Comparison of video-based methods for respiration rhythm measurement
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Abstract

The aim of this work is to characterize the differences in the respiratory rhythm obtained through three
video based methods by comparing the obtained respiratory signals with the one obtained with the gold
standard method in adult population. The analysed methods are an RGB camera, a depth camera and a
thermal camera while the gold standard is an inductive thorax plethysmography system (Respiband system
from BioSignals Plux).

21 healthy subjects where measured, performing 4 tests for each subject. The respiratory rhythm and its
variability was obtained from the four respiratory signals (3 video methods and gold standard). The signal
acquisition was performed with custom and proprietary algorithms. To characterize the respiratory rhythm
and its variability obtained with the different video sources and gold standard, the instantaneous frequency,
Bland-Altman plots and standard deviation of the error between video methods and the gold standard have
been computed.

The depth and RGB camera present high agreement with no statistical differences between them, with
errors when comparing with the gold standard in the range of mHz. The thermal camera performs poorly
if compared with the two other methods, nevertheless it cannot be discarded directly because some errors
produced by the subjects head movement could not be corrected.

From these results we conclude that the depth and RGB camera, and their respective acquisition algo-
rithms, can be used in controlled conditions to measure respiration rhythm and its variability. The thermal
camera on the other hand, although it can not be discarded directly, performed poorly if compared with
the other two methods. Further studies are needed to confirm that these methods can be used in real life
conditions.
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1. Introduction

Breathing is a fundamental physiological function of the body; the analysis of breath signals has proven
reliable in the assessment of many respiratory diseases, but it also has been used to detect different states
of mind such as: stress, fear... or even to assess drowsiness [1] and sleep patterns [2]. The detection and
analysis of such signals has been a topic in the recent years, and many methods to acquire these signals and
extract its embedded information have been proposed [2, 3, 4, 5]. Traditional methods, such the ones based
on plethysmography, acquire signals in the thorax region and although they are not invasive, they require
the sensing hardware to be worn by the user in order to work [4, 6]. Different approaches to develop a
method where the breathing signal could be acquired in a contactless manner have been proposed, examples
of these methods compress: Doppler radar systems [7], ultrasonic proximity sensors [8] or even thermistors
placed under the nose [9)].
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More recently, new methods based in video analysis have been presented. These systems use video devices
such as: RGB video cameras [10, 11], depth cameras [12, 13, 14] or even thermal cameras [15, 16] to acquire
the breathing signals. Although all these methods have been studied there are no comparative analysis about
its performance versus a gold standard, or even if they are suitable to work in real life environments. One
possible scenario were the methods aforementioned could prove a significant change in the present state of
the art, would be detecting drowsiness in vehicles [1, 17] in a contact-less manner. To achieve this objective,
methods and algorithms that are capable of extracting the variability of the respiratory rate are needed.

The aim of this work is to compare three different systems based on video analysis with custom and
proprietary detection algorithms versus a plethysmography system (Plux RespiBand™ used as a gold
standard), in order to asses and characterize the error in respiratory rhythm and variability of these systems
and the feasibility to be used in real time with real life conditions. A car chair has been used with its
homologated seatbelt to emulate a car cockpit, as the final objective is to detect respiration in drivers. The
video sources being compared are: an RGB camera, a depth camera and a thermal camera. Each one of the
video sources has been acquired simultaneously with the same computer and synchronized among them.

2. Materials and Methods

2.1. Setup

The gold standard used is the RespiBand system from BioSignalsPlux, this system acquires the volumetric
changes of the thorax by the means of an inductive band, sampling at 40 Hz with 12-bit ADC resolution
and a band pass filter between 0.058 Hz and 0.9 Hz.

The three cameras used to acquire the breathing signals are the ones described in Table 1.

The Logitech camera was configured to record at full HD (1080). According to the manufacturer specifi-
cations, this camera allows to capture at full HD 30 frames per second (fps). Nevertheless, preliminary tests
showed a systematic drop in frame-rate when acquired at 30 fps with exposure and white balance enabled,
which in return produced an irregularly sampled signal. For this reason, this camera was configured to
record at 15 fps with the white balance disabled and blocked exposure.

The Kinect sensor includes an RGB camera and a Depth acquisition system. This last one returns a
point cloud matrix comprised of the distances between the object in front of the camera, to the camera itself
[18]. The Kinect was configured to acquire distance at a short range. Both feeds from the Kinect camera
were acquired (RGB and Depth) but due to the low resolution of the RGB feed this one was not analysed.

