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Abstract 

The purpose of this study is to present a new semi-automated methodology for three-

dimensional (3D) reconstruction of coronary arteries and their plaque morphology using 

Computed Tomography Angiography (CTA) images.  The methodology is summarized in 

seven stages: pre-processing of the acquired CTA images, extraction of the vessel tree 

centerline, estimation of a weight function for lumen, outer wall and calcified plaque, lumen 

segmentation, outer wall segmentation, plaque detection, and finally 3D surfaces construction.  

The methodology was evaluated using both expert’s manual annotations and estimations of a 

recently presented Intravascular Ultrasound (IVUS) reconstruction method.  As far as the 

manual annotation validation process is concerned, the mean value of the comparison metrics 

for the 3D segmentation were 0.749 and 1.746 for the Dice coefficient and Hausdorff distance, 

respectively.  On the other hand, the correlation coefficients for the degree of stenosis 1, the 

degree of stenosis 2, the plaque burden, the minimal lumen area and the minimal lumen 

diameter, when comparing the derived from the proposed methodology 3D models with the 

IVUS reconstructed models, were 0.79, 0.77, 0.75, 0.85, 0.81, respectively.  The proposed 

methodology is an innovative approach for reconstruction of coronary arteries, since it provides 

3D models of the lumen, the outer wall and the CP plaques, using the minimal user interaction.  

Its first implementation demonstrated that it provides an accurate reconstruction of coronary 

arteries and thus, it may have a wide clinical applicability. 

Keywords: 

Coronary Arteries, Atherosclerotic Plaque, Computed Tomography Angiography, 3D 

reconstruction, Automatic segmentation, Level Set method. 
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1. Introduction 

Coronary Artery Disease (CAD), in which atheromatic plaques build up inside the coronary 

arteries, is the most common type of heart disease and is considered as the leading cause of 

morbidity and mortality world wide [1].  Non-invasive cardiovascular imaging and particularly 

Computed Tomography Angiography (CTA) has experienced a remarkable progress in the last 

years [2, 3].  CTA has been gaining widespread acceptance in clinical practice for the 

investigation of suspected CAD, since it is able to visualize the coronary arteries and their 

anatomy and allows the interpreter to evaluate the presence, extent and type (calcified (CP) or 

non-calcified (NCP)) of atherosclerotic plaques [4], without the invasive catheterization 

procedure. 

Different studies have indicated that CTA modality is able to analyze accurately the coronary 

artery remodeling and provides not only the detection and quantification of the atherosclerotic 

plaque [5, 6], but also the classification of its composition [7].  In addition to its high accuracy, 

CTA provides robust prognostic information in patients with suspected CAD and allows the 

risk stratification as well, when CAD is present [8] while it can be used for prediction of plaque 

growth based on computational modelling [9, 10].  Existing studies have demonstrated that 

CTA derived measures, such as the number of vessels with significant stenosis, the luminal 

stenosis, the stenosis location, the plaque burden and the composition of the plaque contribute 

to diagnostic and prognostic abilities of coronary CTA [11, 12]. 

An accurate 3D model of coronary arteries, except for visualizing the vessel geometry and its 

plaque distribution, allows also the blood flow simulation and the investigation of the role of 

biomechanical factors, such as static pressure, wall shear stress, blood viscosity on the 

localization and progression of atherosclerosis [13].  In addition to this, a 3D coronary imaging 

has the potential to provide a more comprehensive evaluation of the risk for CAD progression 

[14]. 

In the literature, different studies have been presented to determine the accuracy of 3D artery 

reconstruction and the assessment of plaque using CTA.  Voros et al. [15] presented a study for 

the evaluation of 3D quantitative measurements of coronary plaque by CTA using Intravascuar 

http://creativecommons.org/licenses/by-nc-nd/4.0/


© <2018>. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

4 

 

Ultrasound (IVUS).  Another similar approach was introduced by Graaf et al. [16], who studied 

the correlation between the metrics derived by CTA automatic software (QAngio CT 1.1, Medis 

medical imaging systems) and those provided by Virtual Histology IVUS (VH-IVUS), which 

was defined as the gold standard.  Arbab et al. [17] performed a study for the quantification of 

coronary arterial stenosis using CTA and demonstrated that CTA in comparison with the 

conventional angiography, is able to identify non-invasively patients with CAD.  Athanasiou 

et al. [18] presented a semi-automated methodology for 3D reconstruction of arteries and their 

plaque morphology using CTA images and compared their approach using IVUS findings. 

