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L. Rodriguez-Lifiares®*, D.M. SimpsonP

®Department of Computer Science, Universidade de Vigo, 32004 Ourense, Spain
b Institute of Vibration and Sound Research, University of Southampton, Southampton SO17
1BJ, United Kingdom

Abstract

Heart rate variability is commonly quantified following spectral estimation.
However, it is often difficult to obtain continuous recordings of beat-to-beat
intervals without interruptions due to artefacts, noise or sporadic arrhythmias.
Such data loss may be seen as gaps in the recordings, and often results in such
signals being discarded. While a number of methods has been proposed for
spectral estimation in heart rate records with gaps, there are no
comprehensive comparisons between them. This paper tries to fill this void,
comparing methods and identifying the most versatile and reliable one.

The mean (bias error) and standard deviation (random error) of estimates
of power in the low frequency band (LF), from 0.04 to 0.15 Hz; in the high
frequency band (HF), from 0.15 to 0.4 Hz; and their ratio (LF/HF), were
calculated in RR-interval time-series with up to 50% of samples missing
through large or small gaps introduced into recordings.

‘Correlogram (bridging)’ and ‘Burg for segments’ methods proved to be the
most robust methods for dealing with gaps, but Burg for segments was found to
be more robust, especially in the HF band. Our results clearly show that even
large gaps (covering a total of 50% of the recording time) can still yield robust
spectral estimates of HRV, provided appropriate methods are used.

Keywords: Heart rate variability, biomedical signal processing,
electrocardiography, spectral analysis, data loss

1. Introduction

Cardiovascular diseases are the most important cause of death in the world
[1]. Consequently, much effort has been devoted to providing systems and
algorithms to help to detect and classify cardiac disease and dysfunction of
cardiovascular control, including that of the autonomic nervous system [2].
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Heart rate variability has become a much used tool in this area [3, 4] as well as
in others, such as psychophysiology [5].

Heart rate (HR) is calculated as the number of heart-beats per unit of
time, usually per minute. However, heart rate is not constant, presenting
variations caused by a range of environmental, physiological and psychological
challenges, which stimulate the various cardiovascular control mechanisms [6].
Heart rate variability (HRV) refers to these beat-to-beat alterations in heart
rate (or more commonly in the time interval between successive heart beats).
It is most commonly measured from the Electrocardiographic signal (ECG),
based on the interval between successive R-waves (RR interval). For the
assessment of autonomic nervous system function, spectral analysis is then
often carried out. In such analyses, LF (low frequency) components (from 0.04
to 0.15 Hz), are commonly assumed to be influenced by both sympathetic and
parasympathetic systems, whereas HF (high frequency) components, (from
0.15 to 0.4 Hz), estimate the parasympathetic tone and are primarily related
to the respiratory rhythm [6]. The LF/HF ratio can then be used as an index
of the sympathovagal balance [4].

A major problem in the analysis of HRV (as well as in many other
biomedical signals) are the often unavoidable artefacts, which can render the
data useless. In the case of the ECG, which is the most common signal from
which HRV is found, the artefacts can be provoked by external sources, such
as electrical interferences, or internal sources, such as muscle activity or
patients’ movements. In addition, some arrhythmias, including occasional
ectopic beats, represent an important source of distortion in spectral estimates
that may occur in both normal subjects and patients with heart disease and
should be generally excluded from spectral estimation [6], [7].

The importance of even one aberrant beat in spectral estimation was
highlighted in [§]. To illustrate this point, Fig. [I| shows the spectral distortion
introduced in a heart-beat record with just one ectopic beat, characterized by
an unusually short RR interval followed by a long one. We selected a record
from the MIT-BIH Normal Sinus Rhythm Database that contains four such
ectopic beats and used a procedure similar to the one used in [7] to assess their
impact: we compared the AR (autoregressive) spectra of a segment containing
the ectopic beat (segment B), against the previous (segment A) and the
following (segment C) segments. Each segment is approximately 5 minutes in
duration, as recommended [4]. Given that the subject was at rest, similar
spectra might be expected, and that is indeed observed for segments A and C,
but segment B shows large deviations in the region from about 0.2 Hz
upwards. Results such as these (and worse cases) motivate the current paper.

Some techniques have been proposed in the literature to deal with ectopic
beats such as interpolation [9], integral pulse frequency modulation (IPFM) [7],
phantom beats [I0] or non-linear filtering [I1]. However, the main drawback of
many of these approaches is that they do not deal adequately with longer gaps
in the normal heart-rhythms that may be introduced by artefacts, data loss or
changes in physiological status, e.g. due to intermittent changes in respiratory
or activity patterns.
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Figure 1: Record 16483 of the MIT-BIH Normal Sinus Rhythm Database: (a) ECG segment
with ectopic beat, (b) heart rate of the segment containing the ectopic beat, and (c) AR-
spectra of segments before, after, and centered on the ectopic beat.