The Thermal camera provides a grey-scale image that encodes the temperature range (being white the
hottest and black the coldest in our case compressed between 28 °C to 38 °C) of the object at which the
measurements are taken. In order to acquire this image, an analogue video recorder (connected to the
composite video output of the camera) was used due to the impossibility of acquiring the raw frames using
the USB interface of the camera.

RGB Cam

&

Depth Cam

‘

Thermal Cam

(a)

Figure 1: la is a representation of the camera disposition on the setup, 1b shows the actual measurement Setup. (Fig. la icons
made by Freepik from www.flaticon.com).

The cameras were placed as it is shown in Figure la. The features of interest that were targeted with
each one of the video sources were the following: for the RGB camera the position of a given object will
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be tracked inside the camera’s field of view (FOV), for the Depth camera the depth changes of a certain
region within the camera’s FOV will be acquired, finally for the thermal camera the temperature changes
of a region inside the camera’s FOV will be acquired.

In order to acquire the respiration signal with the RGB camera, three distinctive patterns were placed
on top of the seatbelt for its posterior detection as seen in detail in Figure 2d.

The light source used for all the tests was an LED bulb from the Verbatim manufacturer with reference
52130, warm white color (CCT: 3000 K), 6.5 W, luminous flux of 480 lm, a beam angle of 130° and a
distance between the light source and the subject of 70 cm. The room temperature was 24 °C £ 1 °C. Prior
to any test, a calibration of the RGB camera exposure was performed, as well as a warm-up period for the
thermal camera and its posterior thermal bias correction, this steps were performed to avoid burned or over
exposed images in both RGB and Thermal cameras.

The three video systems and the gold standard were synchronized on acquisition using the timestamp of
the PC.

(d)

Figure 2: From left to right: Depth camera with false colour, Thermal camera, RGB Camera and detail of the pattern placed
on the seatbelt. In the RGB picture the RespiBand system can be appreciated.

All the extraction algorithms were designed to run in real time, but in order to make the study more

reliable and repeatable the video sources were recorded using a custom software based on the OpenCV
framework, to save each video feed as separate video file for further analysis.

Table 1: Camera Specifications

Type Model Resolution FPS FOV (Hx V)  Serial Number

RGB Logitech C920 1920x1080 15 70.42°x43.30° 1611LZOMXLUS

Depth Kinect V1. 640x480 10 58.5%%x46.6° 00353322342
Thermal NEC InfReC G100 320x240 25 32°x24° 1041391 (apr/2011)

2.2. Measurement Protocol

Twenty-one healthy subjects with ages between 20 years and 54 years (Mean: 28.6 years, SD: 6.8), 10
females, 11 males, with height between 160 cm and 190 cm (Mean: 170.8 cm, SD: 7.4 ¢cm) and chest perimeter
between 74 cm and 110 cm (Mean: 88.4 cm, SD: 10.2 cm) volunteered for the study. Each subject gave
their oral informed consent to freely participate in this study, and this study was performed in accordance
with the principles of the Declaration of Helsinki [19]. All the measurements performed comply with the
regulations of the Universitat Politecnica de Catalunya (UPC).

Prior to the measurements, the subjects were asked to put on the RespiBand system, to seat on the
setup and fasten the seatbelt placed at the setup.

The subject was asked to perform four tests. The aim of these were to compare the performance of the
studied methods at different breathing frequencies and with different constraints, such as breathing freely
or reading out loud. In two of the four tests, the subject was asked to breath at a constant frequency (0.1
Hz for the first test and 0.3 Hz for the second test). To do this, a custom visual aid was developed for the
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subject to follow, which consisted on a moving bar with 1/3 of the given period for inhaling and 2/3 for
exhaling. In the third test the subject was asked to breathe freely, finally, in the fourth test the subject
was asked to read out loud a text. Each subject was asked to remain as still as possible during the whole
measurement protocol, all four test had a duration of 3 minutes each with a 30 seconds pause between tests
were the subject was allowed to breathe freely. In total, the whole test duration for each subject was 15
minutes.

2.8. Signal Extraction

Prior to the comparison between the respiration signals from the video sources and the gold standard,
the raw respiration signal had to be extracted from each video source. For this reason custom and propri-
etary algorithms were developed in order to acquire the respiration signal from each source using multiple
approaches such as: pattern recognition or even performing an active tracking of the nostrils region of the
subject [5].