In this work, we present a new semi-automated methodology for 3D coronary artery 

reconstruction and plaque detection using CTA modality.  In order to investigate the accuracy 

of our approach, we implemented two different validation approaches, using both expert’s 

annotations and estimation of an IVUS reconstruction methodology.  The comparison results 

indicated good agreement.  The main innovative aspect of the presented methodology is its 

ability to reconstruct both the lumen, the outer wall and the CP plaques with the minimal user 

interaction.  Furthermore, the proposed methodology incorporates a centerline extraction, using 

a minimum cost path approach.  Thus, a successful and accurate centerline detection is 

guaranteed and the subsequent step of lumen segmentation is improved. In addition to this, it 

indicates a user friendly applicability, since the main user interaction is the detection of the start 

and the end point of each branch. 

2. Materials and Methods 

The proposed methodology includes 7 stages.  In the first stage, the acquired CTA images are 

pre-processed to detect vessel silhouette.  In the second stage, a centerline extraction approach 

of the vessel is applied.  In the third stage, a weight function for the lumen, the outer wall and 

the CP plaques is estimated.  In the fourth stage, an extension of active contour models for 

lumen segmentation is implemented.  In the fifth and sixth stage, similarly to the previous stage, 

a level set methodology for outer wall segmentation and plaque segmentation, respectively, is 

applied.  Finally, in the last stage the 3D surfaces for the lumen, the outer wall  
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Figure 1. The proposed methodology steps starting with the preprocessing implementation 

and resulting in a lumen, outer wall and plaques 3D model. 

and the CP plaques are constructed.  In Fig. 1, the stages of the proposed methodology are 

shown. 

2.1 Preprocessing 

The image preprocessing step is applied in the axial DICOM acquired images to remove 

irrelevant details of the CTA images.  A vessel enhancement filter, the Frangi Vesselness filter 

[19] is implemented to identify tubular structures and limit the region of interest (ROI) to vessel 

candidate regions.  In Fig. 2, an example of the implementation of the Vesselness filter is 

shown. 

2.2 Centerline Extraction 

The centerline is mainly required for creating an initial vessel mask for the vessel segmentation 

algorithm.  However, the centerline extraction stage still remains a challenging task, since the 

size of the vessels is small and several reconstruction artifacts are observed.  In  

 

Figure 2. An example of the implementation of the Vesselness filter in a CTA image. 
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the proposed methodology, a minimum cost path approach is implemented for the centerline 

extraction, based on Metzt et al. [20] approach. 

The proposed centerline extraction methodology is quite simple and, therefore easy to 

implement, since the main requirement is the starting point and the ending point of the vessel 

to extract the corresponding centerline.  The cost function, which is considered for the minimum 

cost path approach is a combination of the lumen and vessel weight. 

Firstly, we extract the image weight based on the vesselness measure ( vesselw ) [19].  

Subsequently, we compute the value of the top 50% of the image intensities, which are larger 

than 100 Hounsfield Units (HU), considering only the parts of the image, where the vesselw  

measure is larger than 0.  This computed value ml  is very significant, since it is used for the 

extraction of the lumen weight.  More specifically, the lumen weight is extracted by using a 

generalized bell-shaped membership function and it is defined as: 

 
2
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



,  (1) 

where 0.02a  , b  is the minimum value between thresml l  and 500, and c  is the value of 

thresml cp .  Heuristically, and making several experiments, the threshold of the lumen ( thresl ) 

and the calcified plaques ( threscp ) was defined 80 HU and 400 HU, respectively. More details 

can be found in the Appendix.  

The considered cost function V  for the minimum path approach is a combination of the vessel 

and the lumen weight and is defined by: 

 vessel lumenV w w  .  (2) 

In order to calculate the shortest distance from a list of points to all other pixels in an image 

volume, a Multistencil Fast Marching Method (MSFM) is implemented based on the approach 

described in [21].  An example of the above procedure is depicted in Fig. 3. 
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Figure 3. Example of a successfully extracted coronary artery centerline using the 

vesselness/intensity cost function. 

 

2.3 Estimation of Weight Function for lumen, outer wall and calcified plaque 

Similar to the previous step, in this stage three different membership functions for the lumen, 

the outer wall and the CP plaques are computed, aiming to compensate different protocols for 

discriminating the lumen, the outer wall and the calcified plaque.  These membership functions 

are all adapted to the mean vessel intensity across the centerline, assuming that this corresponds 

to the mean lumen intensity.  More specifically, the mean lumen intensity lumenI  is calculated, 

taking into consideration only the pixels of the image, whose intensities are higher than 100 

HU and their Euclidean distance from the extracted centerline is less than 5. 

