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ABSTRACT. Purpose: Biomedical sensors often exhibit cardiogenic ar-
tifacts which, while distorting the signal of interest, carry useful hemo-
dynamic information. We propose an algorithm to remove and extract
hemodynamic information from these cardiogenic artifacts. Methods:
We apply a nonlinear time-frequency analysis technique, the de-shape
synchrosqueezing transform (dsSST), to adaptively isolate the high- and
low-frequency components of a single-channel signal. We demonstrate
this technique’s effectiveness by removing and deriving hemodynamic
information from the cardiogenic artifact in an impedance pneumography
(IP). Results: The instantaneous heart rate is extracted, and the cardiac
and respiratory signals are reconstructed. Conclusions: The dsSST is
suitable for generating useful hemodynamic information from the cardio-
genic artifact in a single-channel IP. We propose that the usefulness of the
dsSST as a recycling tool extends to other biomedical sensors exhibiting
cardiogenic artifacts.

1. INTRODUCTION

The popularity and quality of physiological measurement devices have
grown significantly in recent years [21]. These devices see increasing ap-
plicability because of fields like mobile health [14, 23]. In critical clinical
scenarios like the intensive care unit or the operating room, we are able to
afford multiple sensors, each one optimized to monitor a specific physiologi-
cal system. A typical example is the patient monitor commonly seen at the
bedside. However, this is not always the case. For example, in an ambulance,
only a few sensors are available, and for most mobile health applications,
only one or two sensors are used. Even in environments where patient moni-
tors are present, due to technical problems, we may not be able to trust the
quality of the information recorded. For example, when the respiratory flow
channel is dead, we can count on the respiratory information hidden in the
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photoplethysmogram (PPG). Therefore, every bit of information is precious
in any scenario.

We want to maximize the quantity of clinical information extracted from
physiological signals. The main challenge is separating information which
has been mixed together in one channel. For example, the respiratory infor-
mation exists as the amplitude modulation of the electrocardiogram (ECG),
while it exists as the low-frequency component of the PPG signal. Further-
more, the cardiac information exists as the high-frequency component of
the respiratory flow signal, etc. In general, when this mixing of signals
appears as the sum of multiple oscillatory components, the task of separating
them could be understood as the single channel blind source separation
(scBSS) problem. Under some conditions, the problem can be easily solved
by applying a bandpass filter. When extra channels are available, an adaptive
filtering scheme can be helpful. A more sophisticated approach is required
when only one channel is available.

The scBSS problem is more complicated when we enter the field of mobile
health because of the presence of artifacts. The term “artifact” refers to an
element of the recording that is irrelevant to the information in which we have
interest. Usually, artifacts are not modeled as random noise but rather as a
signal with some structure. When the artifact’s structure follows a set of rules,
these rules can help us remove the artifact. If the rules are physiological, we
may even turn the artifact into useful physiological information, and this is
our target in this paper. Typical examples include the cardiogenic artifact in
the respiratory signal or the respiratory artifact in the PPG signal. We focus
on the scBSS problem when there is only a single recorded channel available.
We use a nonlinear-type time-frequency filtering strategy to extract as much
information as possible from a single-channel recording.

1.1. Cardiogenic artifacts. Take the commonly seen cardiogenic artifact
in biomedical measurements as an example of maximizing information
quantity. Cardiogenic artifacts come from the blood volume movement in
the thorax [1] and may mask the physiological information in which we
have interest. Examples of measurements in which cardiogenic artifacts
may be observed include the impedance pneumography (IP) [5, 12, 25], the
respiratory inductive plethysmography (RIP) [30], thoracic or abdominal
movements recorded via piezo-electric band [10], the capnogram [20], the
electroencephalogram [24] and the esophageal pressure signal [18]. Pub-
lished algorithms intended for clinical deployment have focused on removing
cardiogenic artifacts using techniques such as digital filtering [15, 26], adap-
tive filtering [12,29], template subtraction via the electrocardiogram [18,19],



RECYCLING CARDIOGENIC ARTIFACTS IN IMPEDANCE PNEUMOGRAPHY 3

the synchrosqueezing transform [11], or blind source separation [24]. Re-
moving the cardiogenic artifact enhances and clarifies the information re-
layed to medical professionals; it accurately estimates the main information
present in the recording and allows for its prudent utilization.

Filtering out the cardiogenic artifact to enhance the main signal is a
strategy suitable for clinical deployment because of the variety of resources
available in such settings; hemodynamic information may be measured using
standard methods such as the electrocardiogram. However, when only a few
channels are available, the cardiogenic artifact is valuable because it provides
additional physiological information. Utilization of the cardiogenic artifact
has been suggested and applied several times in the past. For example, in a
thoracocardiography [2, 17], cardiac output is estimated by first separating
the cardiac waveforms from the dominant respiratory signal. In [10], the
authors suggest using the cardiogenic artifact in thoracic and abdominal
movements via piezo-electric band to detect central sleep apnea.