The current paper brings together and compares a number of different
methods for spectral estimation with gapped data, for the specific application
on HRV time-series. The objective is to assess methods when up to 50% of the
data is missing. Such records with large amounts of missing data are often
discarded, or shortened to using only the longest good quality segments.
Alternatively, short gaps are commonly interpolated from adjacent samples,
followed by the application of standard spectral estimation algorithms. These
approaches are either inefficient in terms of data usage or raise some concern
about the robustness of results [I2]. This paper is focused on testing
established methods such as Burg for segments [I3] and Lomb-Scargle [I4],
and in addition some modifications of standard spectral estimation
approaches. The aim is to assess if spectral estimators for signals with gaps
improve on these more commonly used alternatives and which of the methods
should be recommended.

2. Methods

When trying to perform spectral estimation from missing data, two
alternatives arise: a) reconstruct the data by estimating (imputing) samples in
the gaps and then proceed as if the signal had no gaps, or b) use a spectral
estimation method that uses only the available data and can deal with
interrupted (gapped) recordings. The first group includes methods such as
concatenation or variants of interpolation (nearest neighbour, linear, cubic,
splines, etc.) [9, 12, [15]. These methods are often used, but their acceptability
depends on the characteristics of the data and the size and distribution of the
gaps present in the signal [12]. The second group estimates the spectral
characteristics of the signal by using variants of spectral estimators tailored to
deal with the gaps. These include the correlogram and Yule-Walker [16], Burg
algorithm [I7], as well as the Lomb-Scargle method [I4] [I8], where in the
latter the gaps are viewed as a special case of irregular sampling. The Welch
method, which is probably the most used technique for HRV spectral
estimation, cannot be applied directly in data with gaps because the discrete
Fourier transform (DFT) requires all samples in each window; thus it is not
included in the analysis.

2.1. Concatenation

The simplest approach when there are gaps or unusable portions in the
signal is to ignore them and join the remaining segments [0, [5]. This
procedure evidently introduces large transients in the time-domain signal and
hence spectral distortion, as it will be shown in the section.

Several studies have previously recommended avoiding this method [15] [19]
20], but is included here to assess the impact of this approach, whose evident
benefit is simplicity and thus may be tempting.
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Figure 2: (a) An example of a complete RR interval signal and the same with gaps (grey)
replaced by linear interpolation (red). (b) The corresponding spectra of the complete signal
(black), of the interpolated version (red) and the approach recommended in this paper that
does not require interpolation (Burg for segments — see below, in blue).

2.2. Interpolation

Whereas concatenation effectively ignores the gaps and joins the remaining
segments, interpolation attempts to fill the gaps with estimated values.

This approach can be useful when dealing with short gaps such as caused
by ectopic beats [9, [15], 21], but it is obvious that this is not suitable for long
ones. For comparison purposes, we used linear interpolation in our tests. Fig.
[2 shows an interpolated RR sequence where gaps that are 10 s long covering a
total of 40% of the signal.

One problem when using linear interpolation is that it introduces
discontinuities at both ends of the gaps. Higher order interpolation methods
attempt to alleviate this problem, replacing missing data by smooth segments
ensuring continuity with the remaining signal. However, our tests with cubic
interpolation showed that, as commented in [22], it can also result in huge
excursions (over- or under-shoots) in the added segments that invalidate using
this method, even for some relatively short gaps.



2.3. Correlogram

The correlogram method of spectral estimation is a well-known method that
first estimates the autocorrelation sequence of the signal and then uses the
Fourier transform to obtain the power spectral density (PSD) [I6]. In practice,
this means finding the product of samples with a fixed lag and averaging these
over the full duration of the signal and then repeating this process over lags
from zero to a maximum value chosen by the user. This may be viewed as
an operation with a sliding window (whose length corresponds to the chosen
maximum lag in the autocorrelation function) passing over the signals, and
for each sample in the signal, its product with all samples in the window is
calculated. The final autocorrelation is given by the average of these products
for each lag.

Gaps are easily introduced in this method as zeros, allowing conventional
methods for cross-correlation estimate to be applied. The effect of the zeros must
then be compensated for by correcting the denominator in averaging, excluding
all samples that involve the gaps (zeros). However, it may be possible that
some frames (windows) enclose a gap in its entirety with non-zero signal values
at each side of the gap. How to deal with these cases gives two possible variants
of this method:

(i) Bridging over the gaps:
In this case, the correlogram method is applied without modification:
some frames will include gaps and portions of valid signal on both sides.
As a consequence, the number of samples used at each lag may vary
erratically, as some samples may be used at small and large lags, but not
for intermediate values.

(ii) Not bridging over the gaps:
Gaps are expanded by inserting zeros to ensure that the signal segments at
both sides of gaps are always in different frames. As a result, the number
of samples used at each lag decreases monotonically, as it would in signals
without gaps. Once a sample is excluded at one lag in the current window
(because the lagged sample falls into a gap), it cannot be included again
at a larger lag, even if in the original recording that sample was available,
at the other side of the gap. This approach is thus expected to lead to
less erratic variations in the autocorrelation estimate than the previous
method. One disadvantage of this approach is that some information is
discarded, with the correlation between samples before and after gaps not
being exploited.

In the current work, the correlogram method was applied by sliding a boxcar
window of length 120 samples over the signals, i.e. the autocorrelation function
was limited to 120 samples.