For the lumen a generalized bell-shaped membership function is used, whereas for the outer 

wall and the calcified plaque two different sigmoidal membership functions are implemented, 

as it is shown in Fig. 4.  The generalized bell-shaped membership function is defined as: 
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whereas the sigmoidal membership function is defined as: 

  
( )

1
; ,

1

sigm

a x b
g x a b

e 



, (4) 

where x  is the image and , ,a b c  are the defined parameters. 

For the lumen, the membership function is given by: 

    1 ; , ,bell

lumen lumen lumen lumenf g x a b c     , (5) 

where 0.02lumena  ,   min max    150    500 0.01lumen lumen thresb I l      
 and 

lumen lumen thresc I cp  . 

The membership function for the outer wall and the plaques is in both cases a sigmoidal 

function and is given by: 

    / / /1 ; ,sigm

outer plaque outer plaque outer plaquef g x a b     , (6) 

where 0.02outera  , 0.05plaquea  ,   min 200,  max    100outer lumen thres thresb I l ncp      and 

plaques lumen thresb I cp  . The threshold value for the lumen ( thresl ) and the calcified plaques (

threscp ) as previously stated are 80 HU and 400 HU, respectively. The intensity threshold for  

non calcified plaques ( thresncp ) is defined by the value of 50 HU. Similarly to the thresl and the 

threscp , the value of the thresncp  is defined heuristically and based on the current literature [22, 

23]. More details can be found in the Appendix.   The parameter   is a weight of the 

membership functions and in all cases it is defined by the value of 0.05.  In Table 1, we 

summarize the different values of the parameters of the membership functions for each 

component.  It is obvious that these parameters values are approximated and there is a need to 

adapt them into the acquired CTA image intensity. 
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Figure 4. Membership functions distributions over HU units for a) outer wall, b) lumen, c) 

calcified plaques based on HU units. 

 

Table 1. A summary of the parameters of the membership functions for the lumen, the outer 

wall and the CP plaques.  

Parameters a   b  c   

Lumen 0.02lumena     min max    150    500 0.01lumen lumen thresb I l      
 lumen lumen thresc I cp   

Outer wall 0.02outera     min 200,  max    100outer lumen thres thresb I l ncp      - 

CP plaques 0.05plaquea    plaques lumen thresb I cp  - 

 

2.3 Lumen Segmentation 

In this step, an extension of the active contour models [24] is implemented for lumen 

segmentation.  This approach is based on regional measures and does not depend on any edge 

definition.  In other words, the boundaries of the detected objects are not necessarily defined 

by the gradient.  The main improvement of our lumen level set segmentation approach is that 

it incorporates a prior shape [25], aiming to segment an object whose shape is similar to the 

given prior shape which is independent of translation, scaling and rotation, from a background 
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where there are several objects. For lumen segmentation, the prior shape is a tubular mask 

across centerline with a small radius. 

2.3.1 Update of lumen intensities 

Our purpose is to implement the membership function in the part of the CTA image, which is 

near to the extracted centerline.  Thus, first, in order to update the membership function for the 

lumen, we calculate the Euclidean distance transform only of the pixels around the extracted 

centerline.  This estimated distance 
1d  limits the region of interest, since based on its value, we 

considered only the pixels whose distance transform is lower than 4 / xp , where 
xp  is the pixel 

spacing of the DICOM image and 4 is an approximate value for the radius of the lumen.  In 

other words, we assume that: 10 : 4 /lumen xf pixels d p    and in a same manner 

/ 10 : 4 /outer plaques xf pixels d p   .  For the lumen pixels, the updated membership function 

is given by: 

 1 1 2, 2,( ; , )sigm

lumen lumen lumenf f g d a b  ,  (7) 

where 2, 0.5lumena    and 2, 2 /lumen xb p , whereas for the outer wall and cp plaques pixels , the 

updated membership functions are given by: 

 2, /2, / 1 2, / 2, ,( ; , )sigm

outer plaques outer plaque outer plaques outer plaquesf f g d a b  , (8) 

where 2, / 0.5outer plaquesa    and 2, / 2.5 /outer plaques xb p . 

2.3.2 Approximation of an initial binary image 

For the implementation of the Level set method approach, an approximation of an initial image-

shape   is required.  This image is a binary image, which includes 0’s as background pixels 

and 1’s as foreground pixels.  The intensity threshold value for the estimation of the initial 

image is / 2iw .  Thus, the pixel value of initial image is 1, when 1 if w  is larger than / 2iw , 

whereas it is 0, when 1 if w  is smaller than / 2iw . The parameter iw  is an estimated weight to 

multiply the probability in the level set method and it is defined 1000. 