1.2. Our contributions. In this paper, we apply two recently developed
nonlinear-type time-frequency (TF) analysis techniques, namely the syn-
chrosqueezing transform (SST) and the de-shape SST (dsSST), to achieve
the scBSS task and hence maximize the quantity of physiological informa-
tion which may be extracted from an individual signal. We demonstrate
how to estimate instantaneous heart rate (IHR) from the cardiogenic artifact
in a single-channel IP, and we use this estimate to separate the IP into its
respiratory and hemodynamic components. The algorithm is applied to
nineteen patients undergoing bronco-endoscopies for the sake of diagnos-
ing pulmonary disease. The MATLAB code is made publicly available so
that our methods may be reproduced and applied to other signals for other
purposes.

2. MODELING THE CARDIOGENIC ARTIFACT

We model the cardiogenic artifact by the wave-shape function and the
adaptive non-harmonic model [9, 27]. The adaptive non-harmonic model is
motivated by a need to describe oscillatory physiological phenomena such
as respiration and cardiac activity. There are several facts about oscillatory
physiological signals that interest us. The amplitude of the oscillation,
the cycle period, and the oscillation pattern may vary from one cycle to
another. Moreover, one physiological signal may not contain only one
oscillatory component. Take the IP into account, whose primary purpose is
to measure respiration. The amplitude becomes larger and the cycle period
becomes longer when taking a deep breath, and the oscillatory pattern might
change when the inhalation and exhalation pattern changes. In addition to
the respiratory oscillation in the IP, the cardiac activity is also recorded as
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another oscillatory component. Since this recorded cardiac activity is not the
main purpose of the IP, it is commonly viewed as nuisance and called the
cardiogenic artifact. Due to heart rate variability, the cardiac activity also
has a time-dependent period and might have a time-varying amplitude and
oscillatory pattern.

Clearly, these signals cannot be modeled using simple harmonic functions
or without regard to the time-varying nature of their morphologies. In [27],
the following adaptive non-harmonic model is proposed to capture signals
of this kind:

(1) f (t) =
L

∑
l=1

al(t)sl(φl(t))+Φ(t),

where f is the recorded signal, L describes the number of oscillatory compo-
nents, al(t) describes the amplitude of the lth oscillatory component (which
is assumed to be positive), sl describes the oscillatory pattern of the lth

component (which is assumed to be 1-periodic), φl describes the phase of
the lth component (which is assumed to be monotonically increasing so
that 1/φ ′l (t) describes the period of the cycle at time t), and Φ is assumed
to be the noise that contaminates the signal. We call al(t) the amplitude
modulation (AM) of the lth component. Note that the inverse of the period
of a cycle is in general understood as the frequency, so φ ′l (t) is called the
instantaneous frequency (IF) of the lth component. Finally, sl is called the
wave-shape function, which captures the oscillatory pattern of the lth signal.
The model is called “non-harmonic” since the oscillation is non-sinusoidal.
For the IP, L = 2 since it contains not only the respiratory signal, but also
the cardiogenic artifact. See Fig. 1 for an example.

This model is also considered in several other works, for example, [7,8,28].
Mild assumptions are needed for the adaptive non-harmonic model to be
well-behaved. The model in (1) is further expanded in [9] to capture the
time-varying oscillatory pattern. The generalized model described in [9] is
more complicated, but its essence is the same as that in (1), and (1) is enough
for the purpose of this work. Therefore, to keep the discussion simple, we
satisfy ourselves with (1) to avoid distracting the focus. We refer readers
with interest to [9] for technical details.

3. THE DE-SHAPE SYNCHROSQUEEZING TRANSFORM

Motivated by biomedical signals and the adaptive non-harmonic model
(1), the dsSST is designed in [9] as a signal processing tool to extract
information from f defined in (1). We summarize the dsSST here. Again,
to avoid convoluting the main idea of this paper with technical details, the
following description will be kept light, and the interested reader can find
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FIGURE 1. An illustration of modeling the IP by the adaptive
non-harmonic model. We plot (from top to bottom) the respi-
ratory component, the hemodynamic component, generated
noise, and the recorded IP. We highlight the respiratory wave-
shape function (s1) and the cardiac wave-shape function (s2)
on the right-hand side.

rigorous mathematical details in [3, 4, 9]. Readers familiar with speech
processing will recognize a cepstral device which is also employed when
calculating mel-frequency cepstral coefficients for audio signals. [16]

We start by discussing how the well-known short-time Fourier transform
(STFT) behaves on a given signal f satisfying (1). In general, the STFT
aims to capture how the signal oscillates at different times by truncating the
signal into pieces. Specifically, with a chosen window function h, such as a
Gaussian function centered at the origin, the STFT is defined as

(2) V (h)
f (t,ξ ) =

∫
f (τ)h(τ− t)e−i2πξ (τ−t) dτ ,

where t ∈R indicates time and ξ ∈R indicates frequency. We call |V (h)
f (t, ·)|2

the spectrogram of the signal f at time t, since it represents the power spec-
trum of the truncated signal f (·)h(·− t) around t.

