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Abstract

A method for the automatic classification of electrocardiograms (ECG) based on the combination of multiple Support
Vector Machines (SVMs) is presented in this work. The method relies on the time intervals between consequent beats
and their morphology for the ECG characterisation. Different descriptors based on wavelets, local binary patterns
(LBP), higher order statistics (HOS) and several amplitude values were employed. Instead of concatenating all these
features to feed a single SVM model, we propose to train specific SVM models for each type of feature. In order to
obtain the final prediction, the decisions of the different models are combined with the product, sum, and majority
rules. The designed methodology approaches are tested on the public MIT-BIH arrhythmia database, classifying four
kinds of abnormal and normal beats. Our approach based on an ensemble of SVMs offered a satisfactory performance,
improving the results when compared to a single SVM model using the same features. Additionally, our approach
also showed better results in comparison with previous machine learning approaches of the state-of-the-art.

Keywords: Electrocardiogram (ECG), Heartbeat classification, Support vector machine (SVM), Combining
classifiers, Ensemble of classifiers

1. Introduction 1

Disturbances in the heart rate, popularly known as arrhythmias, may be life-threatening, requiring immediate care 2

and often an intervention with defibrillator [1]. Nevertheless, most of arrhythmias are harmless; but even then, they 3

may require therapy to prevent further severe problems [2]. Arrhythmias are often associated with other forms of 4

heart disease. According to the World Health Organization (WHO), “Cardiovascular diseases (CVDs) are the number 5

1 cause of death globally: more people die annually from CVDs than from any other cause. An estimated 17.7 million 6

people died from CVDs in 2015, representing 31% of all global deaths”. Electrocardiograms (ECG) are a noninvasive 7

and inexpensive technique commonly employed by cardiologist in their clinical practice routine. They are frequently 8

used to detect cardiac rhythm abnormalities, measuring the electrical activity of the heart over a period of time. For 9

a routine analysis of the heart’s electrical activity, an ECG recorded from 12 separate leads is typically used. The 10

12-lead ECG consists of three bipolar limb leads (I, II, and III), the unipolar limb leads (AVR, AVL, and AVF), and 11

six unipolar chest leads, also called precordial or V leads, (V1, V2, V3, V4, V5 and V6). Each lead is a view of the 12

electrical activity of the heart from a particular angle across the body. The record contains approximately 2.5 seconds 13

of duration for each lead. Additionally, to accurately assess the cardiac rhythm, a prolonged recording from one lead 14

is used to provide a rhythm strip of 10 seconds. Lead II is the most commonly used for the rhythm strip [3], since it 15
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Figure 1: Waves of a lead II ECG.

usually gives a good view of the most important waves: P, Q, R, S and T (see Fig. 1). Each beat of the heart contains a1

series of deflections away from the baseline on the ECG, or waves, that reflect the time evolution of electrical activity2

in the heart. P-wave is a small defection caused by atrial depolarisation, Q, R, and S waves are usually considered as a3

single event known as the QRS-complex, which is the largest-amplitude portion of the ECG, being caused by ventral4

depolarisation. T wave is caused by ventral repolarisation. Finally, in some cases, an additional U wave may follow5

the T wave.6

The different types of arrhythmias can be detected through the analysis of the changes that appeared on these7

waves. The development of a fully automatic system that is able to classify the ECG heartbeats has been a research8

topic of high interest throughout the last decades. Figure 2 shows a diagram of a general automatic system for9

arrhythmia classification. First, the signals that were captured through the device are preprocessed. This step usually10

includes the baseline removal and the cleaning of high-frequency noise. Next, a heartbeat segmentation algorithm is11

applied to split the signal at beat level. This is usually done detecting the QRS-complex. Then, several descriptors are12

applied to each beat in order to extract the features to feed a classifier, which finally determines the type of heartbeat.13

Many algorithms were proposed in the literature for the heartbeat segmentation [4–7], reaching up to near optimal14

results in well-known databases like MIT-BIH [8]. In this work, we focus on the two last steps, feature extraction15

and classification. Many features were proposed to describe the ECG heartbeats, highlighting the use of wavelets16

[9, 10], higher order statistics (HOS) [11, 12], and heartbeat intervals, popularly known as R-R intervals [13, 14]. To17

built the classification model, numerous previous works reported the feasibility of machine learning algorithms for18

this task [15]; including methods such as Linear Discriminant (LD) [2], AdaBoost [16], Multilayer Perceptron (MLP)19