2.3.3 Calculation of the speed function 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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The Level set methods have been widely used in the field of machine vision for segmentation 

problems, since they are used for the modelling of evolving curves or surfaces.  The basic idea 

behind the level set approaches is the presentation of the interface of a surface, using a higher 

dimensional function, which is called the level set function.  This means that the two 

dimensional (2D) curve could be described by the 3D level set function, where the additional 

dimension t  represents the time.  In the proposed methodology, the detected curve C  is 

represented by the zero level set of a Lipschitz function :   , such that: 

 

    

      

      

, , : , , 0 ,

, , : , , 0 ,

, , : , , 0 ,

C x y t x y t

inside C x y t x y t

inside C x y t x y t

 

 

 

    

   

   

 (9) 

where ,x y  are the spatial coordinates of the 2D image, t  is the dimension of time and    . 

In this stage, a level set based variational method using prior shapes is implemented for the 

lumen segmentation and our aim is to incorporate shape priors into the Chan-Vese’s model for 

segmentation.  This approach is based on Cremers et al. [26] and Chan et al. [25] studies, in 

which besides the basic level set segmentation function  , a shape function   and a labelling 

function L  are introduced.  The key idea of this methodology is that the defined prior shape is 

compared with the region where both the level set function   and the labelling function L  are 

positive.   

In the presented methodology, the speed function that is impemented to evolve the level set 

curve is based on Chan et al. approach [25].  The defined speed function is a Chan-Vese energy 

function, combined with prior shapes and with a labelling function and is given by: 

 1 2( , , , , ) cv shapeE L c c E E E     ,  (10) 

where cvE  is the Chan-Vese energy funtion, shapeE  is a shape comparison term and E  is a 

labelling term. 

The Chan-Vese energy funtion [24] is widely used in medical image segmentation approaches 

and it is defined as: 
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      
2 2

1 2 1 2
( ) ( )

( , , ) , ,CV
inside C outside C

E c c C u x y c dxdy u x y c dxdy     . (11) 

Disretizing the above speed function equation and writing it as a pixelwise function, it gives 

      
2 2

1 2( , ) , ,CVE x y u x y c u x y c    ,  (12) 

where u  is the image, ,x y  are the spatial coordinates of the 2D image, C  is the segmentation 

curve and 
1 2,c c  are the average greyscale intensity values inside and outside of C , 

respectively. 

The shape comparison term is defined as: 

       
2

( , , )shapeE L H H L H dxdy   


  , (13) 

where H  is the Heavyside function and  ( )H H L  represents the intersection of 0   and 

0L  .  The labelling function E  is a term that indicates if the lumen is segmented 

successfully, since then this term will be small and it is given by: 

            2 2

1 2 1 2, , 1E c c u c H u c H dxdy   


     . (14) 

2.3.4 Sparse Field Algorithm implementation 

As previously mentioned, the key idea of Level Set approaches is that only the area, where 

 , 0x y   is important to accurately represent the curve.  In this approach, a sparse field 

algorithm approach, proposed by Whitaker et al. [27] is implemented to maintain an accurate 

and minimal representation of  .  Once the initial   is defined, the algorithm returns fully 

initialized arrays for the label map and for an updated  .  Both arrays are of the same size and 

the label map records the status of each point.  Once the energy function has been computed 

for the part of the image which is around the centerline, the level sets may be deformed in order 

to minimize some of the energy function.  Thus, a sparse field approach is implemented twice 

to update   near the zero level set.  First, based on the initial   and on a positive factor a , 

which controls the speed and curvature of the level set, the algorithm results in a new lumen .  

Subsequently, based on the resulted lumen , the algorithm is implemented again, using a higher 
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value of factor a, to achieve a smoother lumen shape.  In the first step, a lower value of factor 

a was applied, in order to provide fast segmentation in the whole image. In the second 

implementation of sparse field algorithm, a higher value of factor a is selected and applied only 

at the region of interest in order to provide smooth and accurate segmented objects which depict 

only the coronary arteries.In the first step, the factor a is defined 0.1, whereas in the second step 

factor a is defined 0.6.  The value of a factor affects only the speed of the segmentation and it 

does not affect the quality of the segmentation.  The number of  iterations for the sparse field 

algorithm impementation is set to 200. 

2.4 Outer Wall Segmentation 

Similarly to the previous step, a Level Set model is implemented for the outer wall 

segmentation. However, in this stage the initial   is based on the lumen shape, as segmented 

in the previous stage and on the updated values of outer wall intensities.  More specifically, the 

required   of this stage is also a binary image, which includes 1’s for the pixels, where either 

the 2, 2,i outer i plaquew f w f    is higher than / 2iw  or the segmented lumen ( lumen ) has a positive 

value.  Furthermore, the energy function for this stage, is calculated only for the pixels, where 

lumen  is larger than -0.1.  The sparse field algorithm implementation process for the outer wall 

is exactly the same as in the previous stage described. 