The motivation of the dsSST is the following fact. Due to the non-
sinusoidal oscillation, at each time t, we will see dominant peaks around the
fundamental frequency and its multiples in |V (h)

f (t, ·)|2. When there are mul-
tiple oscillatory components in f , multiples of the fundamental frequency of
one component may mask the fundamental frequency of another component.
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Moreover, it is often difficult to determine whether a ridge in the spectrogram
corresponds to a multiple or a fundamental tone. We thus want to find a
way to filter out these multiples while preserving the fundamental frequency
of each component. The dsSST contains as key ingredients two nonlinear
operators for this purpose. These two operators are based on exploring
the information hidden in the STFT itself, namely the symmetry structure
between phase and frequency, and the phase information.

The first nonlinear operator takes into account the symmetry structure
between phase and frequency in order to decouple the dynamical information
in which we have interest (such as the IF of each component) from the
artifacts (multiples) which arise when the wave-shape functions are non-
sinusoidal. To achieve this goal, note that when the wave-shape function of
a component is non-sinusoidal, there is an oscillatory pattern in the power
spectrum |V (h)

f (t, ·)|2 whose cycles show at the fundamental frequency and its
multiples. A naive idea which follows is that the frequency of this oscillation
provides information about the period of the signal f . We take into account
the old cepstrum idea in signal processing [13] and derive the short-time
cepstral transform (STCT) for use in our dynamical setup. The STCT is
defined by

(3) C(h,γ)
f (t,q) :=

∫
|V (h)

f (t,ξ )|γe−i2πqξ dξ ,

where γ > 0 is sufficiently small and q ∈ R is called the quefrency (its unit
is seconds or any feasible unit in the time domain). The reason for taking
the γ th power of |V (h)

f (t,ξ )| is delicate. While |V (h)
f (t,ξ )|2 does oscillate,

the amplitude of this oscillation changes from one cycle to another. To
remove the influence of this amplitude modulation, we could take the natural
logarithm of |V (h)

f (t,ξ )| so that the amplitude modulation is decoupled as
a “low-frequency component.” (The remaining signal consists of cycles
of constant amplitude.) However, taking the natural logarithm might be
unstable numerically, so we use the approximation |V (h)

f (t,ξ )|γ , called the
“soft logarithm.” Systematic exploration in this regard can be found in [9].
Ultimately, we obtain the fundamental period and its multiples in C(h,γ)

f (t, ·).
The nonlinear mask for the spectrogram is given by

(4) U (h,γ)
f (t,ξ ) :=C(h,γ)

f (t,1/ξ ),

where ξ > 0 is given in Hz. This nonlinear mask is designed by taking the
fact that the two main quantities describing oscillation, namely period and
frequency, are inverse to one another. Since C(h,γ)

f (t, ·) captures the funda-

mental period and its multiples at time t, U (h,γ)
f (t, ·) captures the fundamental
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frequency and its divisions. Since the common information in V (h)
f (t, ·) and

U (h,γ)
f (t, ·) is now the fundamental frequency, we can remove multiples from

the STFT by

(5) W (h,γ)
f (t,ξ ) :=V (h)

f (t,ξ )U (h,γ)
f (t,ξ ),

where ξ > 0 is interpreted as frequency. The final TF representation is
|W (h,γ)

f (t,ξ )|2, which is a nonlinearly filtered spectrogram. This step could
be viewed as applying a nonlinear filter to the signal to remove the influence
of the wave-shape function.

The second nonlinear operator takes the phase information in the STFT
into account to further sharpen the nonlinearly filtered spectrogram. This
nonlinear operator is produced by applying the synchrosqueezing transform
[3, 4], namely

(6) SW (h,γ,υ)
f (t,ξ ) =

∫
|W (h,γ)

f (t,η)|2δ|ξ−Ω
(h,υ)
f (t,η)| dη ,

where ξ ≥ 0 and δ means Dirac measure, and the reassignment rule Ω
(h,υ)
f

is determined by

(7) Ω
(h,υ)
f (t,ξ ) :=

 −ℑ
V (Dh)

f (t,ξ )

2πV (h)
f (t,ξ )

when |V (h)
f (t,ξ )|> υ

−∞ when |V (h)
f (t,ξ )| ≤ υ .

Here, Dh(t) is the derivative of the chosen window function h, ℑ means the
imaginary part, and υ > 0 gives a threshold so as to avoid instability in the
computation when |V (h)

f (t,ξ )| is small. SW (h,γ,υ)
f is what we call the dsSST,

and SW (h,γ,υ)
f (t, ·) provides a sharpened spectrogram of the oscillatory signal

at time t that is free of the influence of the wave-shape function.

