can potentially affect classification 

performance, an occurrence not observed here.

In this study, UBMs were found using various combinations of features extracted from Non-

ADHD subjects (impostors). Models were also found to fit the class of ADHD subjects 

(targets). Figure 2 summarizes how classification is done in this study.

For classification, the log-likelihood ratio (LLR) is used, i.e. the ratio of the likelihood of a 

test vector νt belonging to the ADHD model over the likelihood of νt belonging to the 

universal background model. If the LLR is greater than or equal to zero, the subject is 

classified as ADHD, otherwise the subject is classified as Non-ADHD.

LLR = log
p(vt ∣ λADHD)
p(vt ∣ λUBM) (20)

To speed up the process of training the GMM-UBMs, the MSR Identity toolbox [22] was 

used.

IV. Experiments

The experiments were conducted based on 7 subjects, all 6 year old males: 4 A and 3 NA 

subjects.

As indicated in Section III.B, these 5 channels were used: Fc1, Fc2, Fc5, Cp6, and C3. 

AR(7) parameters were extracted from these channels and these parameters concatenated, 

forming 35-D feature vectors. Feature vectors were extracted during ANT, VIDEO, and eyes 

closed (EC) activities.

By using 4 subjects for training (2 NA and 2 A) and the other 3 for testing (1 NA and 2 A), 

GMM-UBMs were trained. The training dataset consisted of the 35-D AR parameter vectors 

extracted from 2-s windows with 50% overlap during the ANT, VIDEO, and/or eyes closed 

(EC) activities. Given the available recorded data, when overlapping 2-s windows were used, 

for every subject 423 feature vectors were extracted during ANT; 112 during VIDEO; and 

56 during EC.

Throughout, the performance of classification in the form of the receiver operating 

characteristic (ROC) was analyzed. When characterizing the performance of systems that 

employ biometrics, EER is often used. EER corresponds to the point on the ROC curve 

where the miss rate or false negative/Non-ADHD rate (FNR) is equal to the false positive/
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alarm/ADHD rate (FPR). In addition, the area under the curve (AUC) of the ROC plot can 

be used to describe the detection (or true positive/ADHD) rate vs the false positive rate 

(FPR). In this study, AUCs and EERs are used as performance indicators.

A. Effect of Number of Mixture Components

For speaker verification and/or identification problems, it is common practice to use one 

mixture model per speaker [9]. Because this paper concerns a binary classification problem, 

two mixture models are formed (one for A and one for NA subjects). To decide how many 

mixture components should be computed, the effect of the number of mixture components is 

explored.

As stated earlier in this section, 4 subjects were used for training. The results in Fig. 3 were 

obtained using 2 A subjects and 0 NA subjects for testing during ANT. Peak values are 

found when the number of mixture components equals the number of subjects used for 

training. When 4 mixture components are used to fit the data, the AUC is 0.981 and the EER 

is 0.047. When 8 or more mixture components are computed, the AUC fluctuates between 

0.972 and 0.981 and the EER between 0.059 and 0.066. To minimize the computational 

burden and to maximize detection, the number of mixture components used in the rest of the 

paper is set equal to the number of training subjects.

B. Effect of Activities

Our hypothesis is that the accuracy of ADHD detection depends on the activity performed 

by the subjects, i.e. some activities elicit stronger discrimination statistics than others. 

Furthermore, if the activity a test subject performs differs from that presumed to be 

performed by the training subjects, the miss rate is expected to increase.

For the results reflected in Fig. 4, GMM-UBMs are trained with 2 subjects (1 NA and 1 A) 

and tested with the other 5. The training subjects were paired in (4×3=) 12 different ways in 

order to train and test with all possible combinations. Four scenarios were considered for 

training and testing: using eyes closed (EC) data for training and testing (dark blue 

histogram); using ANT for training and testing (light blue histogram); using ANT for 

training and EC for testing (yellow histogram), and using EC for training and ANT for 

testing (brown histogram).

Figure 4 shows that detection performance is poor when ANT data is used for training and 

EC is used for testing (yellow) and vice versa (brown); apparently there is not much 

commonality in the functioning of the brain between when the eyes are closed and when 

actively paying attention to some task. For both scenarios, there is a large concentration of 

miss rates between 0.35 and 0.65, which is the equivalent of guessing. The average EER for 

these cases is 0.45. Slightly better results are found when EC data is used for training and 

testing (dark blue), but with the EERs spread out more. For the fourth case, when ANT data 

is used for training and for testing, the AUC tends to be higher than 0.6 and the EERs tend to 

be below 50%, with a mean EER of 39%.