2.5 Plaque Segmentation 

In this stage, the Level Set method is applied in the region of interest (ROI) of the outer wall.  

The initial   for the plaque segmentation is based only on the updated plaques intensity 

function.  In other words, the initial   is also a binary image, which includes 1’s for the pixels, 

where 2,i plaquew f  is larger than / 2iw .  For this phase, only a sparse field algorithm 

implementation is required, as the segmented objects are relatively smaller and the a  factor is 

0.5.  An example of the segmentation procedures is demonstrated in Figure 5.  
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Figure 5. An example of the segmentation procedure: a) the acquired image, b) inner wall, 

outer wall and calcified plaques segmentation. 

 

2.6. 3D Surface construction 

In this stage, an isosurface of data from each different extracted   array is computed to 

construct the mesh surfaces.  In this step the algorithm marching cubes, proposed by Lorensen 

and Cline [28], is implemented to construct 3D surfaces for the lumen, outer wall and CP 

plaques.  Marching cubes extracts a polygonal mesh of an isosurface from a 3D discrete scalar 

field, by proceeding through it. A triangulation approach is implemented, and connecting the 

detected border points of each CTA image, 3D models are constructed. 

3. Dataset 

The data were acquired from 12 patients, who underwent CTA imaging for clinical purposes 

and they were used to validate the proposed methodology.  Our validation dataset consists of 

12 coronary arteries, deriving from six different medical centers. Two arteries were completely 

healthy (no stenosis present), nine arteries had an intermediate stenosis (seven had a 30%-50% 

stenosis degree and two had a 50%-70% stenosis degree) and one artery was fully occluded 

(>90% stenosis degree). Five arteries were scanned with a 64-slice Dual Source Siemens 

SOMATOM Definition Flash® CT scanner, two arteries were scanned with a Philips Brilliance 

64 CT Scanner® and the remaining five arteries were scanned with a 64-slice General Electric 

Medical Systems Discovery PET/CT 690® scanner.  
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IVUS and biplane X-ray angiography were acquired from eight patients who underwent 

coronary catheterization. CTA imaging was also acquired for the same patients. Registration 

between the imaging modalities was performed using major landmarks common for all 

modalities, such as the bifurcations or large calcified plaques.  

4. Artery and CP reconstruction  

4.1 Artery and CP reconstruction using manual annotations 

Reconstruction of arteries was successfully obtained in 12 patients (2 RCA, 8 LAD, 2 LCX) by 

the proposed methodology in a semi-automatic manner, whereas an expert radiologist manually 

annotated in the corresponding segments the lumen, the outer wall and two types of plaque (CP 

plaques and NCP plaques). 

The aim of the validation process is to assess the accuracy and the quality of the proposed 

methodology.  In this study, our purpose is to validate our methodology, using as gold standard 

a medical expert’s annotations.  It is known that the lack of expert-annotated datasets remains 

one of the main challenges in medical image processing [29].  Generating high-quality expert-

derived annotations in CTA images is time-consuming and requires a specialized in CTA 

imaging field medical expert.   

4.2 Artery and CP reconstruction using IVUS 

Reconstructions of arteries based on IVUS modality is performed using the study proposed by 

Bourantas et al. [30]. This approach combines the IVUS and X-ray angiography and based on 

the 3D luminal centerline, derived from two angiographic projections, it places the lumen and 

the media-adventitial borders detected by IVUS frames onto the centerline. 

5. Metrics for evaluating 3D image segmentation 

The lumen, the outer wall and plaques reconstructed by the two different modalities were 

compared using as metrics for the 3D image segmentation the Dice Coefficient (DICE) and the 

Hausdorff Distance (HD) [31].  Additional metrics were used for the validation of the proposed 

methodology against the IVUS based reconstructed segments.  For this purpose we used for 

comparison two types of Degree of Stenosis (DS1, DS2), the Plaque Burden (PB), the Minimal 
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Lumen Area (MLA) and the Minimal Lumen Diameter (MLD). More information for all 

metrics can be found in Appendix.  

6. Results 

For both quantitative evaluation and comparison purposes, we present in Table 2 the Hausdorff 

distance and the Dice Coefficient distributions obtained by the comparison of the proposed 

segmentation methodology and the expert’s manual segmentation.  The HD demonstrates the 

degree of resemblance between the two models which are superimposed on one another.  Thus, 

the lower HD implies better segmentation, while a higher DICE implies higher accuracy of the 

segmentation. 