2.4. Yule-Walker method

Yule-Walker AR estimation method (or autocorrelation method) tries to fit
an autoregressive model by sliding a window over the input data and minimizing



the forward prediction error [I6]. This leads to the Yule-Walker equations,
which can be solved efficiently using Levinson’s recursion. This may be viewed
as closely related to the correlogram method, but rather than assuming that
the autocorrelation is zero for lags greater than the window (frame) size, the
autocorrelation is now extrapolated based on an autoregressive model fitted to
the first few lags (corresponding to the model order) of this function. In both
these methods the signals are being viewed as the result of filtering white noise.
In the case of the correlogram method, this filter is a finite impulse response
(FIR) filter, for Yule-Walker, this is an autoregressive (infinite impulse response
— IIR) filter.

As with the correlogram method, there are again two variants of this
approach, which differ in the way they deal with data around the edges of
gaps: taking them into account for the estimation (bridging the gaps) or not
(not bridging the gaps).

2.5. Lomb-Scargle method

Lomb proposed a method for estimating Fourier transforms of unequally
spaced segments of signals [14]. This method was later improved by Scargle,
who applied it to the problem of detection of signals in astronomical time series
[18]. Signals with gaps may be considered signals where observation times are
not evenly spaced.

The key idea of the Lomb-Scargle method is to try to estimate an
individual Fourier coefficient for every frequency of interest. For each
frequency, it computes the spectral density from the amplitudes of a
least-squares fit of the sum of a sine and a cosine fitted to the available
observations. This works well when the signal under study is composed of a
periodic component contaminated by noise, but the method is limited in
modelling the shape of the spectrum [10] 19 23].

2.6. Burg algorithm for segments

In AR modelling, the Burg algorithm [I7] is often regarded as the preferred
estimator. It involves the direct estimation of so called reflection coefficients &,
that minimize the sum of the forward and backward prediction errors, using a
recursive algorithm.

The Burg algorithm has been adapted to be used in cases where data is
not continuous but given in separate segments. The usual approach in these
cases is to take the average of the coefficients of the models estimated from
the individual segments [24]. This approach tends to introduce bias when the
number of segments increases. For this reason, we used the solution proposed
n [13], that consists of estimating the reflection coefficients k, by minimizing
the fit of the AR(p) model to all segments simultaneously. As the correlogram
without bridging and the Yule-Walker method, this approach does not take the
correlation between samples before and after gaps into account.



Record | Length | Beats Segment
16265 22:14:22 | 100243 | 38000 - 38300
16483 21:08:19 | 104334 | 46500 - 46800
17052 21:13:20 | 87356 | 24000 - 24300
18177 | 24:15:30 | 115911 | 28000 - 28300
19088 20:10:13 | 97961 | 49500 - 49800
19830 21:06:05 | 109332 | 29000 - 29300

Table 1: Segments from the MIT-BIH Normal Sinus Rhythm Database selected to act as seeds
to create the surrogates.

3. Experimental setup

In order to test and compare all the algorithms, we used a Monte-Carlo
approach: we computed AR parameters from HRV records available in a public
database [25] and from these we generated sets of surrogate data. In this data we
introduced gaps to test the capability of the various algorithms to still provide
robust estimates. The great benefit of surrogate data analysis is that the ‘true’
spectrum is known in advance, and all estimates can be compared to this. This
overcomes the problem of using recorded HRV signals where there is always
doubt as to which of the estimates is ‘correct’ or ‘better’. Surrogate data analysis
also allows the statistics of estimation errors (bias, random errors) to be assessed
from a large ensemble of signals with identical statistical properties.

The work was carried out with in-house software, using the Python
programming language and Spectrum libraries [26]. For the Lomb-Scargle
estimate, we used the WEFDB software package [27] available from the
Physionet repository [25].

8.1. Creating the surrogates

The MIT-BIH Normal Sinus Rhythm Database [25] includes annotated long-
term recordings of subjects with no significant arrhythmias. From this database,
we selected six recordings and the RR annotations provided with them. We
selected one segment from each recording following the recommendations for
HRV spectral analysis given in [4]: 300 s (5 minute) segments obtained under
physiologically stable conditions (see Table . The segments were randomly
selected after visual inspection to guarantee that they met the criteria of being
physiologically stable and without artefacts. The selection was made blindly,
with no a priori knowledge of their spectral characteristics.

Fig. [3] shows the segment extracted from recording 16265. A different set
of segments could have been tried, but considering that their role is only to act
as seeds for the surrogate data, similar results can be expected from a different
selection of ’typical’ recordings. The segments were linearly interpolated at
4 Hz and their mean values removed, such that only the variability in heart
rate is analyzed. Note that the Lomb-Scargle method was also applied to the
interpolated signals (with or without gaps), and not simply to the sequences of
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Figure 3: Segment from recording 16265: (a) original signal, and (b) spectra of original
segment (periodogram and AR order 50) vs mean periodogram of surrogates.

RR intervals for each heart-beat record (as used in some previous works [28]),
to facilitate comparison with other methods.