[9, 17, 18], Genetic Algorithm-Back Propagation Neural Network (GA-BPNN) [19], Convolutional Neural Networks20

(CNN) [20], and, especially, Support Vector Machine (SVM) [17, 18, 21–24].21

An ensemble of classifiers combines the decisions of the individual classifiers that compose it, in order to improve22

the final prediction. There are many techniques in the literature to create an ensemble of classifiers [25]. Some23

methods train each classifier with a different subset of the training examples like Bagging [26], or AdaBoost [27].24

Dietterich and Bakiri [28] deal with a problem that requires a large number of classes, partitioning the number of25

outputs in different sets, generating an ensemble of classifier. Other works train each classifier in a different subset26

of the input features. Duin and Tax [29] performed a large experimentation of this alternative and concluded that27

the combination of classifiers trained on different feature sets was very useful, especially when the single classifiers28

offered a good performance. Waske and Benediktsson [30] employed an ensemble of SVMs in a multi-source land29

cover classification problem using a balanced dataset. Their ensemble of SVMs, training each SVM with a different30

data source, significantly improved the results in comparison to a single SVM that was trained with the whole data31
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Figure 2: Diagram of general steps of a full automatic arrhythmia classification system.

sources. 1

The main goal of this work is to evaluate the benefits of using an ensemble of SVMs for the arrhythmia clas- 2

sification problem, i.e., combining several SVM models each one trained with a different feature. Several feature 3

descriptors based on R-R intervals, wavelets, HOS, LBP, and several amplitude values were employed. Besides, the 4

suitability of each single feature is also evaluated in this work. Our approach is similar to the work of Zhang et al. 5

[22], which also used an ensemble of SVMs for the automatic arrhythmia classification. However, they extracted 6

features from the leads II and V1 and posteriorly, they trained a separated model from the features of each lead. Fi- 7

nally, they combined the decisions of both models with the product rule. In our approach, a SVM model is created 8

for each type of feature being all the features extracted from lead II. Additionally, an extensive experimentation was 9

made evaluating all the possible combinations of the selected features. Finally, we tested several combination rules, 10

including the commonly employed sum, product, and majority rules [31]. 11

In the literature, we can distinguish two popular paradigms for evaluation of arrhythmia classification task, known 12

as intra-patient and inter-patient. In the first paradigm, the whole database can be employed to generate and test the 13

classification models without any restriction. This paradigm presents a main drawback regarding the generalisation 14

of the classifier. Since the model can learn the particularities of the patients during the training, the score achieved 15

in the evaluation step may not be highly reliable. Ideally, an automatic arrhythmia classifier must give an accuracy 16

diagnosis for any patient, even if the system does not contain any previous information about it. Therefore, a method 17

with high generalisation is desirable, since a trained database with records from all the possible patients would be 18

unviable. In order to employ a more realistic scenario, Chazal et al. [2] proposed the inter-patient paradigm. They 19

performed a division of the MIT-BIH database records in two different sets: one for training and other testing. These 20

sets were carefully designed avoiding the inclusion of any record from the same patient in both sets. We followed the 21

inter-patient paradigm to evaluate our approach. 22

In the next section, the used database, the selected features and the proposed approach for the ECG classification 23

are detailed. The employed performance measurements, the experiments and the obtained results are explained on 24

Section 3. Finally, Section 4 details the conclusions extracted from this work. 25

2. Material and Methods 26

The well-known Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database [8], 27

from Physionet [32], was employed to train and test our classification models, allowing in turn the comparison of our 28

results with those from the state-of-the-art methods. 29

2.1. MIT-BIH Arrhythmia Database 30

This database contains 48 ECG records of about 30 minutes, sampled at 360Hz with 11-bit resolution from 47 31

different patients. Each record comprises two signals, the first one is, for all the records, the modified-lead II (MLII), 32
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Table 1: MIT-BIH labelling and the standard AAMI classes.