Hypothesizing that doing so would increase the detection performance, training was done 

next with 4 subjects and testing with the other 3. The training/testing cases EC/EC, ANT/
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ANT, ANT/EC, and EC/ANT were explored, and the EERs and AUCs were computed for 

all 18 combinations of 4 (picking 2 A and 2 NA, from the available 4 A and 3 NA). Figure 5 

summarizes the result of these experiments.

When using EC for training and testing, the EERs range from 0.30 to 0.81 with a mean of 

0.50, indicative of a classifier that is (as with less training), still equivalent to guessing. 

Likewise, the AUCs for this EC/EC scenario are spread between 0.11 and 0.74 with a mean 

of 0.49, representative of guessing as well. When using ANT for training and EC for testing, 

the results improve: the EERs are now spread between 0.025 and 0.65 with a mean of 0.24. 

The AUCs for this case follow a similar pattern: they range between 0.37 and 0.99, with a 

mean of 0.79, which means that the classifier makes correct decisions most of the time. 

When EC is used for training and ANT for testing (yellow), the AUCs and EERs are 

distributed very much as in the ANT/EC case, and the mean AUC and EER are 0.86 and 

0.21 respectively. The fourth case (ANT for training and ANT for testing) has improved 

substantially, with all of the AUCs over 0.92 and most over 0.95. The mean AUC is 0.97. 

The EERs for this ANT/ANT case are now spread between 0.025 and 0.18. The mean EER 

is now 0.082 with most of the EERs below 0.11. As expected, these results make a strong 

case for using more subjects for training.

Figure 6 explores in finer detail the distribution of the case where 4 subjects during ANT 

activity are used for training. The distribution of AUCs (top graph) has a long-tail-like 

shape, with most of the values over 0.97. As pointed out for Fig. 5, there is a handful of 

cases with AUC below 0.95. Corresponding to the latter cases, there is the same handful of 

cases with EER (bottom graph) above 0.11. Except for these – what seem to be outlier – 

cases, the EERs are distributed between 0.02 and 0.085 and centered at 0.065, which 

happens to be almost 2% points below the mean EER of 0.082. Note that even the worst of 

the 18 possible subject combinations for training and testing produces AUC above 0.90 and 

EER below 0.20.

These experiments suggest that the more ANT data is used during training, the better the 

performance; when 2 subjects were used for training, EERs were larger not only because the 

number of feature vectors was smaller, the number of mixture components was smaller also. 

When only EC is used for training, classification performance becomes closer to guessing. 

When ANT was used for training and EC for testing and 2 subjects are used for training, the 

mean EER was found to be 0.45. On the other hand, when 4 subjects are used, doubling the 

number of feature vectors in the training dataset, the mean EER drops to 0.24. Finally, when 

only ANT data is used, the mean EER is 0.39 when two subjects are used for training and 

drops to less than 0.09 when four subjects are used for training.

C. GMM-UBM with EC and ANT data

In this section, the hypothesis will be explored that classification performance degrades as 

resting data is mixed in – as a contamination – with the modeled training data. GMM-UBMs 

were trained using 4 subjects and tested with the remaining 3, those that were not used for 

training (recall that 4 A and 3 NA subjects are used for these experiments).
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Figure 7 shows how performance degrades as ANT data is combined with EC data for 

training of the UBM. As was shown in Fig. 6, when only features extracted during ANT 

activity were used for training, AUCs vary between 0.92 and 0.99 with a mean of 0.97; 

EERs vary between 0.025 and 0.18 with a mean of 0.082. When 87% of the training dataset 

comes from ANT activity (384 feature vectors during ANT and 56 during EC), performance 

degrades slightly: AUCs now vary between 0.86 and 0.98 with a mean of 0.94; EERs vary 

between 0.053 and 0.22 with a mean of 0.12. When 80% of the data comes from ANT 

activity (220 feature vectors from ANT and 56 from EC), the AUCs are spread between 0.76 

and 0.98 with a mean of 0.90. Lastly, for this case, the EERs are distributed between 0.057 

and 0.30 with a mean of 0.16.

Figure 8 contains sample AUCs and EERs from the distributions shown in Fig. 7. The top 

figures and left plots show how performance degrades as some EC (resting) data is mixed in 

with ANT data to train the UBM. The average ROC plot for the top left graph has an AUC 

of 0.97, whereas the worst ROC has an AUC of 0.92. The average AUC decreases for all the 

other ROCs: 0.94 (top right ROC), 0.90 (bottom left), and 0.55 (bottom right), which is 

equivalent to guessing. Similarly, the least favorable AUCs of the ROCs decrease as more 

resting data is added to the training mixture.

