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0.0 Abstract: 

Background: Insulin therapy for glycaemic control (GC) in critically ill patients may improve outcomes 

by reducing hyperglycaemia and glycaemic variability, which are both associated with increased 

morbidity and mortality. However, initial positive results have proven difficult to repeat or achieve safely. 

STAR (Stochastic TARgeted) is a model-based glycaemic control protocol using a risk-based dosing 

approach. STAR uses a 2D stochastic model to predict distributions of likely future changes in model-

based insulin sensitivity (SI) based on its current value, and determines the optimal intervention. 

Objectives: This study investigates the impact of a new 3D stochastic model on the ability to predict 

more accurate future SI distributions, which would allow more aggressive insulin dosing and improved 

glycaemic control. 

Methods: The new 3D stochastic model is built using both current SI and its prior variation to predict 

future SI distribution from 68629 hours of clinical data (819 GC episodes). The 5th-95th percentile range 

of predicted SI distribution are calculated and compared with the 2D model. 

Results: Results show the 2D model is over-conservative compared to the 3D case for more than 77% 

of the data, predominantly where SI is stable (|%ΔSI| ≤ 25%). These formerly conservative prediction 

ranges are now ~30% narrower with the 3D model, which safely enables more aggressive insulin dosing 

for these patient hours. In addition, distributions of predicted SI within the 5th – 95th percentile range are 

much closer to the ideal value of 90% for more patients with the 3D model. 

Conclusions: The new 3D model better characterises patient specific metabolic variability and patient 

specific response to insulin, allowing more optimal insulin dosing to increase performance and safety.  

  

Keywords: Critical Care, Insulin Sensitivity, Glycaemic Control, Blood Glucose, Hyperglycaemia, 

Insulin.  



1.0 Introduction: 

Critically ill patients in intensive care units (ICUs) often experience abnormally elevated blood glucose 

(BG) concentrations (hyperglycaemia), as a stress response to illness and injury [1-3]. Hyperglycaemia, 

glycaemic variability, and hypoglycaemia are all independently associated with increased morbidity and 

mortality [3-10]. Glycaemic control (GC) using insulin therapy has shown beneficial outcomes, reducing 

organ failure and costs [11-18]. However, other studies failed to reproduce these results [19-24], and 

all but two studies [25] had increased risk of hypoglycaemia with tight control. GC has been hard to 

achieve both safely and effectively (e.g. [26]). Fixed or ad hoc protocols are still typically used in 

hospitals, but fail to capture and fully account for patient variability impacting performance and safety 

[27]. This issue has led to the emergence of more complex, model-based GC protocols [28-30]. 

 

STAR (Stochastic Targeted) is a clinically-validated model-based GC framework, capable of adapting 

treatment to patient-specific insulin requirements while managing the risk of hypo glycaemia [25, 31-

33]. STAR uses a patient-specific time-varying model-based insulin sensitivity (SI) to estimate patient 

metabolic condition. Likely future changes in SI are assessed using population-based stochastic models 

[34]. The 5th-95th percentile interval of BG outcomes is calculated from the 5th-95th percentile interval in 

SI outcomes, allowing forward prediction of likely BG outcomes for any given insulin-nutrition 

intervention. STAR thus selects an insulin-nutrition treatment to best overlap the clinically specified 

target BG range, while also managing and mitigating hypoglycaemic risk [32, 35], a unique risk-based 

dosing approach. 

 

The stochastic model currently used by STAR forecasts future SI (SIn+1) distributions based on the 

identified current SI value (SIn). A Markov process is used, where outcome SIn+1 only depends on input 

SIn [34]. This study expands this existing 2D stochastic approach by adding the most recent change in 

SIn as an input parameter for forward prediction of outcome SIn+1. The new 3D model will now predict 

future SIn+1 based on current SIn and the percentage change in SI from SIn-1 to SIn.  The old 2D model 

and the new 3D model are compared to assess the new model’s ability to tighten SI prediction ranges 

for tighter forward prediction of future BG. Better forward prediction of SI allows better characterisation 

of future metabolic variability, thus improving patient-specific glycaemic control without compromising 



safety. Narrower future SI prediction ranges enable more targeted insulin dosing for these patients who 

are more stable. This study also assesses whether more stable patients have less future metabolic 

variability.  