The number of frames extracted from each method to conform the respiratory signal was, accordingly
with the duration of each experiment, 180 s multiplied by F's, where F's was the sampling frequency for
each method. For the RGB camera 2700 frames were extracted, for the Depth camera 1800 frames were
extracted and for the Thermal camera 4500 frames were extracted.

2.3.1. RGB Video

To obtain the raw respiratory signal from the RGB video, a proprietary algorithm [5] has been used
to detect the patterns placed on top of the seatbelt, as shown in Figure 2d. The pattern placed in the
middle was the only one used to extract the raw respiration signal, this pattern was the one that yielded
better results in all the performed tests previous to this analysis. After the detection stage, an optical flow
tracking, by the means of the Kanade-Lucas (KL) algorithm [20, 21], was performed for each frame using
the features extracted from the pattern. Once the new position of the features was extracted for a given
frame, the mean of all the (z,y) coordinates were computed, then a ¢2-norm of the averaged coordinates
was calculated in order to obtain the fiducial point for the frame.
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Raw;i=y/2%,q + Yaug (1)

Where N is the maximum number of features, x4,y is the averaged x component, y,.4 is the averaged y
component and Raw; is the iy, value of the computed respiration signal.

These averaged distances are proportional to the chest movements of the subject, hence to the respiration[22].
The temporal series obtained by the concatenation of all the fiducial points and its timestamps results in
the raw respiration signal of the subject.

2.83.2. Depth Point cloud
In order to extract the raw respiration signal from the depth point cloud, the maximum and minimum
distance between the subject and the camera has been identified. From this region (comprised between the
raw values 500 to 900 mm) the average distance between the subject and the camera was computed [5].
This averaged distance is modulated by the movement of the thorax of the subject, hence proportional
to the respiration[23]. A temporal series obtained by the concatenation of the averaged depth distances and
their timestamps results in the raw respiration signal.



2.3.3. Thermal Video

The extraction of the respiration signal from the thermal video was performed in three different steps:
the first one consisted on training a HAAR cascade classifier algorithm [24, 25] to detect the nose region
automatically. In order to train the classifier, every 18 seconds one frame was extracted from the constant
frequency (0.1 Hz) respiration test, 10 frames were extracted from each subject. After that, the portion of
the nose was selected from each frame and cropped in order to train the cascade classifier.

The second step was performed once the classifier was trained. A generic region of the video that
contained the nose for each subject and test was manually selected, then the classifier was used to detect
the exact position of the nose region. After that, the features (using the ”goodFeaturesToTrack” function of
the OpenCV library [26]) of the resultant region of interest (ROI) were extracted, these features were later
used in combination with the KL algorithm to track the movements of the nose.

Finally, the raw respiration value was extracted by averaging the pixels inside the ROI[9]. The thermal
raw respiration signal was then obtained by appending all these values and its timestamps. These averaged
pixels represent the average temperature of the nostrils produced by the air flow due to the respiration of
the subject.

2.4. Signal Processing

Once the raw respiration signal was extracted from each video source accompanied by the gold standard,
all the signals were normalized in order to compare them with each other. All the signal processing steps
were performed using the Matlab software.

The normalization process was performed using the following steps.

1. The signals were interpolated at 40 Hz using a cubic spline in order to normalize the sample frequencies.
This step was necessary for the video based signals in order to obtain a homogeneous sampled signal
and to correct the possible frame loss due to the delays produced by the different communication
buses that control the cameras (USB 3.0). This step was also crucial because not all the sources were
recorded at the same frame-rate.

2. A bandpass filter between 0.05 Hz and 1 Hz was applied to eliminate undesired components and to
remove the different offsets. The employed filter was a bidirectional Butterworth of 2nd order.

3. A moving median filter was applied to the signal to remove the peaks, induced in the previous step,
by transitory periods produced by the rapid movements of the subject. The length of the filter was
set to three seconds (with a sample length of three times the sample frequency), this length is enough
to smooth the signal and shorter than an average breath cycle.

4. Finally, in order to compress each signal to a known range a non-linear function was applied as
described in the following equation.

S[n]
ELGH-57 , 5

Sp[n] = arctan

(2)

Where S,,[n] is the discrete-time normalized respiratory signal, S[n] is the original signal and S is the
mean of S[n].

This final step transforms each signal to a normalized space, which is crucial in order to compare all
the different methods with the gold standard. Figure 3 shows an example of the difference between the raw
signal and the normalized signal.