Figure 9 shows a different representation of the ROC plots shown in Fig. 8 in log scale. 

Through the use of EERs, Fig. 9 confirms that performance decreases as resting data is 

added to the dataset. When 100% of the training dataset is ANT data, the average EER is 

0.082, and the worst EER is 0.18. The latter implies that the worst case probability of 

detection is above 81%. When 87% of the dataset is ANT data, the average EER becomes 

0.12 and the worst EER becomes 0.22. When 80% of the data is ANT data, the average EER 

becomes 0.16 and the worst becomes 0.30. Lastly, when 0% of the dataset is ANT data, the 

average EER is 0.46. In other words, most GMM-UBM models made using EC data will 

tend to guess whether a test vector belongs to the A class or to the NA class. For models 

using only EC data, the distribution of EERs goes from 0.30 to 0.81, and is centered around 

0.5 (see Fig. 5).

Figure 10 shows how performance decreases when the percentage of resting data in the 

training dataset increases even further. Since only 56 feature vectors could be extracted 

during resting EC activity, VIDEO activity was used. The latter is another baseline (resting 

activity) during which EEG recordings were taken from the subjects. In Fig. 10, the scenario 

where 60% of the data was during ANT consisted of 166 feature vectors extracted during 

ANT, 56 during EC, and 54 during VIDEO. The scenario where 50% of the dataset was 

during ANT consisted of 166 vectors extracted during ANT, 56 during EC, and 110 during 

VIDEO.

Figure 10 shows an exaggeration of the behavior patterns observed in Fig 7. When 60% of 

the training and testing data comes from ANT, the AUCs are distributed between 0.62 and 

0.86 with a mean of 0.76, which is where most of the AUCs are concentrated. The EERs, for 

this 60% mixed case, are scattered between 0.21 and 0.42 with a mean of 0.29. When 50% 

of the training and testing data comes from ANT, performance drops slightly. The 

distribution of AUCs for this case is similar to the latter, but there are some cases where the 
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AUCs are slightly below 0.6 and the EERs are between 0.2 and 0.5. The mean AUC and 

EER for this 50% mixed case are 0.73 and 0.32 respectively. For these 60% and 50% mixed 

cases, the performance is slightly, but consistently, better than guessing.

The final case shown in Fig. 10 is when all the training and testing feature vectors are 

extracted from EC. The AUCs and EERs are spread between 0.11 and 0.73, and 0.30 and 

0.81 respectively, meaning that classification is akin to guessing. The AUC for 0% ANT, i.e. 

100% EC, falls roughly in the 15-75% range. This is just a little better than a pure guess. 

This performance is very similar to the result found based on phase synchrony processing of 

eyes closed EEG [23], an entirely different approach than GMM-UBM. As the performance 

of a KNN approach [4] was also good when using ANT data, improved detection 

performance appears to be highly correlated with using an attention task instead of the eyes 

closed condition.

The mixed training data cases show that even 13% of resting data in the training phase has a 

perceptible effect on classification performance. While the results make clear that it is 

inadvisable to use resting EEG as part of the training data, note that inadvertent, temporary 

inattention during an ANT task could well look like resting data. Mitigation is provided by 

collecting more data across more subjects, and/or actively detecting (and removing from 

consideration) resting data segments.

Table 1 summarizes the results of the experiments done in order to study the effect of 

different activities on the classification of A/NA. The left column represents the activities 

used for training and the top row represents the activities used for testing. A tabular 

presentation of the data (histogram range and mean) is given to avoid using too many 

histograms.

Table 1 shows the pattern observed in Figs. 7 and 10: The higher the proportion of ANT data 

that is used for training and testing, the higher the AUC. When only features extracted 

during ANT activity are used for training (first row) the AUCs are higher than those in any 

of the other rows. For instance, the AUC of entry (1,1) (train/test = ANT/ANT) is 

statistically (on average) higher than for cells (2,1), (3,1), and (4,1). This pattern is observed 

to hold for the other rows. For instance, the AUC of entry (1,2) is higher than that of (2,2), 

which is equal to or higher than that of (3,2) and (4,2). These cases show that detection 

degrades gracefully when the proportion of EC data increases in the training dataset. 