AAMI MIT-BIH
Normal (N) N, L, R
Supraventricular Ectopic Beat (SVEB) e, j, A, a, J, S
Ventricular Ectopic Beat (VEB) V, E
Fusion (F) F
Unkown Beat (Q) /, f, Q

whereas the second one corresponds to V1, V2, V4, or V5, depending on the record. Therefore, only the MLII is1

provided by all the records. The database contains approximately 110,000 beats, all of them were independently2

annotated by two or more expert cardiologists and the disagreements were resolved. Following the Association for3

the Advancement of Medical Instrumentation AAMI recommended practice [33], the MIT-BIH heartbeat types are4

grouped into five heartbeat classes as shown in Table 1. As recommended by the AAMI, the records with paced beats5

were not considered, namely 102, 104, 107, and 217. The database is highly imbalanced, as near a 90% of the beats6

belong to the class N whereas the remaining 3%, 6%, and 1% of the beats belong to classes SVEB, VEB, and F. We7

adopted the decision of ignoring the Q AAMI class like other authors [9, 22], since it is practically non-existent. Only8

15 samples belong to class Q. In order to make a fair comparison between our results and those from other previous9

works, we used the popular inter-patient scheme division proposed by Chazal et al. [2], which divided the database in10

two datasets. Each dataset contains data from 22 records with a similar proportion of beat types:11

• Training (DS1): 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215,12

220, 223, 230.13

• Testing (DS2): 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 213, 219, 221, 222, 228, 231,14

232, 233, 234.15

The first dataset was employed for training whereas the second one was used to evaluate the performance of the model.16

None of the patients was repeated in both datasets.17

In this work, only the lead II was considered to describe the morphology of the signal. This decision was motivated18

by the following facts: it is the only lead that is present for all the records from the MIT-BIH arrhythmia database; it19

is also the most commonly used lead by the experts to analyse the ECG signals; and finally, Chazal proved that using20

only one lead is sufficient for the arrhythmia classification task [34].21

2.2. Signal Preprocessing22

Before computing the features from the ECG signals, a preprocessing step was applied. Most of the previous23

works of the literature [2, 9, 22] usually performed the baseline removal (see Fig. 2) followed by a high-frequency24

noise filtering at this step. In this case, we have just performed the baseline removal. To compute the baseline of25

the signal, two consecutive median filters of 200-ms and 600-ms were applied. Then, this baseline was subtracted26

from the original signal, producing the baseline corrected ECG signal. We made the decision of not performing any27

high-frequency noise filtering in order to preserve the signal as raw as possible for the feature extraction step.28

2.3. Selected Features29

In practice, a QRS detection algorithm like the proposed by Pan and Tompkins [4] would be required in order30

to segment the full signal into beats. However, this work is focused on the classification step, therefore the QRS31

annotations included in MIT-BIH were employed.32
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Figure 3: Average beats from the MIT-BIH database grouped by the four AAMI class (N, SVEB, VEB, and F) (a) 180 window centered on R-peak
from the raw lead II signal. (b) Wavelets of family ’db1’ level 3 decomposition. (c) 5 HOS intervals: skewness and kurtosis. (d) Histogram U-LBP
1D of 8 bits. (e) Our morphological descriptor. (f) 4 R-R intervals followed by its 4 normalised values. (Best seen in color)

For each beat, a window of size 180 was centred around its R-peak and, then, all the features were computed 1

inside that region. Figure 3(a) shows the mean values of all the beats from the MIT-BIH group by the four AAMI 2

classes, whereas Figure 3(b-f) show the mean values obtained over each feature descriptor. The following features 3

were employed since they showed a good performance on similar previous works: 4

2.3.1. Wavelets 5

The wavelet transforms present the capability of allowing information extraction from both frequency and time 6

domains, which make them suitable for the ECG description. The use of wavelet transforms were successfully proved 7

by different authors on ECG classification [9, 10]. Here, we used the Daubechies wavelet function (db1) with 3 levels 8

of decomposition, making a 23-dimensional descriptor. 9

2.3.2. HOS 10

The use of higher order statistics (HOS), i.e., cumulants of the second, third, and fourth order were proposed as 11

a better alternative for the morphological ECG description in [11, 12]. Here, a 10-dimensional feature was created 12

dividing each beat into 5 intervals, computing the kurtosis and skewness value over each one. 13

2.3.3. 1D-LBP 14

A 1D variant of the well-known descriptor, the 2D-Local binary patterns (LBP), was previously proposed for 15

feature extraction of raw Electroencephalogram (EEG) signals in [35]. The 1D version maintains the idea of the 16

original 2D version. For each data point in a beat, a binary code is produced by the comparison of its value with the 17

value of their neighbours. Then, a histogram that contains the frequency of each binary pattern is built. Here, we used 18

the 8 neighbour uniform LBP code, making a 59-dimensional descriptor. 19
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2.3.4. Our Morphological Descriptor1