After the normalization step was performed, and in order to characterize the error between methods,
the instantaneous frequency (IF) for each one of the normalized signals was extracted. The reason behind
this approach was that this method is used in respiration extraction from ECG [27, 28, 29, 30] and baseline
wander removal [31, 32] and could be easily adapted to analyse respiration signals.

The IF has been defined as follows: the first derivative of the instantaneous phase of the respiration
signal. This step is possible if it is taken into account that the respiration signal can be approximated as
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Figure 3: Comparison between raw signal and normalized signal, signals from Bioplux sensor 0.1 Hz test.

a periodic signal, moreover a narrow-band pass-band filter is applied to the signals eliminating the higher
frequency harmonics, thus allowing to express these signals by the means of the analytic signal.

The extraction of the IF was performed using the following steps:

The Hilbert transform was applied to the normalized respiration signals.

H,[n] = Hilbert(S,[n]) (3)

Where S,,[n] is the discrete-time normalized respiratory signal. Then the instantaneous frequency is esti-
mated from the argument of H[n]:

¢[n]=arg Hy[n]
fem, el <n
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where w[n] is the discrete-time instantaneous frequency in radians, F's is the sampling frequency and IF[n|
is the discrete-time instantaneous frequency in Hz.

Finally, a Hodrick-Prescott [33] filter was applied to the IF signals with a smoothing factor of 2 * 10% in
order to smooth the resulting envelope of the IF. Afterwards, the respiratory IF signals have been aligned
by maximizing the Fisher’s intraclass correlation iterating around one respiration period from the origin.
This step ensures that all the signals have the same alignment, then the aligned signals have been cropped
to the same length.

2.5. Error Characterisation

In order to characterize the error between the studied methods and the gold standard, the standard
deviation of the error (SDE) has been used. The SDE was obtained by computing the difference, for each
sample, between the IF for a given method and the IF of the gold standard, thus conforming the error series.
After the error series was generated the standard deviation was computed for each error series.



Where S[i] is the instantaneous frequency of the studied method, G[i] is the instantaneous frequency of the
gold standard and e[i] is the error series.

3. Results

3.1. Signals

Figure 4a illustrates an example of the processed respiration signals obtained by the different methods
for a given subject during the breathing test at 0.1 Hz.

Figure 4b on the other hand, contains the computed instantaneous frequency (IF) for the respiration
signals shown in Figure 4a for each one of the studied methods. These signals represent the instantaneous
frequency changes as a function of time. The mean of these signals is the fundamental frequency at which
the person is breathing, in this case, given that the subject was instructed to breath at 0.1 Hz, the mean of
the IF is approximately 0.1 Hz.
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Figure 4: 4a From top to bottom the processed respiration signals for each source: BioPlux, RGB Camera, Depth Camera and
Thermal Camera, 4b From top to bottom the instantaneous frequency signals for each source: BioPlux, RGB Camera, Depth
Camera and Thermal Camera.

3.2. Performance

In order to clarify the following figures and tables, a new name agreement has been adopted which
renames the BioPlux signals as "Plux”, RGB Camera signals as ”Pattern”, the Depth Camera signals as
"Depth” and the Thermal Camera signals as ” Thermal”. Also a new naming convention has been applied
for the different breathing frequencies as: 70.1 Hz”, 70.3 Hz”, ”"Free” instead of Free breathing and finally
Reading.



In order to establish a base frequency, the gold standard has been used as a reference. It can be
appreciated in Table 2 that for the 0.1 Hz test the gold standard presents a mean IF of 0.1 Hz and 0.022
Hz of standard deviation and for the 0.3 Hz test it presents a mean of 0.293 Hz and 0.017 Hz of standard
deviation, these two tests have a small standard deviation due to the subject being instructed to breath
approximately at the target frequency for each test.

On the other hand, for the Free test the mean IF is 0.242 with a standard deviation of 0.053; this increase
in the standard deviation can be explained if it is taken into account that every subject has its own natural
breathing frequency, which is determined by the unique physiology of the subject. The same can be applied
for the Reading test with a mean frequency of 0.234 Hz and 0.09 Hz of standard deviation.

In order to obtain the agreement of the different methods with the gold standard the Bland-Altman
plots have been used as well as two different t-test analysis, one to compare the differences of the Bland-
Altman plots to the null bias hypothesis and the other one to compare if the differences between methods
are statistically independent. All the statistical tests were performed using the R software.