 

Table 2: Segmentation Validation metrics for CTA images 

Cases Arteries DICE coefficient Hausdorff Distance 

#1 LAD 0.847 0.837 

#2 LAD 0.675 1.910 

#3 LAD 0.777 0.860 

#4 LAD 0.674 2.423 

#5 LAD 0.759 1.589 

#6 LAD 0.810 1.510 

#7 LAD 0.574 2.671 

#8 LAD 0.751 1.800 

#9 LCX 0.847 1.296 

#10 LCX 0.722 1.830 

#11 RCA 0.781 2.341 

#12 RCA 0.778 1.880 

 

The validation process indicates a good agreement, since the mean value of DICE is 0.749, 

while the mean value of HD is 1.746.  In Fig. 6, an example of the lumen and CP 3D models  
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Figure 6. Lumen and CP oblects detected by a) the proposed methodology, and b) the medical 

expert annotation. 

 

reconstructed by the proposed methodology and by the expert’s annotation, is shown.  The two 

reconstructed arteries indicate a similar geometry and plaque distribution.  The semi-automated 

reconstructed artery is smoother than the manually segmented, since a pixel by pixel 

segmentation may not result in a smooth shape. 

As far as the comparison with IVUS process is concerned, we show in Table 3 the values of the 

comparison metrics.  The metrics of the 3D models derived by our methodology are correlated 

with those derived by the IVUS findings, and the correlation plot for each metric is 

demonstrated in Fig. 7. It is clear, that the correlation between the two methodologies is 

statistically significant for all reconstructed cases.  
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Figure 7. Correlation plots for the Degree of Stenosis 1, Degree of Stenosis 2, Plaque Burden, 

Minimal lumen area, Minimal lumen diameter. 

 

Table 3:Comparison metrics for CTA images. 

Cases Method DS1 DS2 Plaque Burden (/0.5mm) MLA (mm2) MLD (mm) 

#1 

CT 0.29 0.53 0.53±0.09 3.73 1.10 

IVUS 0.43 0.47 0.54±0.17 3.72 1.11 

#2 

CT 0.17 0.33 0.45±0.09 7.2 1.49 

IVUS 0.27 0.37 0.5±0.07 8.37 1.64 

#3 

CT 0.64 0.55 0.45±0.11 0.95 0.75 

IVUS 0.54 0.46 0.38±0.2 3.81 1.15 

#4 

CT 0.27 0.33 0.5±0.07 5.46 1.32 

IVUS 0.17 0.33 0.42±0.2 7.45 1.62 

#5 CT 0.54 0.56 0.55±0.09 0.83 0.78 
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Cases Method DS1 DS2 Plaque Burden (/0.5mm) MLA (mm2) MLD (mm) 

IVUS 0.5 0.62 0.51±0.08 3.18 1.03 

#6 

CT 0.34 0.48 0.46±0.09 5.14 1.28 

IVUS 0.24 0.33 0.54±0.09 4.28 1.19 

#7 

CT 0.54 0.72 0.48±0.08 3.05 0.87 

IVUS 0.5 0.62 0.52±0.09 4.79 1.24 

#8 

CT 0.43 0.42 0.36±0.09 1.47 0.79 

IVUS 0.3 0.51 0.26±0.22 2.51 0.9 

 

7. Implementation 

The CT segmentation methodology was initially implemented in Matlab R2016a.  This allows 

to re-run all segmentation results and create new models with method improvement.  A 

framework for batch processing all vessels has been developed using a set of inputs (vessel seed 

points).  An experienced user needs less than 30 seconds for the manual component selection, 

whereas the time complexity of the proposed methodology is about 30 seconds for an arterial 

segment of 40 mm length using a desktop computer with an Intel core i7 processor and 16 GB 

of RAM. 

8. Discussion 

In this work, a semi-automated approach for the reconstruction of the lumen, outer wall and CP 

plaques in coronary arteries, using CTA images, was presented.  The main innovation of this 

study is its semi-automatic nature, since it only requires the starting and the ending point of the 

coronary artery to accurately reconstruct the artery.  The presented approach is mainly based 

on a level set segmentation model [25] for the segmentation of the lumen, outer wall and CP 

plaques, contrary to Athanasiou et al. study in which the lumen, outer wall and calcified plaque 

models are reconstructed, based on a classification of the Region of Interest scheme. To our 

knowledge, our study is the only approach in the literature that allows a 3D reconstruction of 
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coronary anatomy and plaque characterization, which is compared both by a medical expert’s 

annotations and IVUS findings.  The results of the proposed methodology demonstrated that 

our approach is able to accurately segment the lumen, outer wall and provide a reliable detection 

of CP plaques and geometrically correct 3D models. 