From each of these segments, we estimated AR parameters using the Burg
method. Then, using each of the AR models and independent white Gaussian
noise, we generated 1000 surrogate signals of length 300 s (1200 samples) thus
giving a total of 6000 surrogate records. AR model orders between 8 and 20
have been recommended for HRV signals [4] 29] 30] and for the current data
the Akaike Information Criterion (AIC) suggested model orders greater than
10. However, in order to avoid bias in the comparison of spectral estimates
which may arise from generating AR signals with the same model order as will
be used in the AR spectral estimates, we opted to simulate the signals with an
exaggerated model order of 50. This will give spectra with more detail than can
be captured by the lower order AR spectral estimates (see section) and
allow a fairer comparison between techniques. Fig. [3|illustrates the simulations
by comparing periodograms and AR spectra obtained from one original segment



(recording 16265) and its surrogates.

8.2. Introducing gaps

Many methods to deal with gaps are focused on short interruptions in the
signals (like gaps provoked by ectopic beats). In our research, we wanted to test
also the robustness of the methods studied with long gaps typically produced
by artefacts, such as those due to movement, muscle activity, poor contact or
other sporadic loss of data.

For this purpose, we used two gap lengths: 3 and 10 seconds. Average
RR intervals in the selected segments range from 0.6 to 0.9 s, approximately.
Introducing 3 s gaps assures that, in all cases, the removed segments include at
least a beat and the two adjacent ones, as it is required to remove completely
the spectral distortion caused by an ectopic beat. For larger gaps, we assumed
10 s to be a reasonable value to simulate sporadic loss of data.

In both cases, we generated gaps in the surrogates covering 10, 20, 30, 40 and
50% of the signal duration. The gaps were inserted into the data iteratively: a
position in the file was randomly selected and a gap inserted if it did not overlap
with a previous one; if there was overlap, another position was selected. As the
interpolation frequency was 4 Hz, 3 s and 10 s gaps overed 12 and 40 samples,
respectively.

8.8. Assessing the algorithms

Spectral estimation in short-term HRV recordings are commonly analyzed
according to three main spectral bands: VLF (Very Low Frequency, 0.003 to
0.04 Hz), LF (Low Frequency, 0.04 to 0.15 Hz), and HF (High Frequency, 0.15
to 0.4 Hz) [4]. Among these bands, the most used in HRV studies are the
higher ones (LF and HF), which were included in our evaluation of the spectral
estimation methods, along with the LF/HF ratio.

For each estimation method, each subject and each gap distribution pattern,
mean and standard deviation of power across surrogates were calculated for
bands LF and HF and for the LF/HF ratio.

In order to compare numerically the different methods, we needed a compact
way of assessing the algorithms. For this reason, we used the mean Normalized

absolute Bias Error (|N BE |) and mean Coefficient of Variation (C'V') for each
estimation method, each gap pattern and each band. These parameters were
calculated as follows:

(i) Mean Normalized absolute Bias Error

INBE| = mean

surrogates

Sgaps — 5
S

where Syqps is the estimate of the parameter under study (LF and HF
power and their ratio) obtained from the surrogate with gaps and S is

the same parameter obtained from the signal without gaps. The absolute
values of NBE are used, since the difference (Sgqps —S) can ge positive or
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negative, which would lead to a smaller mean value. The mean value was
calculated by averaging over all 6000 surrogates.

(ii) Mean Coefficient of Variation

sd (SgaPS)

CV = —
hont mean (Sgqps)

subjects

where the mean and standard deviation (sd) of Sgqps are obtained from
the 1000 surrogates belonging to each subject, and their ratio is averaged
across subjects.

|INBE| quantifies the bias error induced by the gaps and its value
corresponds to an error/signal ratio, whereas CV quantifies the random
scatter in estimates.

4. Results

Figs. 4] and [5| show the mean and standard deviation of power in bands LF
and HF and the LF/HF ratio obtained with all the methods for surrogates for the
subject 16265 (the other subjects gave similar results) when the percentage of
gaps increases. Fig. [4]corresponds to 3 s gaps, whereas Fig. [f]includes results for
10 s gaps (i.e. less frequent but longer gaps). Also included is the value obtained
from estimating PSD using the periodogram method on the surrogates with no
gaps. The left plots represent bias error whereas the right plots show the random
error in the estimates, and as expected, there is a general increase in standard
deviation of estimates as the amount of data lost increases. There are some
cases where the standard deviation decreases with increasing data loss, but this
generally occurs when the mean value of the estimates also drops. Very clearly,
some of the methods are better than others in providing a stable estimate with
increasing amount and number of gaps. Note that results could be quite erratic
for the correlogram not bridging over gaps and Yule Walker bridging over gaps,
leading to very high standard deviations. For the sake of clarity these results
were therefore not included in the plot.

Table |2| summarizes the results averaged across all surrogates for each gap
pattern. It also includes, for each gap length, the average results across the
different percentages of gaps (from 10 to 50%). Each cell contains two values:
INBE| (up) and CV (bottom). Best results of these parameters for each gap
pattern (and their average) are emphasized by shading. It should be noted that
the bias for each method at 0% gaps is zero, since bias is always calculated with
respect to this condition.

4.1. Concatenation and linear interpolation

For these approaches, the spectral power was calculated using the
periodogram method.