However, when EC is used for training (last row), the worst-case and mean AUCs drop 

substantially, which suggests that training models with EC data only should be avoided. 

When ANT, EC, and VIDEO are used for training, classification performance based on 

testing with EC (last column) produces very poor worst-case AUC results. Training and 

testing with EC only yields performance akin to guessing. Thus – for the channels and 

features used in this study – training with ANT data only, or as much ANT data as possible, 

yields the highest classification performance.
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V. Discussion

While the number of subjects in this study was small, the results show that good 

discrimination of 6-year old male subjects with and without ADHD appears very possible 

when EEG collected during an attention network task is used. The significance of this result 

is that for males diagnosis of ADHD at about 6 years of age is quite common. This may be 

related to the inattentive-hyperactive subtype being prevalent in males. For females the 

diagnosis of ADHD generally happens a bit later, which may be related to the inattentive 

subtype being prevalent in females. Encouraged by the results to date, our future efforts are 

directed towards more fine-grained methods, subtype detection, and generalization to a 

larger database including males and females.

VI. Conclusions

On the basis of data from 5 channels of EEG, selected based on theta to beta power ratios 

during an attention task, a Gaussian mixture model for ADHD was developed for likelihood 

ratio comparison with a (impostor) universal background model for Non-ADHD. When 

training and testing is done with data extracted during the attention network task (ANT), the 

worst case detection performance was at least 81% at an equal error rate of at most 18%, 

while the respective average values were 92% and 8.2%. Therefore, good discrimination 

performance between 6-year old male ADHD and Non-ADHD subjects can be achieved 

based on attention task data. The fact that poor discrimination performance results when 

training and testing is done with data extracted during rest, with eyes closed, supports the 

hypothesis that ADHD detection performance is task dependent. When training data is 

contaminated across different tasks discrimination performance deteriorates, even when 

testing uses only ANT data. If the testing data is also contaminated, discrimination 

performance generally worsens on average and becomes very poor in terms of worst case 

performance.
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Fig.1: 
Cross ratios for all channels.
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Fig. 2: 
GMM-UBM for the classification of A/NA subjects.
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Fig. 3: 
Effect of the number of mixture components.
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Fig. 4: 
Distribution of AUCs (top) and EERs (bottom) when training/testing = EC/EC (dark blue), 

ANT/ANT (light blue), ANT/EC (yellow), and EC/ANT (brown); all combinations of 2 

subjects (1 A and 1 NA) used for training and all other non-overlapping subjects for testing.
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Fig. 5: 
Distribution of AUCs (top) and EERs (bottom) for training/testing cases EC/EC (dark blue), 

ANT/ANT (light blue), ANT/EC (yellow), and EC/ANT(brown); all combinations of 4 

subjects (2 A and 2 NA) used for training and all other non-overlapping subjects for testing.
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Fig. 6: 
Distribution of AUCs (top) and EERs (bottom) when ANT feature vectors from 4 subjects 

are used for training (2 A and 2 NA) and from the other 3 subjects for testing.
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Fig. 7: 
AUCs (top) and EERs (bottom) of GMM-UBMs with ANT+EC (mixed) composition 

training datasets.
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Fig. 8: 
Sample ROC plots with different training datasets.
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Fig. 9: 
Sample DET curves with different datasets.
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Fig. 10: 
AUCs (top) and EERs (bottom) of GMM-UBMs with ANT+EC+VIDEO (mixed) 

composition training datasets and same composition testing sets.
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Table 1:

Summary of AUC under different training and testing scenarios (percentages in mix)

Testing ANT
(100)

ANT + EC
(87,13)

ANT + EC +
VIDEO

(50, 33, 17)

EC
(100)

Training

ANT
(100)

0.92 to 1.00
Mean 0.97

0.90 to 0.99
Mean 0.96

0.74 to 0.98
Mean 0.92

0.37 to 0.98
Mean 0.79

ANT + EC
(87, 13)

0.87 to 1.00
Mean 0.96

0.86 to 0.98
Mean 0.94

0.75 to 0.98
Mean 0.90

0.34 to 0.98
Mean 0.77

ANT + VIDEO + EC
(50, 33, 17)

0.92 to 1.00
Mean 0.96

0.89 to 0.98
Mean 0.94

0.76 to 0.98
Mean 0.81

0.27 to 0.92
Mean 0.68

EC
(100)

0.55 to 0.97
Mean 0.86

0.55 to 0.96
Mean 0.85

0.44 to 0.97
Mean 0.80

0.11 to 0.77
Mean 0.49
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