3.1. Discrete Case. The continuous signal f is uniformly sampled over
a discrete set of time points with sampling interval ∆t > 0. The sampling
rate is hence fs = ∆

−1
t . Suppose the recording starts at time t = 0. Write

the uniformly sampled signal as a column vector f ∈ RN , where N is the
number of samples and the `-th entry of f is f (`∆t). We index our vectors and
matrices beginning with 1. Choose a discrete window function h ∈R2K+1, a
discretization of a chosen window h, which satisfies h(K +1) = 1. We say
that 2K +1 is the window length. Write h′ ∈ R2K+1 for the discretization
of the derivative of the window function. For example, a discrete Gaussian
window (and its derivative) with standard deviation σ > 0 sampled over the
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interval [−0.5,0.5] at a sampling interval of 1
2K could be

h(k) = e
−( k−1

2K −0.5)
2

2σ2(8)

h′(k) =−
(

k−1
2K
−0.5

)
h(k)
σ2 ,(9)

where k = 1, . . . ,2K +1. Introduce a parameter M so that 2M is the chosen
number of pixels in the frequency axis of our time-frequency representation.
Evaluate the STFT of f, a matrix Vf ∈ CN×2M whose entries are

(10) Vf(n,m) =
2K+1

∑
k=1

f(n+ k−K−1)h(k)e
−i2π(k−1)(m−1)

2M ,

where f(l) := 0 when l < 1 or l > N, n = 1, . . . ,N is the time index. and
m = 1, . . . ,2M is the frequency index. Next, evaluate the STCT of f. The
STCT is a matrix Cf ∈ CN×2M whose entries are

(11) Cf(n,m′) =
2M

∑
m=1
|Vf(n,m)|γe

−i2π(m−1)(m′−1)
2M ,

where γ > 0 is the chosen power parameter and m′ = 1, . . . ,2M is the que-
frency index. We crop Cf and consider only the first M+1 columns asso-
ciated with the positive quefrency axis. The inverted STCT of f is a matrix
Uf ∈RN×(M+1). For each time index n, consider the function gn : [0,∞]→R
whose known values are

gn

(
1

m−1

)
= Cf(n,m) m = 1, ...,M+1.(12)

The entries of the inverted STCT are calculated by interpolation:

Uf(n,m) = gn

(
m−1
2M

)
.(13)

The de-shape STFT of f, a matrix Wf ∈CN×(M+1), is given by the pointwise
product

(14) Wf(n,m) = Vf(n,m)Uf(n,m) ,

where n = 1, . . . ,N and m = 1, . . . ,M+1. To sharpen Wf, we first calculate

(15) V′f(n,m) :=
2K+1

∑
k=1

f(n+ k−K−1)h′(k)e
−i2π(k−1)(m−1)

2M .

We choose a threshold υ > 0 and calculate the reassignment operator

ΩΩΩ
υ
f (n,m) =

{
−ℑ

V′f(n,m)
Vf(n,m)

N
2π(2K+1) when |Vf(n,m)|> υ

−∞ when |Vf(n,m)| ≤ υ .
(16)
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The dsSST of f, a matrix SWυ
f ∈ CN×(M+1), is finally given by the formula

SWυ
f (n,m) = ∑

l;m=l−ΩΩΩ
υ
f (n,m)

Wf(n, l).(17)

We could also use the reassignment operator to obtain the SST of f, denoted
as SVυ

f ∈ CN×(M+1), using the formula

SVυ
f (n,m) = ∑

l;m=l−ΩΩΩ
υ
f (n,m)

Vf(n, l).(18)

3.2. Numerical implementation. We provide numerical details for both
the discrete dsSST and the discrete SST. First, to decrease the computational
load, when suitable, we suggest to evaluate the STFT of f ∈RN at only a sub-
set of its N sampling points. For example, choosing a “hop” of s∈N samples
means we calculate only those rows Vf(n, ·) for which n = s,2s, . . . ,bN

s cs.
Here, bxc means the largest integer smaller than x > 0. Second, we take the
real part of the STCT and lift negative entries to zero. Third, we select a
least upper bound u > 0 on the fundamental frequency of all components
expected in f . This bound allows us to eliminate envelope information from
the STCT below the quefrency 1/u. When performing reassignment in both
the dsSST and the SST, the threshold υ is selected by taking the pth quantile
of the values{

|Vf(n,m)| : n = s,2s, ...,
⌊

N
s

⌋
s, m = 1, ...,M+1

}
.(19)

Selecting p to be a higher quantile results in the removal of noise. Since the
STFT may exhibit large changes in norm over time, the threshold is deter-
mined as a function of each time point m = 1, ...,M+1. When calculating
the inverted STCT, we use shape-preserving piecewise cubic interpolation.
Finally, we suggest to remove the low-frequency information below l > 0
from all of our time-frequency representations because it tends to domi-
nate the visualization. For example, in this paper, based on physiological
knowledge, we remove information below the frequency 0.1 Hz. MATLAB
code for performing all of the above-mentioned time-frequency analysis
techniques is available at https://github.com/jrvmalik.