As said before, concatenation is the method used when ectopic beats are
simply removed from the signal. This is disastrous for spectral estimation:

11
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No Missing data (3 s gaps) Missing data (10 s gaps)
gaps| 10% 20% 30% 40% 50%  Awvg. 10% 20% 30% 40% 50%  Awvg.
~ |0.000][0.076 0.117 0.167 0.211 0.320 0.178 | 0.081 0.107 0.144 0.176 0.255 0.153
Concatenation | 10010908 0.215 0.232 0.250 0.272 0.236 | 0.208 0.223 0.237 0.252 0.278 0.240
Linear 0.000| 0.061 0.127 0.180 0.219 0.281 0.174 | 0.084 0.168 0.234 0.318 0.387 0.238
interpolation [0.198|0.201 0.203 0.206 0.211 0.213 0.207| 0.206 0.216 0.228 0.244 0.255 0.230
Correlogram |0.000| 0.001 0.004 0.005 0.008 0.018 0.007 | 0.001 0.003 0.006 0.006 0.008 0.005
(bridging) |0.174| 0.187 0.202 0.220 0.245 0.275 0.226 | 0.185 0.199 0.227 0.255 0.277 0.229
Correlogram |0.000| 0.001 0.005 0.078 0.112 0.590 0.157 | 0.001 0.003 0.006 0.005 0.033 0.010
LE (no bridging) |0.174| 0.195 0.230 0.280 0.317 0.517 0.308 | 0.185 0.198 0.222 0.250 0.275 0.226
Yule-Walker |0.000] 0.002 0.006 0.011 0.013 0.159 0.038 | 0.002 0.004 0.004 0.007 0.007 0.005
(no bridging) |0.192| 0.215 0.255 0.309 0.368 1.812 0.592 | 0.205 0.221 0.248 0.281 0.328 0.257
Yule-Walker |0.000| 0.100 0.068 0.226 0.515 0.631 0.308 | 0.167 0.068 0.144 0.317 0.404 0.220
(bridging) [0.192| 1.458 0.643 2.723 4.457 4.830 2.822 | 2.267 0.611 1.624 3.793 4.416 2.5/2
0.000| 0.166 0.338 0.537 0.783 1.095 0.584 | 0.142 0.308 0.592 0.915 1.307 0.653
Lomb-Scargle | 1941 0,195 " 0.202 0.210 0.225 0.241 0.215 | 0.201 0.210 0.221 0.233 0.248 0.223
Burg for | 0.000| 0.001 0.003 0.006 0.007 0.007 0.005| 0.002 0.004 0.004 0.002 0.006 0.004
segments  |0.190| 0.201 0.213 0.231 0.254 0.304 0.241 | 0.200 0.211 0.224 0.244 0.265 0.229
0.000| 0.159 0.416 0.633 0.846 1.221 0.655 | 0.078 0.134 0.228 0.395 0.429 0.253

Concatenation

0.159| 0.173 0.190 0.205 0.215 0.226 0.202 | 0.175 0.186 0.196 0.221 0.231 0.202
Linear 0.000] 0.086 0.174 0.265 0.360 0.451 0.267 | 0.096 0.189 0.277 0.372 0.476 0.282
interpolation [0.159| 0.163 0.169 0.174 0.181 0.188 0.175 | 0.164 0.172 0.176 0.188 0.199 0.180
Correlogram |0.000| 0.002 0.012 0.056 0.100 0.426 0.119 | 0.002 0.001 0.002 0.008 0.028 0.008
(bridging) |0.137]0.173 0.230 0.269 0.293 0.337 0.260 | 0.152 0.163 0.189 0.236 0.250 0.198
Correlogram |0.000| 0.002 0.006 0.230 0.387 1.958 0.517 | 0.002 0.001 0.002 0.005 0.055 0.013
" (no bridging) [0.137| 0.164 0.209 0.301 0.348 0.582 0.321 | 0.151 0.162 0.185 0.231 0.243 0.194
Yule-Walker |0.000| 0.003 0.007 0.015 0.020 0.134 0.086 | 0.002 0.003 0.004 0.007 0.012 0.005
(no bridging) |0.139| 0.156 0.182 0.234 0.206 0.817 0.337 | 0.149 0.160 0.177 0.199 0.232 0.183
Yule-Walker |0.000| 0.239 0.070 0.065 0.189 0.579 0.228 | 0.023 0.030 0.041 0.089 0.222 0.081
(bridging) |0.139]3.529 1.686 1.374 2.185 3.283 2.411 | 0.769 0.553 1.164 1.755 3.741 1.597
0.000] 0.390 1.016 1.914 2.746 5.011 2.215 | 0.202 0.415 0.877 1.532 2.160 1.037
Lomb-Scargle | 1531 0174 0.190 0.205 0.205 0.218 0.198 | 0.167 0.173 0.180 0.201 0.205 0.185
Burg for | 0.000| 0.001 0.002 0.002 0.003 0.009 0.004| 0.001 0.002 0.002 0.002 0.003 0.002
segments  |0.139| 0.146 0.157 0.169 0.182 0.216 0.174| 0.146 0.153 0.159 0.173 0.188 0.16/
~ [0.000][0.162 0.307 0.404 0.485 0.594 0.391 | 0.117 0.151 0.222 0.301 0.316 0.221
Concatenation | g 555 | 966 0.276 0.295 0.318 0.341 0.299 | 0.274 0.280 0.304 0.320 0.356 0.307
Linear 0.000] 0.113 0.253 0.413 0.639 1.012 0.486 | 0.089 0.121 0.203 0.302 0.349 0.218
interpolation [0.255|0.252 0.252 0.251 0.251 0.254 0.252 | 0.260 0.270 0.276 0.28% 0.305 0.280
Correlogram |0.000| 0.013 0.027 0.049 0.052 0.184 0.065 | 0.003 0.007 0.020 0.033 0.028 0.018
(bridging) |0.198|0.246 0.319 0.374 0.416 0.448 0.360 | 0.220 0.236 0.284 0.347 0.388 0.295
Correlogram |0.000| 0.009 0.017 0.086 0.144 0.435 0.138 | 0.003 0.006 0.018 0.033 0.021 0.016
LE (no bridging) [0.198| 0.242 0.312 0.373 0.435 0.472 0.367 | 0.220 0.235 0.278 0.343 0.376 0.290
HE Yule-Walker |0.000| 0.003 0.010 0.024 0.038 0.302 0.075 | 0.003 0.005 0.009 0.015 0.033 0.013
(no bridging) [0.234| 0.263 0.310 0.384 0.455 2.225 0.727 | 0.250 0.266 0.301 0.340 0.408 0.313
Yule-Walker |0.000| 0.216 0.445 3.949 1.763 2.996 1.874 | 0.186 0.190 0.281 0.546 1.331 0.507
(bridging) |0.234] 1.539 3.038 8.001 6.636 5.270 4.897 | 1.456 1.601 2.071 3.326 5.352 2.761
000] 0.185 0.351 0.476 0.529 0.652 0.439 | 0.096 0.135 0.220 0.307 0.339 0.220
Lomb-Scargle | 519| 0.247 0.247 0.252 0.253  0.251 0.250| 0.258 0.261 0.260 0.271 0.284 0.267
Burg for  |0.000| 0.002 0.006 0.012 0.015 0.030 0.013| 0.003 0.004 0.007 0.012 0.020 0.009
segments  |0.233| 0.248 0.269 0.300 0.331 0.411 0.312 | 0.245 0.258 0.274 0.302 0.335 0.283