Table 2: Mean + Standard deviation for all the tests and methods.
Plux [Hz] Depth [Hz] Pattern [Hz] Thermal [Hz]

0.1 Hz  0.100 £ 0.022 0.098 £ 0.029 0.098 £ 0.036  0.169 £ 0.093
0.3 Hz 0.293 £ 0.017 0.289 £ 0.018 0.289 £ 0.018  0.267 £+ 0.072

Free 0.242 £ 0.053 0.245 £ 0.065 0.236 £ 0.059  0.227 £ 0.094
Reading 0.234 £ 0.09 0.233 £ 0.095 0.237 £ 0.098  0.234 + 0.125

For the Bland-Altman representation, some outliers have been removed from each one of the tests with
the following criteria: if the difference between the mean IF of the gold standard and the mean IF of the
given method exceeded two times the standard deviation of the whole test, then the given subject was
tagged as an outlier and removed from the pool. For the 0.1 Hz test four outliers were removed, for the 0.3
Hz test three outliers were removed, for the Free test five outliers were removed and finally for the Reading
test three outliers were removed from a total of 21 measurements for each test. This criterion was applied
in order to compensate for the measurement errors produced by the consecutive loss of frames during the
acquisition stage, and for the excessive movement of certain subjects that produced errors in the estimation
of the instantaneous frequency. Another important factor in the removal of these outliers was that they had
a negative impact in the statistical analysis of the Bland-Altman differences. Random removal of subjects
for each test did not alter significantly the statistical results.

Figure 5 contains 12 Band-Altman plots comparing the mean IF of the gold standard versus the mean IF
for each one of the studied methods. The columns represent the different breathing frequencies (breathing
at 0.1 Hz, breathing at 0.3 Hz, Free breathing and Reading) and the rows represent the method being
compared to the gold standard. In Figure 6 the magnitudes being compared are the standard deviation of
the IF of the gold standard versus the standard deviation of the IF for each one of the studied methods, in
this case the same representation as in Figure 5 applies.

In Table 3 and Table 4 the mean and standard deviation for each one of the Bland-Altman differences
can be seen (Figure 5 and Figure 6 respectively) as well as the significance for each tests.

Given the results in Figure 5, the most relevant are the ones for the Thermal camera, with special focus
at the 0.1 Hz and 0.3 Hz test which clearly presents a gain error.

In Table 3 the results for the Bland-Altman differences in Figure 5 and its respective mean and standard
deviation are the following: for the Depth and Pattern methods at the 0.1 Hz and 0.3 Hz tests, both present
very significant differences (p < 0.001) if compared to the null bias. Both bias and standard deviation
are very low as well and practically negligible for both methods as the differences can be due to statistical
fluctuation.
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Figure 5: Bland-Altman plots for each one of the methods and frequencies of the mean IF.

The central dashed line for each plot represents the mean of the points, the two upper and lower dashed line represent the
confidence level given by the mean plus/minus the 95% of the standard deviation of the points, finally the dashed grey line
represents the zero-mean line.

For the Free test, the Depth method presents a p < 0.05 for the null bias test and an increased standard
deviation if compared to the previous tests, for the Reading test the standard deviation almost doubles the
one in the Free test but it can also be appreciated that there are no significant differences in the null bias
t-Test.

Regarding the Pattern method, the Free test presents a p < 0.001 for the null bias t-test, and an increased
bias and standard deviation if compared to the previous tests. For the Reading test it can be appreciated an
increased standard deviation up to six times greater than the Free test, but with no significant differences
in the null bias t-Test.

The Depth and Pattern methods do not present significant differences if compared between each other.

For the Thermal method, the bias at 0.1 Hz, 0.3 Hz and Free test exceeds all the bias of the other two
methods given the same tests. The 0.1 Hz test presents a p < 0.001 for the null bias t-test, with a bias and
standard deviation of one order of magnitude greater than the other two methods for the same test. The
0.3 Hz test presents a p < 0.05 for the null bias t-test, with the same characteristics as the 0.1 Hz test. Both
tests present very significant (0.1 Hz test) and significant differences (0.3 Hz test) if compared to the other
two methods. Finally, the Free and Reading tests both presents no significant differences in the null bias
t-test and neither in the comparison between methods, with both bias and standard deviation of the same
order of magnitude as the previous tests.

The Bland-Altman representation of the standard deviation of the studied methods versus the gold
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Table 3: Mean + SD of the differences in the Bland-Altman plot in Figure 5, for the mean IF.