4. RECYCLING ALGORITHM

The recycling algorithm is demonstrated by extracting hemodynamic in-
formation from the cardiogenic artifact in the IP. Our recycling algorithm
uses information solely from the IP. There are two steps to our algorithm.
First, the IHR information is extracted from the dsSST of the IP. The pa-
rameters for the dsSST are given in Table 1. Parameters were chosen in an
ad hoc fashion. The IHR is deemed to be the dominant curve in the dsSST

https://github.com/jrvmalik
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exceeding 50 beats per minute (bpm). This dominant curve is extracted by
performing the following optimization [3, (15)]:

curve= arg max
c∈NbN

s c


bN

s c
∑
k=1

SWυ
f (ks,c(k))−λ

bN
s c

∑
k=2

[c(k)− c(k−1)]2

 .

(20)

The dominant curve curve is a function of a subset of the sampling points
of f and assumes positive integer values between 1 and M+1. The second
term in the objective functional penalizes the curve for performing large
jumps in the frequency axis between two consecutive time points; that is, it
controls the regularity of the extracted heart rate. Our implementation relies
on a choice of λ = 1. Applying a linear transformation using the sampling
rate fs of f yields an estimate ÎHR for the IHR in beats-per-minute (bpm):

(21) ÎHR(k) :=
60× fs(curve(k)−1)

2M
,

where k = 1,2, . . . ,
⌊N

s

⌋
. In our numerical experiments, the search for the

dominant curve includes the following additional steps. First, perform time-
averaging of the deshape matrix to obtain a power spectrum-like signal

Pf(m) :=
bN

s c
∑
k=1
|SWυ

f (ks,m)|2 ,(22)

where m = 1, ...,M+1. Next, detect the maximum

τ = argmax
{

Pf(m) : 50≤ 60× fs(m−1)
2M

}
.(23)

The figure τ plays the role of an initial heart rate range estimator. Finally,
optimize (20) while ensuring that the optimizer c ∈ Nb

N
s c satisfies the con-

straint

50≤ 60× fs(c(k)−1)
2M

≤ 60× fs(τ−1)
2M

+30(24)

for all k = 1, ...,
⌊N

s

⌋
. In other words, the extracted curve may exceed the

initial heart rate estimate by at most 30 bpm. This extra step reduces the
risk of detecting a non-vanishing multiple of the cardiac frequency when
no human input is provided into the curve extraction process. Indeed, as is
discussed in [9], harmonics may sometimes not be completely eliminated, or
artifacts may arise due to issues like a missing fundamental tone, stacked
harmonics, or numerical instability when inverting the discrete STCT.

We evaluate the effectiveness of the IHR estimation in the following way.
Using the accompanying electrocardiogram, the ground-truth IHR, which is
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TABLE 1. Parameters for the SST, the dsSST, and curve extraction

Parameter Value (IHR extraction) Value (source separation)

Input Sampling Rate fs 64 Hz 64 Hz
Window Length 2K +1 4001 samples 4001 samples
Window Type Gaussian Gaussian
Frequency Resolution M 15000 15000
Reassignment Quantile p 60 0
Hop s 16 samples 1 sample
Power γ 0.3 N/A
Lower Bound l 5

6 Hz 0.1 Hz
Upper Bound u 4.0 Hz 2.0 Hz
Heart Rate Search Range 50-240 bpm N/A
Curve Penalty λ 1 N/A

viewed as a continuous function on R, is sampled at ri with the value 1
ri−ri−1

,
where ri is the location (in seconds) of the ith R peak in the electrocardiogram.
Suppose there are NR detected R peaks. Using shape-preserving piecewise
cubic interpolation over {ri,

1
ri−ri−1

}NR
i=1, we recover the ground-truth IHR

series, IHR ∈ Rb
N
s c, where the k-th entry of IHR is the ground-truth IHR at

time ks
fs

in bpm. The following root mean square error (RMSE) metric is

used to compare the estimated heart rate, ÎHR, to the ground-truth heart rate,
IHR.

RMSE =

√√√√ 1⌊N
s

⌋ bN
s c

∑
k=1

[
IHR(k)− ÎHR(k)

]2
.(25)

Note that these values appear in units of beats-per-minute (bpm). In clinical
practice, physicians make decisions based on the ongoing heart rate, which
is an average over a maximum delay of 10 seconds of the IHR, according
to the ANSI/AAMI standard [6]. For this clinical need, we consider IHR10,
which is the signal obtained after applying a 10-second bi-directional moving
average filter to IHR, and we evaluate the 10-second RMSE, defined as

RMSE10 =

√√√√ 1⌊N
s

⌋ bN
s c

∑
k=1

[
IHR10(k)− ÎHR(k)

]2
.(26)