Table 2: Values averaged

across all surrogates. For each method and band (LF, HF and

LF/HF ratio) two rows are included: the upper one corresponds to | N BE| whereas the lower
row contains C'V values. Best values of these magnitudes for each gap pattern (and in average)

are emphasized.
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results are highly biased when numbers of gaps increases, especially in the HF
band due to the growing number of discontinuities. As expected, this effect is
more noticeable with 3 s gaps, due to the bigger number of discontinuities.

Linear interpolation substitutes missing samples of the signal with straight
segments. There is a general trend to reduced values in power, as can be
observed in Figs. [ and 5] The effect of gaps may be quite erratic, depending
on where they fall. It is thus not surprising that the standard deviation of the
LF /HF ratio of the estimates increases in presence of more gaps.

4.2. Correlogram

When comparing correlogram with and without bridging the gaps, the latter
lacks stability, especially when the percentage of data lost increases. This effect
is more noticeable with 3 s gaps, due to the greater number of gaps for a given
percentage of missing data. This may be expected, since with many short gaps,
the number of contiguous samples between gaps decreases, leaving little data to
be used in spectral estimation. Bridging over the gaps uses more of the data.

4.3. Yule-Walker method

For the Yule-Walker method, we used an AR order of 15. Akaike Information
Criterion (AIC) suggested model orders greater than 10. Table [2| shows that in
general, bridging worsens the results obtained with this method. It should be
noted that this result differs from that for the correlogram, where bridging the
gaps was beneficial. A likely reason for this will be discussed later.

In Figs. [ and [f] we only included results obtained with Yule-Walker not
bridging over the gaps, and even so, values of standard deviation for 3 s gaps
covering the 50% of the surrogates were not included in Fig. [4] to avoid scale
problems in the plots. In this case the signal is very fragmented and the
estimation gives erratic results.

4.4. Lomb-Scargle method

This algorithm was clearly the one that yielded worst results in terms of bias
error when gaps were introduced in the data. The |NBE)| values for LF and HF
bands were highest, suggesting that it was most affected by gaps. In addition,
this method also provided biased estimates when no gaps were present (0%,
Figs. |4 and [5| ), compared to all other methods which all gave similar results
at this point. This method was originally devised to detect strong sinusoidal
components in noisy and non-uniformly sampled signals, and it is very limited
when trying to recover the general shape of a more broadband spectrum.

4.5. Burg algorithm for segments

Burg for segments (AR order 15) was the method that gave the best results,
both in terms of mean and standard deviation of power, as shown in Figs.
and |5} and of [INBE| and CV, as shown in Table Note that in this table,
Burg for segments concentrates most of the best values and that, where it does
not, its values are at a short distance from the best. Its ability to combine the
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information contained in the remaining segments of data without introducing
distortion, gives the most stable results in all circumstances.

In Figs. [ and [5 the line corresponding to Burg for segments is almost
horizontal and always very close to the baseline when plotting mean of power,
whereas standard deviation values keep within acceptable values. In Table
INBE)| is under 0.01 and CV is under 0.3 in most cases, both for 3 s and 10 s
gaps in LF and HF bands.