2.0 Material and Methods: 

2.1 Glucose-insulin model and insulin sensitivity 

The ICING (Intensive Control Insulin-Nutrition-Glucose) physiological model describing glucose-insulin 

dynamics is defined [25, 36, 37]:  

𝐺̇ =  −𝑝𝐺 . 𝐺(𝑡) − 𝑆𝐼. 𝐺(𝑡)
𝑄(𝑡)

1 +  𝛼𝐺 . 𝑄(𝑡)
+

𝑃(𝑡) + 𝐸𝐺𝑃 − 𝐶𝑁𝑆

𝑉𝐺

 (1) 

𝐼̇ =  𝑛𝐾 . 𝐼(𝑡) − 𝑛𝐿

𝐼(𝑡)

1 + 𝛼𝐼 . 𝐼(𝑡)
− 𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡)) +

𝑢𝑒𝑥(𝑡)

𝑉𝐼

+ (1 − 𝑥𝐿)
𝑢𝑒𝑛(𝐺)

𝑉𝐼

 (2) 

𝑄̇ =  𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡)) − 𝑛𝐶

𝑄(𝑡)

1 + 𝛼𝐺𝑄(𝑡)
 (3) 

 

Where G(t) is the blood glucose level (mmol/L), I(t) is the plasma insulin concentration (mU/L), Q(t) is 

the interstitial insulin concentration (mU/L), P(t) is the glucose appearance in plasma from enteral and 

parenteral dextrose intake (mmol/min), and SI is insulin sensitivity (L/mU/min). Other parameters, rates 

and constants are given in [25, 36, 37] and can be found in the Additional File 1. 

 

Model-based insulin sensitivity (SI) is patient-specific and time varying, characterising patient-specific 

glycaemic system response to glucose and insulin administration. SI is identified hourly from clinical 

BG, and insulin and nutrition input data, using an integral-based fitting method [38, 39]. This approach 

is robustly identifiable [40]. 

 

STAR currently uses a cohort-based 2D stochastic model to forecast future SI. As shown in Figure 1, 

for any current SI (SIn), the probability of SI (SIn+1) at 1-3 hours in future is determined based on a 

clinical data model using kernel density methods [34]. Future SI distributions used in conjunction with 

Equations 1 – 3 can be used to derive likely future BG distributions for a specific insulin and nutrition 

intervention. The 5th percentile BG prediction is used to ensure safety, limiting the maximum risk of BG 

< 4.4 mmol/L to 5% and enabling risk-based, rather than target-value-based, dosing [32]. 



 

Figure 1 - Future insulin sensitivity (SIn+1) is forecasted from current insulin sensitivity (SIn). The distribution of future SI is used 

to predict likely BG outcomes for a given insulin-nutrition treatment intervention. 

 

2.2 Patients and cohorts 

This study uses data from 3 clinical ICU data cohorts totalling 819 GC episodes (606 patients) and 

68629 hours of treatment [13, 25]: 

1. Patients treated using STAR in Christchurch Hospital ICU, New Zealand, from June 2011 to 

May 2015. 

2. Patients treated using SPRINT in Christchurch Hospital ICU, New Zealand, from July 2005 to 

May 2007 

3. Patients treated using STAR in Kalman Pandy Hospital ICU, Hungary, from December 2011 to 

May 2015. 

Demographics are summarised in Table 1. 

Table 1 – Summary of patient demographics for the three cohorts. Results are given as median [IQR] where relevant. 

 
SPRINT 

Christchurch 
STAR 

Christchurch 
STAR Gyula 

# episodes 442 330 47 

# patients 292 267 47 

# hours 39838 22523 6268 

% male 62.7 65.5 61.7 

Age (years) 63 [48, 73] 65 [55, 72] 66 [58, 71] 

APACHE II 19.0 [15.0:24.5] 21.0 [16.0:25.0] 32.0 [28.0:36.0] 

LOS - ICU 
(days) 

6.2 [2.7,13.0] 5.7 [2.5,13.4] 14.0 [8.0,20.5] 



2.3 Analysis 

SI level is fit on an hour-to-hour basis for each patient [38], and the forward SI variability (%ΔSI) is 

defined as the hour-to-hour percentage change in SI: 

%∆𝑆𝐼𝑛 = 100 ×  
𝑆𝐼𝑛 −  𝑆𝐼𝑛−1

𝑆𝐼𝑛−1

 

The existing 2D stochastic model uses the input SIn to determine the outcome distribution of SIn+1. This 

study builds a new 3D model to determine the outcome distribution of SIn+1 based on input of patient-

specific current metabolic state, SIn, and SI variability to current time, %ΔSIn. 