In the literature, several methodologies [6, 15, 32-34] have been presented for the segmentation 

of CTA cross sectional images and the classification of its plaque components.  These 

approaches are time consuming, since corrections of the detected borders are sometimes 

required and the reconstruction of the coronary anatomy is not implemented in an automatic or 

semi-automatic manner.  This limitation is overcome by the new proposed semi-automatic 

methodology, which provides in a fast manner the segmentation of CTA images and the 

detection of CP plaques. 

Furthermore, existing studies [15, 16, 18], which are evaluated using only Intravascular 

Ultrasound (IVUS) modality, whereas the presented study is validated using both medical 

expert annotation and IVUS 3D models.  Although, the manual annotation requires a lot of 

effort and time, since the expert annotates in each slice the lumen, the outer wall and the 

plaques, expert manual segmentation of real images is regarded as a practical gold standard 

against which new segmentation algorithms can be compared [29]. On the other hand, a 

comparison with IVUS 3D reconstructed models allow us to validate the geometry of the 

reconstructed arteries and extract validation metrics, such as the coronary lumen stenosis, the 

plaque burden, the minimal lumen area and the minimal lumen diameter. 

Additionally, in contrast to Athanasiou et al. existing study [18], which focused on comparison 

metrics, such as the comparison of the volume and areas of the ROI, the length and angle of the 

vessel, our validation process is dedicated to quantify the region of agreement, the overlap 

region between our proposed methodology and the manual segmentation, as well as validation 

metrics which demonstrate the 3D model accuracy. It is known that an objective validation of 

image segmentation is of great importance, but it is such a difficult task.  Based on the literature 

[29, 31], the selected in this approach comparison metrics are two of the most common 

measures and their values indicate how accurately the segmentation algorithm performs.  More 
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specifically, the mean value of DICE is 0.749, while its standard deviation is 0.0787 and the 

mean value of HD is 1.746, while its standard deviation is 0.573.  The correlation coefficients 

for the DS1, the DS2, the plaque burden, the MLA and MLD, when comparing the derived 

from the proposed methodology 3D models with the IVUS reconstructed models, were 0.79, 

0.77, 0.75, 0.85, 0.81, respectively 

In the proposed methodology, the validation dataset consists of data acquired from three 

different scanners.  That means that our 3D reconstruction approach is applicable in different 

clinical environments, since each Computed Tomography (CT) scanner is characterized by its 

different properties and settings. 

The presented Level Set-based segmentation methodology allows an accurate segmentation and 

its applicability is not limited by the low CTA images quality [24].  The unique preprocessing 

step of the acquired CTA images is to detect the vessel candidate regions.  In addition to this, 

the extraction of the centerline using a minimum cost path based approach in combination with 

appropriate cost functions selection, ensures that the extracted centerline may be the globally 

optimal solution.  Therefore, once the vessel centerline is successfully extracted, an appropriate 

initial vessel mask for the lumen segmentation is created.  Furthermore, minimum cost path 

approaches are able to overcome problems related to overlapping pathologies depicted in the 

image, as well as, issues of low image quality. 

Although the presented methodology provides an accurate 3D reconstruction of coronary 

arteries and detection of CP plaques, there is a need to improve and further validate the 

algorithm performance.  More specifically, the proposed methodology does not take the 

blooming artifact into consideration.  The main challenge of the clinician is to quantify the 

vessel reduction, when CP plaque is present.  However, the densely calcified plaques create a 

blooming effect on CTA images, which limits the ability to accurately identify the lumen 

contours and sometimes the real degree of stenosis is overestimated, resulting in an unnecessary 

use of invasive coronary angiography.  Thus, the incorporation of blooming artifact removal is 

one of our future steps to enhance our diagnostic confidence in the term of vessel stenosis. 
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Furthermore, it is observed that the discrimination of the lumen, the outer wall and the CP 

plaques requires different parameters definition.  In this study, these parameters have been 

defined heuristically.  One of our most basic future steps is the adaptation of all these parameters 

into the CTA acquired image.  In other words, our future goal is to define an automatic 

parameter tuning procedure for the discrimination of the lumen, outer wall and CP plaques.  

Thus, it would be easier for the user to achieve an accurate vessel segmentation and CP plaques 

detection and since the parameters would be ideally adapted to the initial CTA image intensities, 

a higher accuracy might be observed. 