The second step in our algorithm is the separation of the cardiac and
respiratory signals. The respiratory signal is isolated using an approach
which may be viewed as applying an adaptive time-varying bandpass filter,
which is nonlinear in nature. The theoretical foundation has been established
in [4, Theorem 3.3], and the technique was used previously in several places,
for example, [10]. The respiratory signal r ∈Rb

N
s c is reconstructed from the
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SST of f as

(27) r(k) =Re

 ∑
m;0.1≤ (m−1) fs

2M ≤ ÎHR(k)
60 −0.2

SVυ
f (ks,m)

M

 ,

where k = 1,2, . . . ,
⌊N

s

⌋
and Re denotes taking the real part. Removing the

respiratory signal r from the IP f yields an approximation of the cardiac
signal. Since the cardiac signal may contain unwanted low-frequency infor-
mation coming from the spectral linkage of the respiratory signal and noise,
we apply a bi-directional highpass third-order Butterworth filter with cutoff
frequency 0.5 Hz as a post-processing step, and we add the low-frequency
component back to the separated respiratory signal.

4.1. Comparison with other approaches. To achieve a fair comparison,
we compare our algorithm with other existing methods. While we are the
first to focus on reconstructing the cardiac signal from the IP signal, other
algorithms have indirectly achieved a reconstruction of the cardiac signal
in their attempts to clarify the respiratory signal. In [15], the cardiogenic
artifact is extracted from the thoracic impedance signal using a smoothing
cubic spline filter. We implement the same smoothing cubic spline filter
with a cutoff of 0.5 Hz. Since the ground-truth cardiac activity present in the
IP recording is difficult to assess, only a qualitative comparison of the two
algorithms is provided.

We may, however, augment the filtering in [15] with one of two spectral
methods to achieve an estimate for the IHR which rivals the dsSST approach.
To show that the advantages of the dsSST include a cancellation of respiratory
harmonics exceeding the threshold 0.5 Hz, we do the following. First,
remove the low-frequency component of the IP and obtain the signal fhi.
Second, estimate the IHR by either: extracting the dominant curve from the
SST SVυ

fhi
in the range 50-240 bpm, or determining the highest peak in the

power spectrum (DFT) of fhi in the range 50-240 bpm. The curve extraction
method applied to the SST matrix is the same as the curve extraction method
applied to the dsSST matrix. To evaluate whether the proposed recycling
algorithm surpasses these two additional estimates for the IHR, we apply
a one-sided Wilcoxon signed-rank test under the null hypothesis that the
difference between the pairs follows a symmetric distribution around zero.
We consider the significance level of 0.05.

5. RESULT

We retrospectively analyze a data set containing IP signals from a prospec-
tive, randomized study conducted at the tertiary medical center, Chang Gung
Memorial Hospital, in Linkou, New Taipei, Taiwan. The study protocol
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FIGURE 2. We plot short segments of two impedance pneu-
mographies. The first segment is out-of-range and was re-
jected; the second signal was judged to be of high quality and
was included in our analysis.

was approved by the Chang Gung Medical Foundation Institutional Review
Board (No.104-0872C). All of the enrolled patients provided written in-
formed consent. IP signals were recorded using the Philips Patient Monitor
MP60 from subjects undergoing procedural sedation during bronchoscopy
examinations for the sake of pulmonary disease diagnosis. The IP signals
were recorded at a sampling rate of 64 Hz. Thirty-five subjects were enrolled
in the study.

The 35 recordings were examined for over-saturation (i.e. out-of-range).
We attempted to select a contiguous, in-range, 10-minute segment from each
recording. Eleven subjects were excluded from our analysis because no such
segment existed. Five subjects were excluded because the corresponding
electrocardiogram was of low quality. Nineteen subjects were left for our
analysis. In Fig. 2, we show two impedance pneumographies; the first signal
is a typical over-saturated signal and was rejected, and the second signal was
judged to be suitable and was included in our analysis.

A portion of the dsSST of a 10-minute IP is displayed in Fig. 3. In red, we
show the ground-truth IHR obtained from the corresponding electrocardio-
gram. The estimate ÎHR for the IHR is obtained by extracting the dominant
curve in the dsSST. In blue, we superimpose the original IP. In gray, we
superimpose the corresponding electrocardiogram. In Table 2, we show the
RMSE and RMSE10 values for the 19 segments selected for analysis. The
RMSE and RMSE10 values for all subjects were 2.29±0.74 bpm (mean ±
standard deviation) and 1.62±0.78 bpm, respectively.

Discrepancies between the ground-truth IHR and the IHR estimated from
the dsSST can be explained by visually inspecting both signals. In Fig. 4,
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FIGURE 3. We plot the squared modulus of the dsSST of a
3-minute IP. In red, we show the ground-truth IHR obtained
from the corresponding electrocardiogram. The estimate for
the IHR is obtained by extracting the dominant curve in the
dsSST. In blue, we superimpose the original IP. In gray, we
superimpose the corresponding electrocardiogram.