We proposed a morphological descriptor that relies on several amplitude values from the beats. Instead of directly2

employing several amplitude values like other previous works [2, 22], our descriptor relies on the euclidean distance3

(sample, amplitude) between the R-peak and four points of the beat. The selection of this points depends on the4

amplitude values over the following intervals:5

• max(beat[0, 40]).6

• min(beat[75, 85]).7

• min(beat[95, 105]).8

• max(beat[150, 180]).9

where beat is the 180-dimensional array, centered on the R-peak that contains the amplitude values.10

2.3.5. R-R Intervals11

A descriptor based on these intervals is certainly the most employed feature for the classification of ECGs in the12

literature [15]. Besides the morphological features, R-R intervals computed from the time between consequent beats13

were employed. The next intervals were extracted:14

• Pre-RR: indicating the distance between the actual heartbeat and the previous one.15

• Post-RR: indicating the distance between the actual heartbeat and the next one.16

• Local-RR: containing the average of the 10 previous Pre-RR values.17

• Global-RR: containing the average of the Pre-RR values produced in the last 20 minutes.18

In addition, the normalised version of these intervals [13], i.e., dividing them by its mean value within the same19

ECG record, were also employed, making a total of eight R-R features.20

2.4. Classifier Models21

Due to their good performance showed on previous ECG classification works [21, 22], we employed SVMs as the22

classifiers for all our experiments.23

2.4.1. Support Vector Machine24

SVM [36] are maximum margin classifiers that map input vectors to a higher dimensional space where a maximal25

separating hyperplane is constructed to differentiate two different classes. The main drawback of SVMs is their26

limitation to binary classification problems. In the literature, there are two common alternatives to solve that, namely27

one-against-all (OAA) and one-against-one (OAO). Being N the number of classes, in the first alternative N SVM28

models are constructed, i.e., one per class; whereas in the second alternative a SVM is constructed between each pair29

of classes, resulting in N(N−1)/2 models. Finally, a voting system is required for both alternatives in order to get a30

final decision. In this work, the OAO approach was used, since it is more suitable to work with imbalanced data and31

requires less time for training than OAA when the number of samples is significantly large [37].32

Given N classes and L models, the final decision of a new observation x is computed using the pairwise a posteriori33

probability P(ym| fl(x)) that follows a sigmoid function:34

P(ym| fl(x)) =
1

1+ exp(−ym fl(x))
, (1)

6



Table 2: Features employed for ECG description.

Feature name Description Size
R-R R-R intervals + normalized R-R intervals 8
Wavelets Family db1 with 3 level of decomposition 23
HOS Skewness and Kurtosis with 5 intervals 10
LBP Uniform-LBP 1D 8 bits 59
Our Morph. Our morphological descriptor 4

where M = 2, since each model of the OAO is in fact a binary classifier, y1 =+1 and y2 =−1 denotes positive and 1

negative classes, respectively, and fl(x) measures the decision value given by the l SVM. In our problem N = 4, and, 2

consequently, L = 6 due to the OAO strategy. The probabilities of the different models P(ym| fl(x)) are accumulated 3

over their associated class n in δn and then, the majority voting rule is applied to assign the final decision: 4

arg max
n

δn. (2)

2.4.2. Combining multiple SVMs 5

In this work, an independent OAO SVM model is trained for each type of employed feature (see Table 2). Let 6

δtn be the accumulated probabilities of the t OAO, considering all the features T = 5. To combine the accumulated 7

probabilities of the different OAO models, some of the most commonly used combination rules were tested: 8

• Product rule: It is a severe rule, since if just one model assigns a close to zero probability for one class, the final 9

output for this class will also be close to zero: 10

T

∏
t=1

δtn. (3)

• Sum rule: Opposite to the product rule, the sum rule presents a more relaxed behaviour: 11

T

∑
t=1

δtn. (4)

• Majority rule: It adds a vote to each class depending on their rank position. This rule does not consider the 12

differences at probability level between the outputs, it only consider the rank order: 13

T

∑
t=1

νtn, (5)

where νtn contains a vote inversely proportional to the rank position of class n in δt . 14