9. Conclusions 

The presented methodology for 3D reconstruction of coronary arteries and atherosclerotic 

plaques achieves an expetide coronary reconstruction and a detailed coronary anatomy and 

plaque distribution representation on real CTA images.  The main innovation of the proposed 

methodology is its semi-automated nature, since it requires the minimal user interaction to 

reconstruct accurately the coronary arteries.  The validation procedure indicates that the 

presented methodology accurately constructs the 3D models of lumen, outer wall and CP 

plaques.  The incorporation of future refinements tasks, such as the blooming effect removal 

and the adaptation of algorithm’s parameters into the different CTA images, may provide useful 

real time analysis of coronary arteries and a wide clinical applicability. 
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Appendix 

1. Metrics for the validation 

DICE, also called overlap index, is an overlap based metric.  DICE is widely used to compare 

directly automatic and expert’s annotations segmentations.  It is considered as a statistical 

validation metric to evaluate the performance of both the reproducibility of manual 

segmentations and the spatial overlap accuracy of automated segmentation [35].  DICE is 

defined as: 

 

1 1

1 1

2 g t

g t

S S
DICE

S S





,  

where 
1

tS  presents the automatic segmentation and 
1

gS  presents the expert’s annotations. 

HD is a spatial distance based metric and is commonly used in the evaluation of image 

segmentation as dissimilarity measure.  HD between two finite point sets A and B is defined 

as: 

 ( , ) max( ( , ), ( , ))HD A B h A B h B A ,   

where  , max min
b Ba A

h A B a b


  . 

The 3D models reconstructed by CTA and IVUS were compared using as validation metrics 

two types of Degree of Stenosis (DS1, DS2), the Plaque Burden (PB), the Minimal Lumen Area 

(MLA) and the Minimal Lumen Diameter (MLD).  Each 3D model was sliced every 0.5 mm, 

to estimate the validation metrics. Based on the literature, two different ways of Degree of 

Stenosis estimation were used [36]. More specifically, Degree of Stenosis1 (DS1) and Degree 

of Stenosis 2 (DS2) is given by: 
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where A  is the luminal diameter at the site of maximal narrowing, B  is the diameter of the 

normal distal coronary artery beyond the bulb where the artery walls are intersected and C  is 

the diameter of estimated original width of the coronary artery at the site of maximal narrowing.  

The Plaque Burden (PB) is extracted based both on the inner and the outer wall contours areas 

per 0.5 mm and is given by: 

 
_ _ _ _

_ _

outer wall area inner wall area
PB

outer wall area


 .   

2. Threshold selection 

The selection of the intensity thresholds of the lumen and the calcified plaques were based on 

the current literature. More specifically, due to the variety of CT scanners, the average range of 

lumen intensity is 200 HU–500 HU1, whereas the intensity of calcified plaques is higher than 

500 HU1. In this methodology, we have to identify the optimal threshold values for the 

discrimination of the lumen, the outer wall and the calcified plaques. These threshold values 

are extracted based on the calculation of the mean lumen intensity (Ilumen), in combination with 

the known ranges of the lumen and calcified plaques intensities. Thus, as far as the lumen 

threshold is concerned and considering that the intensity of the lumen is affected by the 

acquisition dose protocol, we selected a relative small lthres (lthres =80HU). As it is demonstrated 

in Table 1 (page 10), in order to find the lower limit of the lumen intensity value, the lthres  is 

subtracted from the mean lumen intensity and the value of 80 HU is a good approximation in 

order to agree with the lumen range proposed from the literature (around 500HU). As it is 

demonstrated in the Figure 4, the HU values which are possible to match with the lumen are 

about 500 HU.  Furthermore, several experiments have been implemented using lthres  values 

close to 80HU in order to examine the algorithm effectiveness for the whole range of the 

membership function demonstrated in Figure 4 (page 10). A similar approach has been 

implemented for the calcified plaques. More specifically, according to current literature 

HU>500 may identify calcified plaques. For this purpose our approach was implemented after 

the detection of the lumen border and especially at the region out of the lumen border. In a 

similar approach the cpthres should be 400HU for optimal accuracy in calcified plaque detection.  
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As far as the attenuation HU value for non calcified plaques is concerned,  it depends also on 

the contrast protocol. However, based on the literature a potential range for non-calcified 

plaques is from 0 to100 HU[3-9].  Thus, the threshold value of non-calcified plaques is defined 

to be 50 HU, in order to include HU values around 50 HU, depending on the density of the 

lumen. This selected threshold value is considered as an indicative value for the non-calcified 

plaques, which is adapted to the lumen density. 
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