Depth [mHz] Pattern [mHz] Thermal [mHz] Significance
0.1 Hz -2.119 + 0.660  -2.052 + 0.765  67.045 + 26.213 sok; A4 VWi NS 1 00
0.3Hz  -3.857 4+ 1.444  -3.888 + 1.511  -27.247 + 30.109 sk 44V NS 1 o

Free -4.483 + 8.348 -7.032 + 3.100 -24.933 £ 56.106 *;##: NS;NS; NS; NS
Reading -3.067 £+ 16.482  0.275 4+ 18.761 5.366 + 37.945 NS;NS;NS; NS; NS; NS

The results for the null bias t-test are represented as follows, ”*” for the Depth, "#” for the
Pattern and finally ”Vv” for the Thermal Bland-Altman differences. The results for the t-test
between methods are represented as follows, ”1” for the Depth vs Pattern, ”1” for the Depth

vs Thermal and finally ”¢” for the Pattern vs Thermal. Regarding the significance: " NS” for
p > 0.05, 7%” for p < 0.05 and ”*x” for p < 0.001.

standard, has special interest for us as it shows the relationship between the frequency range of the gold
standard versus the frequency range of the studied methods, this is important as we are not only interested
in characterising the studied methods for the mean respiration frequency but also in its variability.

Considering the results in Figure 6, the most relevant are the ones for the Thermal camera, with special
focus at the 0.1 Hz and 0.3 Hz test which clearly presents a gain error. For the Free test it can also be
appreciated a gain error but not as clearly seen as in the previous tests.

In Table 4 the results for the t-test analysis of the Bland-Altman differences in Figure 6 are the following:
for the Depth method, there are two relevant results for the null bias t-test, the 0.1 Hz test which shows
a p < 0.001 and the Free test which shows a p < 0.05, for the other tests all results are non-significant.
For the Pattern method, there are two relevant results for the null bias t-test, the one for the 0.1 Hz test
that shows a p < 0.001 and the one for the Free test which shows a p < 0.05, the remaining tests are all
non-significant.

Table 4: Mean + SD of the differences for the Bland-Altman plot in Figure 6, for the standard deviation of the IF.
Depth [mHz] Pattern [mHz] Thermal [mHz] Significance
0.1 Hz 481 + 3.413 12432 + 6.469 71308 & 21.521 s 44 VV; T 1 00
0.3 Hz  -0.46 £+ 0.936 -0.115 + 2.329 54.887 £ 30.135 NS; NS;VV;NS;if;00
Free  7.562 + 9.997  4.612 + 6.783  50.753 & 30.282 % #;VV; NS; 11; 00
Reading  3.554 + 10.488  7.314 + 15.262  37.079 + 24.641  NS; NS; VV; NS; 11; 00

The results for the null bias t-test are represented as follows, ”%” for the Depth, ”#” for the
Pattern and finally ”V” for the Thermal Bland-Altman differences. The results for the t-test
between methods are represented as follows, 71" for the Depth vs Pattern, ”1” for the Depth
vs Thermal and finally ”¢” for the Pattern vs Thermal. Regarding the significance: " NS” for
p > 0.05, 7+ for p < 0.05 and ”*x” for p < 0.001.

Regarding the results of the t-test between methods only for the 0.1 Hz test there is significant differences
between the Depth method and the Pattern method, for the rest of the tests all results are non-significant.

Finally, the Thermal method show both bias and standard deviation one order of magnitude greater
than the ones presented for the other two methods. All tests all tests show a p < 0.001 for the null bias
t-test. And for the comparison between methods, all results yield a p < 0.001 between the Thermal method
and the other two methods.
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Figure 6: Bland-Altman plots for each one of the methods and frequencies of the standard deviation of the IF.

The central dashed line for each plot represents the mean of the points, the two upper and lower dashed line represent the
confidence level given by the mean plus/minus the 95% of the standard deviation of the points, finally the dashed grey line
represents the zero-mean line.

3.8. Error Characterisation

Given the SDE for all methods and subjects, a Shapiro-Wilk test [34] was applied for each SDE, grouped
by methods, in order to determine if the SDEs could be approximated by a normal distribution. Two of the
three error groups (Plux vs Depth and Plux vs Pattern) where not normal.

For this reason, non-parametric statistical tests have been employed. First a Friedman test [35] was
applied in order to compare the three methods for all the given frequencies. A Wilcoxon-Nemenyi-McDonald-
Thompson post-hoc test [35] was applied in order to confirm the relationship between each one of the error
groups.