 

A total of 66991 data triplets (%ΔSIn, SIn, SIn+1) are created from the original 68629 hours of treatment, 

where the number of triplets is lower because no triplets are created for the first and last hour of data. 

The data triplets were binned with bin sizes of %ΔSI = 10% and SIn = 0.5e-4. These bins are limited to 

a range of %ΔSI = [-100%, 200%] and the 1st-99th percentile range in identified SI ([1.0e-7, 2.1e-3] 

L/mU/min) values, bringing the total number of triplets considered to 65051, as those few outside these 

ranges are excluded, corresponding to 97.1% of the original 66991 triplets.  

 

The minimum number of data points required for adequate data density in each bin was arbitrarily 

defined to be 100 data triplets to ensure any distributions were not influenced by outliers. To improve 

data density and smooth model extremes, bins not meeting this criterion are summed together along 

the %ΔSI axis at the same SIn level, allowing data triplets to influence neighbouring bins where there is 

insufficient data density. The summation process is described below, and an example is shown in Table 

2. 

 

Starting from the bin centred at 0% and going down, and at the bin centred at 10% and going up: 

1. Check data density. 

a. If the number of data triplets is >=100, move to the next bin. 



b. If the number of triplets < 100 add the triplets from the ‘outer’ adjacent bin(s) until data 

density is reached. If summation of bins still results in a failure to reach the data density, 

stop here. 

2. Repeat step 1 until the model limits are reached. 

 

Table 2 – Example of data density before and after the merging bin process, where the joined lines show the bins that are 

merged to create the final surface.  

Bin along %ΔSI 
# triplets in bin for a 

given SIn. 
→ # triplets in bin after 

summing bins together. 

[-45, 55] % 0 - 

[-35, 45] % 2 - 

[-25, 35] % 10 - 

[15, 25] % 25 37 

[5, 15] % 80 105 

[-5, 5] % 150 150 

[-15, -5] % 102 102 

[-25, -15] % 10 11 

[-35, -25] % 1 - 
 

The 5th, 50th, and 95th percentiles of SIn+1 are computed for each bin. These values define a non-

parametric 5th – 95th percentile distribution range and median likely outcome of future variation of SI 

values based on a specific current SIn level and the previous change %ΔSIn. They are interpolated 

linearly between bins to give a percentile surface.  

 

To compare this new 3D model to the previous 2D model, the percentage change in the 5th, 50th, and 

95th percentiles are analysed, as well as the percentage change in the 5th – 95th percentile prediction 

range width used in STAR GC to select insulin dose in Figure 1. This width effectively determines the 

outcome BG range for a given intervention. Hence, a narrower width allows better prediction 

performance.  

 

This analysis will identify regions of the model that are either conservative or have higher risk of hyper- 

and hypo- glycaemia. A narrowing of the 5th – 95th percentile range in the 3D model compared to the 

2D model would allow the STAR controller to dose insulin more aggressively as outcome likelihoods 



are tighter. In contrast, wider 5th – 95th percentile range than in the 2D stochastic model indicates 

increased risks, when using the 2D model, and insulin is more conservatively dosed based on this new 

information. 

 

2.4 Validation 

A preliminary validation of the model is carried out by assessing its ability to predict SI in clinical data 

episodes longer than 24 hours. The two models are compared by evaluating the per-patient percentage 

of SI outcomes falling into the model-predicted 5th – 95th the 25th – 75th percentile ranges for each model. 

Ideally, all episodes have exactly 90% and 50% within these ranges indicating a cohort derived model 

that is also perfect for each patient episode. Overall, this metric gives a measure of the model’s ability 

to capture clinically observed patient-specific changes in insulin sensitivity [41], as well as quantifying 

the cohort-derived model’s level of patient-specificity. The overall goal of this comparison is a more 

patient-specific stochastic model. 