5. Discussion

In the current study we showed that with an appropriate spectral estimator,
gaps in the data need not lead to poor estimates of power in the standard
HRYV frequency bands, even when up to 50% of the data is missing. Gaps were
set in artificially-generated stationary HRV signals. This simulates what one
might expect in the presence of sporadic noise, but may not faithfully emulate
other important scenarios, such as muscle artefact associated with movement
that also leads to a transient change in heart rate, or arrhythmias that have a
small but extended impact on sinus rhythm, even after the episode has passed.
Our simulations aim to assess the impact in a controlled scenario where the
effects of signal processing methods can be observed with little confounding
from physiological factors.

It can be seen that for the same percentage of missing samples, 10 s gaps
are in general less problematic that 3 s gaps. This is not surprising: for the
same percentage of missing data but with shorter gaps, the number of gaps
increases. For concatenation or linear interpolation, this means that there are
more transients that may cause artefacts. In addition, in algorithms that only
work on contiguous data between gaps (correlogram or Yule-Walker without
bridging gaps), an increase in the number of gaps leads to a greater loss of
useful data which is expected to lead to worse results.

As concatenation is evidently not recommended, it has been proposed to
use some form of interpolation to replace the aberrant data [12]. With small
amounts of missing data (10 or 20% - which is still more than is usually deemed
acceptable), gaps do not necessarily noticeably degrade results for 3 s gaps.
There are other forms of interpolation which led to smoother transitions (e.g.
cubic splines), but, as said before, resulted in huge excursions in the added
segments. We focused instead on methods that exploit the data available, rather
than try to impute the missing samples.

Computational load of the methods that try to impute the missing samples
depend on the spectral estimation procedure they use. Among the methods
that use only the available data, our tests showed that execution times for
Lomb-Scargle are approximately one order of magnitude greater than for the
correlogram, Yule-Walker or Burg for segments methods. These three are quite
similar, with the particularity that in Burg for segments the computational load
grows linearly with the percentage of missing samples, while execution times of
correlogram and Yule-Walker remain approximately constant.
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Lomb-Scargle was specifically devised for detection of sinusoids in non-evenly
sampled signal. As it does not require a continuous regular stream of samples,
it has been proposed as a good method to deal with gapped data [I0]. However,
this claim was tested using data where gaps covered up to 15% of the signals,
and our experiments showed that performance degrades for greater percentages
of missing data, especially in the HF band. The reason for this behaviour is that
Lomb-Scargle is based on applying a discrete Fourier transform to the signal,
which may include gaps. The Lomb Scargle periodogram uses the relatively
high sampling frequency in parts of the signal to compensate for the gaps in
others. Gaps thus lead to a reduced average sampling frequency and aliasing
effects may occur when the frequency content exceeds half the average sampling
rate. This is in contrast to methods such as the correlogram or Burg, where
gaps are equivalent to shorter recordings, rather than recordings obtained at a
reduced average sampling rate.

The other parametric spectral estimation techniques used in the current
work (correlogram, Yule-Walker and Burg for segments), on the other hand,
only assume stationarity, and do not aim to describe the signal itself in the
frequency domain. They use the available samples to estimate statistical
descriptors (e.g. autocorrelation, autoregressive coefficients), and the sampling
theorem only needs to be obeyed in the segments that provide samples
(assuming regular sampling in these segments). They thus allow for larger
gaps than Lomb-Scargle, without the risk of aliasing. The results suggest that
this approach is statistically more robust at least in the current application.

Correlogram and Yule-Walker without bridging the gaps treat data segments
as entirely disconnected, whether the gap is small (even just one sample) or large.
This is associated with some loss of information, as correlation of samples from
before and after the gap is ignored. For the specific case of HRV, there may
however be an advantage in doing so, as any phase shift in RR intervals after
a gap is neglected. As in most estimation methods, there is a balance to be
struck between losing useful information (physiologically significant correlation
between beats from before and after the gap) and removing noise (distortion
from correlations that are not of physiological importance). In the current
work with artificially introduced gaps in otherwise (approximately) stationary
signals, correlation across the gaps may hold valid information, but even so it
is not always helpful in improving spectral estimates.

Comparing the algorithms in different bands, it can be observed that the
influence of the distortion introduced by the gaps is more pronounced in the
HF band. In general, the results obtained in this band are worse that the ones
obtained in the LF band, especially when dealing with short gaps.

It is interesting to note that for the correlogram, bridging the gaps led to
better results than without bridging, but for Yule-Walker the opposite was
observed. An explanation for this can be found considering the balance
between different sources of error. For the correlogram, the autocorrelation
function with lags up to 120 samples was estimated. Without bridging the
gaps and with many segments of missing data, very few samples would be
available to estimate the autocorrelation values at large lags (for 120 lags only
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segments without gaps of 30 s duration can be used) and bridging the gaps
allows this to be overcome somewhat. For Yule-Walker, only a few samples of
the autocorrelation function are needed, corresponding to the order of the
model chosen (15 in the current work). Poor estimates of autocorrelation at
large lags are therefore irrelevant. However, at lower lags and with short gaps,
bridging the gaps means that at some lags some samples will be excluded
(because the lagged sample falls in a gap), and at shorter and longer lags, this
sample may be used. This somewhat random inclusion and exclusion of
samples will lead to some erratic behaviour of the autocorrelation estimates,
which reflects in poor spectral estimates with increased high-frequency power.
The current results suggest that this effect is more damaging to the spectral
estimates than the slight loss in the usable samples that not bridging the gaps
entails.