TABLE 2. Heart rate estimation error by different methods

dsSST SST HPF
RMSE RMSE10 RMSE RMSE10 RMSE RMSE10

Subject 1 2.26 1.48 2.26 1.48 12.62 12.49
Subject 2 1.69 0.70 1.69 0.70 1.91 1.09
Subject 3 3.11 1.10 3.59 2.05 5.56 4.70
Subject 4 2.41 1.42 2.61 1.74 3.11 2.39
Subject 5 2.59 2.19 42.81 42.76 45.77 45.72
Subject 6 3.13 3.54 1.25 1.06 4.18 4.01
Subject 7 2.03 1.43 2.01 1.40 2.55 2.07
Subject 8 2.27 1.46 2.38 1.63 3.22 2.71
Subject 9 1.78 1.36 2.41 2.11 2.72 2.44
Subject 10 2.02 1.31 2.04 1.32 8.39 8.22
Subject 11 3.77 2.57 3.82 2.63 4.13 3.03
Subject 12 1.16 0.75 1.16 0.76 1.88 1.63
Subject 13 1.77 0.94 1.76 0.93 4.10 3.79
Subject 14 3.73 3.41 3.10 2.80 26.88 26.86
Subject 15 2.17 1.70 2.18 1.71 2.42 1.97
Subject 16 2.20 1.54 3.25 2.79 4.66 4.30
Subject 17 2.82 1.68 2.83 1.67 3.92 3.17
Subject 18 1.45 1.26 1.46 1.26 62.41 62.40
Subject 19 1.14 0.87 1.11 0.90 2.14 1.95

Mean 2.29 1.62 4.41 3.77 10.66 10.26
Standard Dev. 0.74 0.78 9.08 9.21 16.14 16.31
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FIGURE 4. We visually examine the IHR estimate afforded
by the dominant curve in the dsSST. We show the ground-
truth IHR determined from the electrocardiogram in red, the
estimated IHR in blue, and the mean-filtered ground-truth
IHR in green.

we show the ground-truth IHR in red, the estimated IHR in blue, and the
mean-filtered ground-truth IHR in green. Evidently, the estimated IHR
coincides with the trend in the ground-truth IHR, and the error between the
estimate and the ground-truth arises from high-frequency fluctuations in the
beat-to-beat interval series.

In Fig. 5, we show the result of the second step of our algorithm: separation
of the cardiac and respiratory signals. At the top of each plot, we show a
segment of the clarified respiratory signal in blue overlying the original
IP in gray. At the bottom of each plot, we show a segment of the cardiac
signal in red, aligned with the original electrocardiogram in gray. Note
the correspondence between the electrocardiogram’s wave-shape and the
extracted cardiac signal’s wave-shape.

In Table 2, we show the heart rate estimation error for the two additional
methods described in 4.1. These methods were derived from the existing
lowpass filter approach to clarifying the respiratory signal [15]. The heading
SST indicates that the dominant curve was extracted from the time-frequency
representation SVυ

fhi
, and the heading HPF indicates that the IHR was es-

timated by finding a local maximum in the power spectrum of the filtered
signal fhi. It is clear that by using the SST, we can obtain a reasonable
estimate for heart rate information in the majority of cases. The deshape
step improves the result in the most difficult cases. Finally, the quality of
the HPF estimate is not as good as the SST or dsSST estimates. For exam-
ple, subject 1 possessed a heart rate which was steadily increasing over the
duration of the recording, resulting in high RMSE and RMSE10 values for
the HPF method. The power spectrum of subject 11’s filtered IP signal did
not decay quickly enough, resulting in an IHR estimate close to 50 bpm
for the HPF method. The power spectrum of subject 14’s filtered IP signal
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FIGURE 5. We show the separation of the respiratory and
cardiac signals. At the top of each plot, we show the respira-
tory signal in blue and the IP in gray. At the bottom of each
plot, we show the extracted hemodynamic signal in red. In
the middle of each plot, we show the simultaneously recorded
electrocardiogram in gray.

contained strong cardiac harmonics which overpowered the fundamental car-
diac frequency. The synchrosqueezed spectrogram of subject 5 contained a
dominant respiratory harmonic, resulting in a poor IHR estimate for both the
HPF and SST estimation methods. Evidently, the HPF and SST estimation
methods are not immune to detecting respiratory harmonics, while the HPF
method suffers when the signal is noisy and when the heart rate changes
significantly during the recording. The Wilcoxon signed-rank test showed
a statistically significant improvement in RMSE (respectively RMSE10)
by the proposed dsSST algorithm over the SST method with the p-value
4.36×10−2 (respectively 3.35×10−2). In comparison with the HPF method,
the p-statistics for improvement in RMSE (respectively RMSE10) were both
less than 10−4.

See Figure 6 for a qualitative comparison of the extracted hemodynamic
signal by the proposed recycling algorithm and the highpass filter described
in [15]. It is clear that the oscillatory pattern of the hemodynamic signal
extracted by the highpass filter is less regular.