 

To validate model consistency in a cohort different from which it was developed, cross simulations were 

used. A 3D model was built from SI traces from a randomly selected group of episodes comprising of 

70% of all episodes, and tested on the remaining 30%. Per-patient percent time in the 25th – 50th and 

5th – 95th percentile ranges are computed, as well as the ratio between the widths of the 5th – 95th 

percentile prediction ranges for both models. This process is repeated 50 times using episodes with at 

least 24 hours of clinical glycaemic control data. Significant variability in results indicates a model based 

on too little data and/or dominated by selected patients or episodes. Consistent results indicate the 

model is built of enough data and/or is not skewed by outlying data. This analysis thus assesses model 

robustness to its underlying data.  



3.0 Results: 

3.1 3D model for forward prediction of SI: 

The number of data triplets (%ΔSIn, SIn, SIn+1) per bin is shown in Figure 2, before and after bin merging 

to improve data density. The triangular shape of binned data suggests greater variability at lower SI 

where changes constitute a larger percentage change relative to absolute SI value. Yellow areas 

represent bins with enough data density (at least 100 data triplets) and thus the bins which will be used 

to build the model. These bins represent 62316 (95.8%) of the original 65051 triplets. 

 

Figure 2 – Number of data triplets (%ΔSIn, SIn, SIn+1) per bin, before (a) and after (b) merging side bins (along y-axis). Bins in 

yellow reach minimum data density and will be used to build the 3D model. 

 

The new interpolated 3D model is shown in Figure 3 and compared to the original stochastic model 

(green) for the 5th (a) and 95th (b) percentiles. The previous 2D model forms a plane in the new 3D 
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model space as it is constant across all %ΔSI. Where the new 3D model sits above the 95th percentile 

or below the 5th percentile planes indicates where the 2D model was too narrow. The reverse case of 

above the 5th and/or below the 95th percentile indicates the 2D model was over conservative and the 

3D model 5th – 95th percentile prediction range is narrower. 

 

Figure 3 – Comparison between new 3D model (colour) and the original 2D model (green) for the 5th (a) and 95th (b) percentiles. 



 

The percentage change in the 5th, 50th and 95th percentiles prediction of SIn+1 is shown in Figure 4. Two 

main regions can be identified: 

1. A conservative region, mainly between %ΔSIn = ± 25%. The 5th percentile is higher than the 

previous 2D model, while the 95th is lower, regardless of SIn, describing thus a narrower 5th – 

95th percentile range in the forward prediction of SIn+1. This region represents 77.2% of the data 

triplets. 

2. A non-conservative region outside %ΔSIn = ± 25%. The 5th percentile is lower and the 95th is 

higher, indicating higher resulting risks of hyper- and hypo- glycaemia than predicted by the 2D 

model.  
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Figure 4 – Percentage change in the 5th (a), 50th (b), and 95th (c) percentiles between the original 2D stochastic model and the 

new 3D model. 

 

Summarising Figure 4, the percentage change in the 5th – 95th percentile prediction range is shown in 

Figure 5. In the 2D model’s conservative region, a significant decrease of ~25-40% in this range is 

observed for the 3D model, suggesting the new model allows more aggressive insulin treatment than 

the previous model and thus provides improved information for dose selection. For the non-conservative 

region, increases in SI of up to 80% or more are observed, allowing the model to more safely predict 

and cope with large changes in SI in regions of high metabolic variability (high %ΔSI). The reduced 

width green region contains 51871 data triplets (79.7%) of the total. 

 

Figure 5 – Percentage change in the width of the 5th-95th percentile range when the new 3D model is compared to the previous 

2D model. Green and red areas suggest overly conservative and under conservative behaviour respectively within the 2D model. 

 

3.2 Self Validation 

The predictive power of the new model is tested on 587 episodes of minimum 24 hours, representing a 

total of 63508 triplets. In total, 2.7% of these data triplets were in the initial exclusion definition and thus 

97.3% of SIn+1 predictions fell within the model. Of these included values, 90.4% of SIn+1 predictions 

were within the 5th – 95th percentile prediction range, and 52.6% fell within the 25th – 75th percentile 

range, which is very close to the expected values of 90% and 50%, respectively. The 5th – 95th percentile 

interval is more critical due to its use in dosing (Figure 1). The larger error in the 25th - 75th percentile 

interval versus the 5th – 95th percentile interval indicates a small mismatch in the distribution shapes 

across SIn. 
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Figure 6 presents a histogram of per-patient percentage forward prediction in the 25th-75th and 5th-95th 

percentile bands, showing the accuracy at a per-patient level, rather than an overall cohort level. Table 