Finally, once the accumulated probabilities are combined, the final decision is selected using the majority voting 15

rule (Eq. 2). 16

3. Experimentation 17

The data were standardized (z-score), i.e., subtracting the mean and dividing the standard deviation of the training 18

data. Since the MIT-BIH database is highly imbalanced, several weights equal to the ratio between the two classes 19

7



Table 3: Description of confusion matrix from AAMI classes: N: normal, S: Supraventricular, V: Ventricular, and F:fusion

Algorithm
n s v f Sum

R
ef

er
en

ce

N Nn Ns Nv N f ∑N
S Sn Ss Sv S f ∑S
V V n V s V v V f ∑V
F Fn Fs Fv F f ∑F

Sum ∑n ∑s ∑v ∑ f ∑

that compose each l model were employed to compensate these differences. The Radial Basis Function (RBF) kernel1

was fixed for all the experimentation process. The same values for C and γ were selected for all the L models. The2

gamma value was fixed to 1/size( f eatures). To adjust the penalty parameter C, a 10-fold cross-validation strategy3

was performed over the training dataset (DS1), varying C over the grid {0.001,0.01,0.1,1,10,100}. Once the best4

parameters were selected, the models were trained again over the full training set (DS1) and tested over the evaluation5

set (DS2) following the inter-patient division [2].6

3.1. Performance Measurements7

Following the AAMI specifications, the performance measurements were computed from the confusion matrix8

(Table 3). They include some particularities in the measurements computation [2], e.g., they do not reward or penalize9

a classifier for the classification of ventricular fusion (F) as (VEBs), Fv. The confusion matrix provides a complete10

description of any classification results. However, due to imbalance of the MIT-BIH database, the overall accuracy11

or the mean accuracy do not represent well how good a classifier is. Suppose we have a classifier that only assigns12

the output of normal class (N) for all the new incoming data. This classifier would achieve a value of the overall13

accuracy higher than 89%. In the other hand, the mean accuracy would give the same importance to the majority and14

minority classes. Therefore, these performance measurement does not seem appropriate to represent the quality of the15

classifiers on this database. To overcome this problem, Mar et al. proposed a new index, which they named jκ index16

[9], as a combination of two values: the j index [38] and the Cohen’s Kappa (κ) index [39]:17

jκ index = w1κ +w2 j index, (6)

where w1 = 1/2, and w2 = 1/8 since κ takes values in the [0,1] range and j index in the [0,4] range. The j index18

evaluates the discrimination of the most important arrhythmias (SVEB, VEB, according to the AAMI standard [9]):19

j index = SeS +SeV +P+
S +P+

V , (7)

being Se and P+ the sensitivity and positive predictive value of each class. Finally, the Cohen’s Kappa (κ) is a measure
of agreement that globally evaluates the confusion matrix. It was reported as a performance measurement more robust
than the overall accuracy or the mean accuracy on imbalance datasets [40]:

κ =
Po−Pe

1−Pe
,

Po =
Nn+Ss+V v+F f

∑
,

Pe =
∑N ∑n+∑S∑s+∑V ∑v+∑F ∑ f

∑ 2 ,

(8)

8



Table 4: Results of the OAO SVM classifiers trained with the different features over MIT-BIH (DS2).

N SVEB VEB F Average
Features Se P+ Se P+ Se P+ Se P+ Se P+ Acc j index κ index jκ index
R-R 0.769 0.989 0.505 0.264 0.802 0.472 0.874 0.058 0.738 0.446 0.762 2.044 0.368 0.439
HOS 0.572 0.977 0.719 0.106 0.736 0.690 0.765 0.045 0.698 0.455 0.589 2.251 0.216 0.389
Wavelet 0.857 0.953 0.106 0.079 0.959 0.426 0.013 0.056 0.484 0.378 0.826 1.570 0.384 0.388
Our Morph. 0.468 0.958 0.707 0.112 0.771 0.610 0.030 0.001 0.494 0.420 0.494 2.201 0.154 0.352
LBP 0.744 0.921 0.005 0.008 0.524 0.293 0.003 0.000 0.319 0.307 0.686 0.846 0.132 0.172

where Po is the observed probability, being equal to the overall accuracy, and Pe corresponds with the chance agree- 1

ment. Note that the term Pe takes into consideration the number of samples of each class. Assuming equally distributed 2

data over the four classes, Pe will be a constant, and hence κ and the overall accuracy will be linearly dependent. 3