RECYCLING CARDIOGENIC ARTIFACTS IN IMPEDANCE PNEUMOGRAPHY 17

FIGURE 6. We compare the separation of the respiratory and
cardiac signals by different approaches. The IP is shown
in gray, over which the extracted respiratory signal by the
proposed recycling algorithm is shown in blue. Below the
IP signal, the ECG signal is shown in gray. The extracted
hemodynamic signal by the proposed recycling algorithm is
shown in red, and the extracted hemodynamic signal by the
high pass filter of [15] is shown in green.

6. DISCUSSION AND CONCLUSION

We recycle the physiological information, the cardiogenic artifact, that is
commonly discarded from biomedical measurements such as the IP signal.
Our algorithm retrieves IHR information and extracts the oscillatory signal
reflecting the hemodynamic activity. The corresponding MATLAB code
is made publicly available so that our methods may be reproduced. The
dsSST succeeds by masking respiratory harmonics in the spectrogram of the
IP signal, allowing the fundamental frequency of the cardiac component to
be unambiguously estimated. This time-varying estimate is used to guide
an adaptive filtration of the IP signal, leading to a separation of the cardiac
and respiratory signals. Algorithms which were previously used to remove
cardiogenic artifacts cannot lead to a robust IHR estimate because they fail to
disregard respiratory harmonics. In our demonstration, which was performed
on real signals recorded from 19 subjects, the RMSE and RMSE10 values for
the heart rate estimation stage were 2.29±0.74 bpm and 1.62±0.78 bpm,
respectively. A comparison with other approaches confirms the superiority
of the proposed recycling algorithm. This result indicates that the proposed
recycling algorithm can provide an accurate estimate for the heart rate over
a 10-second time frame. When only a limited number of sensors is available,
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this algorithm maximizes the amount of information which can be relayed
to medical professionals.

It is worth noting that the output of our algorithm should be trusted when
the original signal is properly recorded. In general, the accuracy of any
algorithm degrades if the signal is not properly recorded. In the case of
the IP, when the signal is out-of-range, there is no information recorded,
and no cardiogenic artifact can be analyzed. Practitioners should ensure
that their monitoring devices are properly set up. Additionally, to avoid
the out-of-range issue, a signal quality index could indicate how much we
should trust the result.

We discuss some points specific to the IP. Since the hemodynamic in-
formation extracted by the first step of our algorithm tends to align with a
mean-filtered version of the ground-truth IHR signal, its suitability for HRV
analysis might not be optimal. We are able to account for low-frequency
variability, but high-frequency variability is typically unobserved. Hence,
while it could provide extra information about heart rate with accuracy less
than 2 bpm, we should use the extracted hemodynamic information as merely
an auxiliary resource when doing traditional HRV analysis.

Second, although the respiratory and cardiac signals have well-separated
frequencies, the multiples associated with the non-sinusoidal wave-shape
function approximating the respiratory signal are not negligible. This is the
main reason why the performance of the highpass filter is not comparable
with the proposed recycling algorithm – it is non-adaptive to the signal.
For patients with higher respiratory rate, the multiples will have a stronger
influence on the heart rate spectrum. The same reason explains why the
SST performs worse – the existence of multiples associated with the respi-
ratory signal contaminates the heart rate information. On the other hand,
when multiples associated with the IP signal are not too strong, the adaptive
time-varying bandpass filter strategy in (27) provides a reasonable-enough
recovery of the respiratory signal, and hence the cardiac oscillation. Note
that in this IP example, the possible clinical application of the recovered
cardiac waveform needs further exploration; for example, it would be in-
teresting to ask which hemodynamic information could be extracted by
analyzing its morphology. For other biomedical signals, particularly when
the frequencies of different components are close and/or the wave-shape
functions are complicated, we may need a more sophisticated approach for
the separation. For example, to extract the fetal electrocardiogram from
the trans-abdominal maternal electrocardiogram, due to the overlapping of
spectra of the wave-shape functions approximating the oscillatory patterns
of the fetal and maternal components, the manifold learning approach (e.g.
non-local Euclidean median) is needed to achieve an efficient separation [22].
A systematic study in this regard will be reported in the near future.
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Finally, we mention that the proposed model and our algorithm has the
potential to be applied to other oscillatory biomedical signals in the field
of health monitoring, where the goal is to transform numerical information
(hidden or not) from any of the growing number of measurement devices into
a format which can be delivered to and interpreted by medical professionals.
However, we also need to mention that the proposed model and algorithm
do not take structured noise (in addition to the cardiogenic artifact) into
account, which is the main challenge when dealing with mobile devices.
Thus, to apply the proposed model and algorithm to mobile devices for
mobile health, more environmental information or extra channels are needed
to help deal with the inevitable noise artifacts. We will systematically explore
this potential in our future work.
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