3 shows the corresponding per-patient median [IQR] percentage time in these bands. The per-patient 

median [IQR] percentage time in the 25th – 75th percentile prediction range is higher in the previous 2D 

model (60.3% [47.8%, 71.5%] vs. 51.2% [42.9%, 59.2%]), while the percentage time in the 5th – 95th 

percentile prediction range is similar (93.6% [85.7%, 97.3%] vs. 90.7% [84.4%, 94.6%]) between the 

2D and 3D models. However, as seen in Figure 6, the per-patient distributions are tighter to the ideal 

values (50% and 90%) for the 3D model, reducing over-conservatism. 

 

More importantly, there was a significant reduction in the width of the 5th-95th percentile ranges for each 

patient, with the 3D model reducing this width by median 28.9% [21.6%, 33.0%] per bin. These results 

suggest the new 3D model is able to account for changes in SI equally well in comparison to the 2D 

model, but with significantly narrowed prediction range for many hours of care. This outcome should 

allow safe application of more aggressive insulin treatments for more stable patients. An example 

comparison of the predictive power of the two models is shown in Figure 7. 

 

Table 3 – Per-patient predictive power comparison between old and new stochastic model. Results are given as median [IQR]. 

 2D Model 3D model 

Median per-patient % 
prediction within 25th-75th 

percentile range 
60.3% [47.8%, 71.5%] 51.2% [42.9%, 59.2%] 

Median per-patient % 
prediction within 5th-95th 

percentile range 
93.6% [85.7%, 97.3%] 90.7% [84.4%, 94.6%] 

Median per-patient % reduction 
in 5th-95th percentile range 

width 
28.9% [21.6%, 33.0%] 

 

 

 



 

Figure 6 – Per-patient predictive power within the 25th-75th percentile prediction range (left) and within the 5th-95th percentile 

prediction range (right) of new (blue) and old (red) models. 

 

 

Figure 7 – Excerpt from a patient showing fitted SI (blue) as well as 5th and 95th percentile prediction for the new 3D model 

(green) and the old 2D model (red). The new model predictive range is generally narrower than the old model. 
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Table 4 compares prediction outcomes for patients who had increased and decreased time in prediction 

ranges, respectively. A total of 101 episodes increased percentage time in the 5th – 95th percentile 

prediction range by ~5% (87.3% [80.0%, 92.7%] vs. 82.3% [71.8%, 88.9%] for the 2D and 3D models 

respectively). Conversely, for the remaining 486 episodes, the new model shows slightly lower 

performance (91.1% [85.7%, 95.0%] vs. 94.6% [88.9%, 97.6%]).  However, the percentage time in 

range for these patients has been brought closer to the intended 90%, ensuring the 3D model treats 

patients more consistently across the cohort. 

 

Table 4 – Per-patient predictive power comparison between old and new stochastic model for two groups: 101 patients whose 

% prediction increased with the new model and 486 patients whose % prediction decreased. Results are given as median [IQR]. 

 2D Model 3D model 

Median % prediction within 5th-
95th percentile range for 101 

patients who increased time in 
range. 

82.3% [71.8%, 88.9%] 87.3% [80.0%, 92.7%] 

Median % prediction within 5th-
95th percentile range for 486 

patients who decreased time in 
range. 

94.6% [88.9%, 97.6%] 91.13% [85.7%, 95.0%]] 

 

3.3 Cross validation: 

Cross-validation was carried out using patient episodes 24 hours or longer, and results are shown in 

Table 5. Compared to the original 2D stochastic model, the new 3D model has consistent, 12% absolute 

lower median [IQR] percentage forward prediction in the 25th-75th and 5th-95th percentiles ranges (3D: 

51.8% [51.5%, 52.1%] vs. 2D: 63.1% [62.8%, 63.4%] and 89.8% [89.6%, 90.0%] vs. 92.5% [92.4%, 

92.6%]). Additionally, the 5th-95th percentile range width from 2D to 3D model is reduced by median 

30.8% [30.5%, 31.1%]. These results suggest both models generalise well to other ICU patients when 

developed from an independent, but similar cohort of patients, matching similar tests across cohorts 

[25].  