We used the jκ index for the evaluation, since this index takes into account, in a single score, the misclassification 4

and the imbalance that is present between all the considered classes, thanks to the included κ index, and at the same 5

time emphasises the discrimination of the most important arrhythmias (SVEB and VEB), thanks to the j index. 6

3.2. Experiment 1: Features Evaluation 7

An OAO SVM model was independently trained for each feature in order to compare their single performance. 8

Table 4 shows the results that were obtained for the different models over the evaluation set (DS2) from the MIT-BIH 9

database. The included performance measurements are: the sensitivity (Se) and the positive predictive value (P+) for 10

each class, the overall accuracy (Acc), the mean Se and P+ of the four classes, the j index, the Cohen’s kappa (κ 11

index) and the jκ index. The best results regarding the most important arrhythmias (SVEB and VEB) are obtained by 12

the HOS feature, which achieved the best j index, followed very closely by our morphological descriptor. Conversely, 13

the wavelet presents a low score for j index. The model of this feature classifies most of the beats as class N or V EB, 14

achieving the highest overall accuracy (Acc) due to the imbalance, but at the same time it obtain a low score for mean 15

Se due to the minority classes (SV EB and F). In regards to the jκ index, i.e., considering the four classes with an 16

emphasis on the discrimination of the most important arrhythmias, R−R is the best descriptor. Finally, the LBP obtain 17

the worst jκ index score by far. 18

3.3. Experiment 2: Comparison of Single SVM vs. Combination of multiple SVMs 19

The goal of this experiment is: evaluate if an ensemble of OAO SVMs, combining the decision of the previous 20

models, improves the results over a single OAO SVM model trained with all the features together. Table 5 contains the 21

results obtained for all the possible configurations of the employed features for the two alternatives. For the ensemble 22

case, three combination rules were employed: the product, the sum and the majority rule. As we previously said, we 23

compare the results of the methods with the jκ index measurement. The values of the overall accuracy (Acc), the 24

mean Se and P+ are also displayed. Results in Table 5 show that, in general, ensembles of SVMs produce superior 25

scores than a single SVM, especially when the product rule is employed. However, there is an exception when the 26

LBP descriptor is present. Note that single SVM models have only superior jκ index values than their ensemble 27

approaches when the LBP descriptor is present. This is due to the fact that when the ensemble of SVMs is used, all 28

the features add the same amount of confidence to the final decision. This causes a deterioration of the performance 29

if a feature is significantly worst than the rest. On the other hand, when a single SVM is employed, the training 30

process itself may discard the feature dimension that behave worst. In general, the more features are added the better 31

jκ index is achieved. Not surprisingly, the best configurations are those that include the R-R interval, which was the 32

best single feature. The higher jκ index = 0.773 score was achieved by the configuration R−R, Wavelets, HOS, and 33

OurMorph. with an ensemble of SVMs using the product rule. On the other hand, the best single SVM configuration 34

of jκ index = 0.640 was achieved by R−R, HOS, and OurMorph.. 35

9



Table 5: All the possible combinations of the five features tested with the single SVM model and the ensembles of SVMs over MIT-BIH (DS2). Ensembles of SVMs are combined with product,
sum, and majority rules. Best results per configuration and measurement in bold.

Features Single-SVM Product rule Sum rule Majority rule
R

-R

W
av

el
et

s

H
O

S

L
B

P

O
ur

M
or

ph
.

Acc Se P+ jκ index Acc Se P+ jκ index Acc Se P+ jκ index Acc Se P+ jκ index

• • 0.848 0.518 0.465 0.486 0.866 0.568 0.459 0.525 0.857 0.560 0.450 0.501 0.893 0.531 0.472 0.531
• • 0.874 0.552 0.531 0.555 0.837 0.865 0.581 0.637 0.836 0.863 0.579 0.635 0.853 0.781 0.577 0.588
• • 0.902 0.484 0.470 0.499 0.836 0.516 0.438 0.450 0.832 0.497 0.427 0.425 0.834 0.474 0.432 0.389
• • 0.792 0.617 0.470 0.526 0.879 0.673 0.579 0.669 0.873 0.667 0.573 0.656 0.899 0.616 0.578 0.650