The Table 5 shows the results of the post-hoc tests as well as the median and interquartile range for each
one of the four respiration frequencies and for each one of the three error groups.

4. Discussion and Conclusions

Taking into account the results of the RGB camera and the Depth camera by the Bland-Altman analysis
[36] on Figure 5 and Table 3; for the first two tests (0.1 Hz and 0.3 Hz) it can be appreciated that the limits
of agreement are very close to the mean difference, this indicates a high agreement between the studied
methods and the gold standard. The results shown are practically identical with non-significant differences
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Table 5: Median and Interquartile Range [25% — 75%)] of the standard deviation of the error for each one of the methods and
breathing frequencies.

Plux Vs Depth [Hz] Plux vs Pattern [Hz] Plux vs Thermal [Hz] Significance

0.1Hz  0.018 [0.016 - 0.019] 0.024 [0.019 - 0.027] 0.096 [0.084 - 0.102] NS; #4: VV
03Hz  0.011 [0.008 - 0.014] 0.013 [0.009 - 0.018] 0.074 [0.049 - 0.092] NS; #4; VV
Free 0.038 [0.014 - 0.052] 0.021 [0.015 - 0.034] 0.106 [0.073 - 0.114] NS; #:; VvV
Reading  0.091 [0.073 - 0.117] 0.096 [0.079 - 0.126] 0.14 [0.131 - 0.155] NS; #4; v

The given results for the different post-hoc test are represented as follows, ”+” for the interaction
between Plux vs Depth and Plux vs Pattern, ”#” for the interaction between Plux vs Depth and
Plux vs Pattern and finally ”V” for the interaction between Plux vs Pattern and Plux vs Thermal.
Regarding the significance: " N.S” for p > 0.05, ”V” for p < 0.05 and ”VV” for p < 0.001.

between each other; this could indicate a high agreement between both methods and the gold standard.
For both tests and methods the bias is practically negligible. Although the t-test results indicate significant
differences between the mean differences and the null bias (p < 0.001), this can be explained if it is taken
into account that the standard deviation of the differences is close to zero.

In the analysis of the Free breathing test, in both methods the bias and limits of agreement have
increased if compared to the previous tests, this increase could be caused by the non-periodic nature of
the respiration signal during the test and by the unique morphology of every subject, which determines
their natural breathing frequency. If both methods are compared at the Free test, it can be appreciated
that the RGB camera presents more bias than the Depth camera but a lower standard deviation, but if
it is taken into account the t-test between each other, which yields non-significant differences, a possible
explanation for these differences could be statistical fluctuation. As far as the null bias t-test results go, the
same explanation as the 0.1 Hz and 0.3 Hz test can be applied.

Regarding the reading test on both methods, while the standard deviation increases if compared to the
previous tests it maintains the same proportion as in the Free test. This increase in the standard deviation
can be explained if it is taken into account that for this test the subjects were asked to read out loud a text,
therefore producing unique variations to the respiration signals for each subject; this variations translate
into a greater standard deviation than the previous tests. Regarding the t-test results for both methods,
non-significant differences can be found in both the null bias hypothesis and the difference between methods.

Given the statistical results and its aforementioned interpretation for all the tests of the Depth and
Pattern methods, we can observe that the Depth method yields slightly better results than the Pattern
method in the Free test but almost identical results in the other tests.

Finally, for the results of the Thermal camera, in the first two tests (0.1 Hz and 0.3 Hz) a gain error can
be appreciated, this can be explained as a possible bias between the sampling frequency of the camera and
the one used to process all the data. It can also be appreciated for the null bias t-test a p-value inferior to
0.001 for the 0.1 Hz test and a p-value inferior to 0.05 for the 0.3 Hz, this results are a direct consequence
of the gain error presented in the Bland-Altman plot. For the Free and Reading its standard deviations are
far greater than the ones in the other methods for the same tests but without gain error. Regarding the
t-test analysis, both tests yield non-significant differences for the null bias hypothesis, regarding the results
of the t-test between methods they show very significant differences when compared with both the Pattern
method and the Depth method.