 

 

 



 

Table 5 – Cross-validation per-patient results for old 2D stochastic model and the new 3D model, on all SI values from episodes 

of minimum 24 hours. Results are given as median [IQR]. 

 2D Model 3D model 

Median % prediction within 
25th-75th percentile range 

63.1% [62.8%, 63.4%] 51.8% [51.5%, 52.1%] 

Median % prediction within 5th-
95th percentile range 

92.6% [92.5%, 92.7%] 89.7% [89.6%, 90.0%] 

Median % reduction of the 5th-
95th percentile range width 

from 2D to 3D model 
30.8% [30.5%, 31.1%] 

  



4.0 Discussion: 

4.1 Discussion of main results 

Forecasting changes in insulin sensitivity underpins the ability of STAR to respond in a patient-specific 

manner to potential future changes in patient glycaemic control requirements, resulting in safe and 

effective control strategies. If the distributions of forecast likely SI changes are narrower, then control 

can be further improved, with tighter control in more stable patients, and better avoidance of hypo-

glycaemia in patients that exhibit high glycaemic variability. In this study, current probabilistic 

forecasting methods have been extended to include the change in SI (%ΔSI) as an input predictor for 

future SI alongside current SI. 

 

The previous 2D stochastic model is shown to be conservative for ~77% of the data, where the %ΔSIn 

is within ± 25% change. While conservatism results in wider prediction ranges in likely BG outcomes, 

thus reducing the risk of hypoglycaemia, it also inhibits the controllers’ ability to reduce BG to the normal 

range using more aggressive control dosing. This issue particularly affects patients who tend to remain 

stable, but are mildly hyperglycaemic as a result. Hence, such conservatism, while safe, has a 

potentially negative clinical impact, as well. 

 

Compared to the 2D stochastic model, a region that is over-conservative equally implies a region that 

is under-conservative. This under-conservative region means there are less stable patients, outside 

|%ΔSI| ≤ 25%, who have increased hypoglycaemic risk from relatively over-aggressive dosing, resulting 

from prediction bands that are too narrow. This trade off of conservatism is seen in Figures 4 and 

Figure 5, and offers unintended increased risk for these patients in using the 2D model.  

 

The new model utilises change, %ΔSI, as an additional model input to better predict a more patient-

specific future SIn+1, with narrowed prediction ranges for 77% of hours, and overall similar ability to meet 

the expected 90% of SI outcomes within the 5th-95th percentile prediction range.  The new model is thus 

more patient-specific, and better predicts likely BG outcomes. These results should translate into more 

aggressive insulin dosing where patients are more stable and SI outcomes are more certain, and less 



aggressive, lower insulin doses in patients who are more variable.  Greater patient-specificity also 

reduces risk for more variable patients. This model could thus lead to tighter and less variable control 

with greater safety from hypoglycaemia, and thus improved outcomes [18, 42]. 

  

Both the self-validation and the cross-validation tests have shown the predictive power of this new 

model to be more consistent, with closer to 90% of forward prediction of SI within the 5th-95th percentile 

range. These results align well with the expected 90% of SI outcomes falling within this prediction range. 

However, in comparison to the previous 2D model, the new 3D model achieves this performance with 

overall narrower and tighter prediction distributions for 77% of hours. A median reduction in the 5th-95th 

percentile prediction range width of approximately 30% was achieved with the 3D model, indicating the 

3D model is better able to predict future SI outcomes, and thus safely allowing significantly increased 

insulin dosing. 

   

The new 3D model thus treats patients more consistently across the patient cohort. Previously, with the 

2D model, some patients within the cohort had much more than 90% of their SI outcomes within the 5th 

– 95th percentile prediction range, and others much less (Figure 6). While greater conservatism is 

advantageous for avoiding extreme BG outcomes, it also implies an over conservatism and inability of 

the model to meet its design specifications (90% of SI within the 5th -95th percentile range). Equally, it 

prevents aggressive dosing and better control where it could be warranted for specific patients, and is 

thus less patient-specific than the new 3D model. Given the improved 5th - 95th percentile range 

performance of the new 3D model, it is clear it is better able to consider patients more consistently 

across the cohort with the added %ΔSI model input. 

 

Cross simulation tested the ability of the model to predict SI in patients that were not used to build the 

model. Cross validation results were very consistent and close to expected values from the whole-

cohort analysis, suggesting that the model would generalise well to ICU patients from different protocols 

and/or units. It also indicates the model is not dominated by smaller outlying subsets of patients. 