• • 0.841 0.440 0.473 0.400 0.835 0.665 0.519 0.519 0.821 0.672 0.504 0.500 0.923 0.502 0.524 0.571
• • 0.909 0.456 0.438 0.458 0.820 0.438 0.345 0.333 0.821 0.442 0.349 0.340 0.823 0.395 0.324 0.278
• • 0.844 0.428 0.466 0.385 0.779 0.500 0.458 0.422 0.765 0.520 0.462 0.434 0.873 0.447 0.461 0.429

• • 0.909 0.448 0.442 0.457 0.768 0.542 0.472 0.385 0.761 0.536 0.459 0.370 0.833 0.443 0.463 0.360
• • 0.779 0.647 0.505 0.511 0.765 0.646 0.510 0.512 0.745 0.661 0.510 0.504 0.845 0.594 0.532 0.549

• • 0.912 0.431 0.411 0.429 0.746 0.422 0.424 0.328 0.728 0.429 0.423 0.330 0.820 0.378 0.401 0.282

• • • 0.901 0.522 0.530 0.565 0.901 0.815 0.606 0.690 0.896 0.818 0.603 0.679 0.916 0.687 0.595 0.706
• • • 0.926 0.491 0.503 0.558 0.869 0.503 0.411 0.462 0.869 0.500 0.408 0.457 0.867 0.471 0.399 0.425
• • • 0.883 0.507 0.500 0.518 0.926 0.650 0.572 0.711 0.921 0.651 0.566 0.703 0.917 0.640 0.562 0.688
• • • 0.930 0.525 0.565 0.592 0.874 0.759 0.581 0.630 0.870 0.759 0.578 0.616 0.876 0.706 0.576 0.617
• • • 0.884 0.696 0.558 0.640 0.921 0.782 0.635 0.742 0.907 0.801 0.622 0.719 0.890 0.706 0.586 0.668
• • • 0.930 0.491 0.509 0.569 0.911 0.626 0.562 0.670 0.903 0.618 0.560 0.656 0.892 0.608 0.550 0.611

• • • 0.923 0.470 0.476 0.514 0.861 0.469 0.403 0.417 0.853 0.470 0.394 0.408 0.864 0.449 0.400 0.398
• • • 0.876 0.442 0.491 0.425 0.845 0.607 0.517 0.563 0.831 0.650 0.516 0.555 0.845 0.601 0.518 0.564
• • • 0.912 0.458 0.443 0.469 0.837 0.445 0.374 0.366 0.825 0.444 0.371 0.358 0.811 0.407 0.344 0.294

• • • 0.917 0.454 0.434 0.476 0.830 0.592 0.507 0.524 0.823 0.600 0.508 0.521 0.824 0.568 0.500 0.501

• • • • 0.933 0.509 0.547 0.604 0.902 0.602 0.528 0.581 0.893 0.590 0.506 0.548 0.913 0.553 0.534 0.587
• • • • 0.900 0.523 0.532 0.567 0.945 0.703 0.664 0.773 0.943 0.736 0.674 0.771 0.943 0.640 0.620 0.745
• • • • 0.926 0.494 0.510 0.562 0.908 0.525 0.480 0.552 0.902 0.515 0.465 0.530 0.897 0.509 0.468 0.517
• • • • 0.940 0.505 0.584 0.627 0.930 0.707 0.625 0.732 0.920 0.727 0.614 0.712 0.906 0.655 0.589 0.653

• • • • 0.922 0.470 0.471 0.508 0.866 0.502 0.469 0.480 0.856 0.506 0.458 0.469 0.890 0.468 0.458 0.467

• • • • • 0.933 0.509 0.551 0.606 0.938 0.625 0.617 0.707 0.933 0.621 0.596 0.692 0.934 0.621 0.587 0.704
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Table 6: Results on MIT-BIH (DS2) comparing our best configurations against state-of-the-art methods.

N SVEB VEB F Average
Classifier Se P+ Se P+ Se P+ Se P+ Se P+ Acc j index κ index jκ index
Our Ensemble SVM 0.959 0.982 0.781 0.497 0.947 0.939 0.124 0.236 0.703 0.664 0.945 3.165 0.755 0.773
Zhang et al. [22] 0.889 0.990 0.791 0.359 0.855 0.927 0.938 0.137 0.868 0.604 0.883 2.934 0.592 0.663
Our Single SVM 0.895 0.982 0.670 0.349 0.933 0.849 0.286 0.055 0.696 0.559 0.884 2.800 0.579 0.640
Mar et al. [9] 0.896 0.991 0.832 0.335 0.868 0.759 0.611 0.166 0.802 0.564 0.899 2.798 0.599 0.649
Chazal et al. [2] 0.871 0.992 0.760 0.385 0.803 0.866 0.894 0.086 0.832 0.570 0.862 2.767 0.532 0.612

Table 7: Confusion matrix over (DS2) MIT-BIH of our best configuration: ensemble of SVM (R−R,W,HOS,Our.Morph.) using the product rule.