Given the results of the Bland-Altman analysis in Figure 6 and Table 4; for the RGB camera and
Depth camera, for the 0.1 Hz test the bias of the RGB camera is almost three times the bias of the Depth
camera, this indicates that the RGB camera has lower performance than the Depth camera if compared
to the gold standard for this test. Regarding the t-test between this methods, a p < 0.001 can be seen
which indicate significant differences between this methods for the given test. This could be due to the
fundamental frequency of the test being close to the high-cut frequency of the filters used. Regarding the
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0.3 Hz test, both methods perform similarly with practically the same bias and with slight differences in the
standard deviation but with no significant differences between each other. In the Free and Reading test on
the other hand, an increase in the bias and standard deviation for both methods can be appreciated, this
can be caused by the unique morphology of each subject as explained above. Referent to the null bias t-test
analysis, both methods present a p < 0.001 for the 0.1 Hz test, they present a p < 0.05 for the free test and
non-significant differences for the 0.3 Hz and Reading test. The results for the 0.1 Hz test can be due to the
fundamental frequency of the test being close to the high-cut frequency of the filters used.

In this case the Depth method yielded better results than the Pattern method in the controlled tests (
0.1 Hz and 0.3 Hz) and slightly better results in the Free and Breathing tests.

Regarding the Thermal method, a gain error at 0.1 Hz, 0.3 Hz and Free test can be seen, these gain
errors can be interpreted in the same way as the ones presented in Figure 5. The standard deviation for all
four tests is also very high if compared to the other two methods, and this could be interpreted as a low
agreement between the studied method and the gold standard. Regarding the null bias t-test analysis, all
the tests yield a p < 0.001 which also indicated a low agreement between the gold standard and this method.

Referring to the standard deviation of the error (SDE) given the results in Table 5 Depth yields a low
median SDE with a narrow inter quantile range (IQR) for all tests, the Plux vs Pattern method also yields
a low median SDE and a narrow IQR range, this implies a high agreement between the gold standard and
the studied methods. For the Plux vs Thermal method the median of the SDE practically doubles the other
two for every test and it also presents a wider IQR range which implies that this method presents a very
high variability compared with the gold standard. This means a low agreement between the gold standard
and the Thermal method.

For all methods, an improvement has been shown in the median and IQR when the respiration frequency
increases. This can be clearly seen in the 0.1 Hz test as the median is greater than the one presented for
the 0.3 Hz test for all methods, the same applies to the IQR range. This increase on the median could be
due to 0.1 Hz being too close to the high-cut frequency of the filters applied to the processing stage.

As far as the interactions between the SDE of the methods and given the results of the post-hoc tests,
non-significant differences between the SDE of the Plux vs Depth and the Plux vs Pattern are shown, this
could indicate a likeness between these two methods. For the Plux vs Thermal SDE significant differences
between the other two methods can be found (p < 0.001), which imply that this method yields different
results than the other two.

There were several limitations to the study, the first one was the number of subjects that participated
in the study, not all the tests could be included due to errors during the acquisition stage or due to errors
during the signal extraction stage (being of special relevance in the case of the thermal camera), only the
data of 21 subjects of 23 could be used.

The second limitation of the study was the errors introduced to the thermal signal (occlusion of the
nostrils, sudden movements...) due to the subject’s movement during the test. Although we tried to
correct this issue by applying optical flow tracking to the region of the nostrils, these movements still
induced some error on the Thermal signal.

The third limitation was, due to the limitations aforementioned, that the signal from the Thermal
camera was not as close to a sinusoid as the other two methods are, thus producing errors to the processed
Instantaneous Frequency.

Because all the tests were performed in a very controlled environment, it cannot be assured that the
conclusions would be still valid in a light changing or moving environment [1], for this reason we will perform
further studies in different environments such as light changing conditions (fast or slow) and in environments
that present vibrations which will certainly affect the results of the tracking and depth algorithm.

Regarding the feasibility of using these methods from a technical point of view, the Pattern method is
the one with less sophisticated hardware, but on the other hand relies on a pattern placed on the subject
to work. The Depth method relies on a more sophisticated hardware (an IR camera with a laser projector)
but it does not need any external factor to work. Finally the Thermal method is the one with the most
sophisticated hardware and requires of a complete calibration each time a measurement is done.
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In conclusion, the Depth and Pattern methods can be used to acquire respiration rhythm and respiratory
variability in controlled environments. Both yield very good results compared with our gold standard, with
differences between these methods and the gold standard in the order of mHz in both mean and standard
deviation.

For the Thermal method, it cannot be discarded directly because of the limitations explained above,
but as shown in the results it performed poorly compared with the other two methods. Further studies
are needed to confirm that these methods can be used as a reliable tool to acquire respiration in real life
conditions; such as light changing environments or where the movements of the subject have a negative
impact to the respiration acquisition using these methods.
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