 



This result also reflects previous results where similar and consistent SI variability was seen across 3 

different ICU cohorts in 3 different countries [25, 43]. This previous analysis uses slightly different 

patient cohorts from those presented here, and includes an additional cohort not used here. Thus, these 

results suggest the model generalises well to other ICU patients and cohorts, when the model is built 

from an independent, but overall similar cohort of mixed medical ICU patients.  

 

4.2 Limitations 

One limitation of this analysis is the binning process, which creates a discretized 3D space, where 

percentile surfaces were linearly interpolated between bins. Kernel-density methods, used to build the 

previous 2D stochastic model [34], could also be applied to generate smoother prediction percentile 

surfaces with respect to data density. However, this approach introduces assumptions around the 

shape of data density distributions and the effect of surrounding data on percentile surfaces. In this 

analysis, bin sizes were chosen to balance increased resolution against sufficient data density, as well 

as to first prove the concept.  

 

The bin width of 10% in %ΔSI was chosen based on a previous analysis, which assessed the impact 

of BG measurement error on SI [44]. Given over 68,000 hours of patient data are used to build the new 

3D model, the percentile surfaces of the full model are likely to be sufficiently reflective of SI dynamics, 

as data density was typically sufficient across typical areas of interest. Thus, limitations due to data size 

and density are likely to be minimal. 

 

A further possible limitation of the model is that ~7% of data points fell outside the model range, having 

been discarded as outliers in regions of insufficient data density. These unusually large changes in SI 

or extremely high SI levels are thus not included in the model, and may reflect inaccuracies in data 

recording or patient-specific deviations from model-dynamics. It is also possible these points highlight 

times of extreme glycaemic change or measurement error, where the best clinical practice could be to 

discontinue insulin for an hour and come back and re-measure. In essence for these, outlying, 

potentially unexplained events, discontinuing insulin for a short period is a safe course of action. Within 

the STAR framework, the clinical usage would be to utilise the original proven 2D model, using the 



safest and most conservative intervention [31, 43, 45]. Hence, points that fall in this range could be 

used to warn of outlying events that might not otherwise be noted, and be used to take no or more 

conservative action. 

 

Overall, the new 3D model shows similar predictive performance and much tighter predictive bound 

when compared to the previous model. Cross-validation shows the new predictive model, constructed 

from bin sizes likely reflective of SI dynamics, to accurately predict SI for data not used to develop the 

model. These improvements in prediction should translate to tighter glycaemic control, without 

compromising safety from hypoglycaemia. Future work will investigate kernel-density methods to 

generate smoothed model surfaces, as well as exploring the management of outliers and their clinical 

significance.  



5.0 Conclusions 

Insulin sensitivity plays a major role in any model-based glycaemic control protocol and insulin 

sensitivity forecasting is particularly important for managing dynamic ICU patients. It thus plays a 

leading role in the model-based STAR protocol. In particular, it enables a patient-specific approach to 

achieve better control and the use of forward stochastic prediction models enables safety and 

performance to be explicitly balanced in determining optimal insulin dosing.  

 

This study has shown the positive impact of identifying prior change in a proven model-based insulin 

sensitivity metric on the prediction of likely future insulin sensitivity distribution ranges. A new 3D model 

was developed, achieving similar predictive power as the previous model, while significantly reducing 

the width of the 5th-95th percentile prediction range for more than 77% of the hours of data. This outcome 

ensures that over three-quarters of patient hours will be treated less over-conservatively. Equally, it also 

ensures that the remaining quarter of patient hours are not treated aggressively (under-conservatively), 

and thus improves safety. Both outcomes will improve the performance, safety and patient specificity 

of glycaemic control, and thus patient outcomes.  



6.0 Abbreviations 

%ΔSI Hour-to-hour percentage change in SI 

APACHE Acute Physiology and Chronic Health Evaluation 

BG Blood Glucose 

GC Glycaemic Control 

ICING Intensive Control Insulin-Nutrition-Glucose 

ICU Intensive Care Unit 

LOS Length of stay 

SI Insulin Sensitivity 

SPRINT Specialised Relative Insulin Nutrition Tables 

STAR STochastic-TARgeted 
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