Algorithm
n s v f Total

R
ef

er
en

ce

N 42244 1540 99 150 44033
S 427 1601 21 1 2050
V 90 75 3051 4 3220
F 256 2 82 48 388

Total 43017 3218 3253 203 49691

3.4. Experiment 3: Comparison with the State-of-the-art 1

The goal of this experiment is to compare the result of our best configurations against other classification ap- 2

proaches, which also employed the MIT-BIH public database with the same inter-patient division. As indicated, this 3

is a well-known public database used as reference for validation of computational proposals of the issue. Table 6 4

includes the comparison of our best configuration of ensemble of SVMs and single SVM, next to some of the best 5

state-of-the-art methods. Results on Table 6 show that our ensemble achieves more than a 10% of improvement re- 6

garding to the jκ index in comparison with the Zhang et. al method [22], which is the second highest one. On the other 7

hand, our approach with a single SVM behaves similar to the state-of-the-art methods. As we can see, looking at class 8

level, the highest positive predictive value is obtained by our ensemble method for all classes, except for the normal 9

class (N). This means that our method tends to be more conservative at assigning abnormal classes (SV EB,V EB,F) as 10

the normal class (N) than the other methods. Regarding the sensitivity, our methods achieved higher values comparing 11

to the state-of-the-art methods for the majority classes, N and V EB. But at the same time, the lowest sensitivity for 12

class F was achieved by our methods, causing their low value of mean sensitivity. This must be due to the inclusion 13

of the Wavelets and OurMorphology features, which obtained considerably lower sensitivity than the RR or HOS 14

features for this class (see Table 4). Looking at the confusion matrix (Table 7), it is noticeable that most of the F beats 15

were misclassified as class N and V EB. However, note also that due to the highly imbalanced data samples from F 16

class correspond only with a 1% of the total samples from MIT-BIH. Considering more appropriate measurements for 17

this database that take into account the imbalance of the data, like κ index and jκ index, our methods present good 18

results, especially our ensemble of SVMs approach. 19

4. Conclusions 20

A new approach for ECG classification based on an ensemble of SVMs was proposed. All the experiments were 21

performed on the MIT-BIH public database, following an inter-patient scheme division. In order to evaluate the results 22

the jκ index, which were proposed as an adequate performance measurement for this database, has been employed. 23

We tested several feature descriptors, including: R-R intervals, wavelets, HOS, LBP, and our own morphological 24

descriptor. In the first experiment, a SVM model was trained for each descriptor, being R-R intervals the one that 25

obtained the highest jκ index. For the second experiment, we evaluated the improvement of the ensemble of SVMs 26

11



against a single SVM. All the possible combinations of the five feature descriptors and the three combination rules,1

the product, the sum, and the majority were tested. The obtained results show that, in the majority of the cases, our2

approach combining multiple SVM models is superior than concatenating all the features and training a single SVM3

model. Only when the LBP descriptor is employed, which was the worst single descriptor, our ensemble approach4

does not improve. For the best configuration, employing an ensemble of SVMs using R-R interval, wavelets, HOS and5

our morphological descriptor, combined with the product rule, the score obtained for jκ index is over a 10% better than6

the previous machine learning approaches of the state-of-the-art. Additionally, it must be emphasised that our method7

only requires the QRS detection for the segmentation step and one single lead (lead II) for the feature extraction.8

Instead of that, other state-of-the-art methods may require many leads [9, 22] and a more complex segmentation step9

[2, 9, 22] that includes the computation of the position and duration of P, QRS, and T waves. The highest complexity10

in the segmentation implies a higher error probability during this step.11

Possible future works, include the use of multiple leads, and also the addition of more sophisticated data fusion12

methodologies, employing techniques such as Dempster–Shafer theory of the evidence [41]. Ideally, each classifier13

model from a certain feature descriptor behaves better than the others at specific cases, hence, a system that assigns14

more confidence to the right model at those cases, would increase the performance of the system.15

All the code developed in this work is publicly available on the repository1.16
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