It might be noted that the Burg for segments method, which showed some
of the best performance in this spectral analysis also only uses data between
gaps, and disregards any correlation in samples that may exist between before
and after the gaps.

For the LF/HF ratio, Burg for segments consistently shows the smallest
bias error (Table . Lomb Scargle, on the other hand, often shows the smallest
random error, but this is less impressive when considered in relation to the very
large (and downward) bias error this method shows.

6. Conclusion

In tests with simulated data, the effect of missing samples, for varying
percentages and lengths, on the spectral estimate of signals was analyzed. As
expected, when the amount of good data to analyze decreased, the random
estimation error increased, and thus the standard deviation of estimates of
power in each frequency band and the coefficient of variation also increased.

It was demonstrated that the Burg algorithm for segments is a reliable
method for dealing with interrupted RR records, even when a large amount of
data is missing. This method outperformed alternatives that are more widely
used, including linear interpolation or the Lomb Scargle periodogram. The
results showed that even when only 10% of data is missing, Burg for segments
provides more robust results than linear interpolation.

Artefacts can have a strong influence on HRV spectra and need to be
excluded from HRV analysis. Our results show that even with many gaps (up
to 50% of the samples in our study), the recordings need not to be discarded
and spectral parameter estimates can still be used. As it was demonstrated by
our tests, algorithms such as Burg for segments can provide an accurate
estimate from the remaining high quality segments.

While the spectral estimators are assessed here in the context of HRV
analysis, the conclusions are probably also valid for many other applications of
spectral estimation, especially in the biomedical context, where gaps are often
unavoidable. Examples of these are electromyography (EMG) or

18



electroencephalography (EEG) signals, where gaps can be caused by
physiological events (seizures, changes in physiological states, etc.) or noise
(patients’ movements, muscle contractions, etc.)

Acknowledgements

This work was supported by the EPSRC [EP/K036157/1] and by a 2018
Salvador de Madariaga grant (Programa Estatal de Promocién del Talento y su
Empleabilidad en I+D+i, Subprograma Estatal de Movilidad, del Plan Estatal de
I+D+I) from the Spanish Ministry of Education, Culture and Sport (MECD).

References

[1] E. J. Benjamin, P. Muntner, A. Alonso et al., Heart Disease and Stroke
Statistics — 2019 Update: A Report From the American Heart Association,
Circulation 139 (2019) e56—e66. doi:10.1161/CIR.0000000000000659.

[2] E. Hoefman, P. J. E. Bindels, H. C. P. M. van Weert, Efficacy of diagnostic
tools for detecting cardiac arrhythmias: systematic literature search, Neth.
Heart J. 18 (11) (2010) 543-551. doi:10.1007/s12471-010-0831-0.

[3] J. F. Thayer, S. S. Yamamoto, J. F. Brosschot, The relationship of
autonomic imbalance, heart rate variability and cardiovascular disease risk
factors, Int. J. Cardiol. 141 (2) (2010) 122-131. |d0i:10.1016/j.ijcard.
2009.09.543l

[4] A. J. Camm, M. Malik, J. Bigger et al., Heart rate variability: standards
of measurement, physiological interpretation and clinical use. Task Force
of the European Society of Cardiology and the North American Society of
Pacing and Electrophysiology, Circulation 93 (5) (1996) 1043-1065. |doi:
10.1161/01.CIR.93.5.1043.

[5] J. Rottenberg, Cardiac vagal control in depression: a critical analysis, Biol.
Psychol., 74 (2) (2007) 200-211. doi:10.1016/j.biopsycho.2005.08.
010.

[6] G. G. Berntson, J. Thomas Bigger, D. L. Eckberg, et al., Heart rate
variability: Origins, methods, and interpretive caveats, Psychophysiology
34 (6) (1997) 623-648. [doi:10.1111/5.1469-8986.1997.tb02140.x.

[7] K. Solem, P. Laguna, L. Sornmo, An efficient method for handling ectopic
beats using the heart timing signal, IEEE Trans. Bio-Med. Eng. 53 (1)
(2006) 13-20. |doi:10.1109/TBME. 2005 .859780.

[8] G. G. Berntson, J. R. Stowell, ECG artifacts and heart period variability:
don’t miss a beat!, Psychophysiology 35 (1) (1998) 127-132./doi:10.1111/
1469-8986.3510127.

19


https://www.ahajournals.org/doi/abs/10.1161/CIR.0000000000000659
https://dx.doi.org/10.1007/s12471-010-0831-0
https://doi.org/10.1016/j.ijcard.2009.09.543
https://doi.org/10.1016/j.ijcard.2009.09.543
http://dx.doi.org/10.1161/01.CIR.93.5.1043
http://dx.doi.org/10.1161/01.CIR.93.5.1043
https://doi.org/10.1016/j.biopsycho.2005.08.010
https://doi.org/10.1016/j.biopsycho.2005.08.010
http://dx.doi.org/10.1111/j.1469-8986.1997.tb02140.x
http://dx.doi.org/10.1109/TBME.2005.859780
http://dx.doi.org/10.1111/1469-8986.3510127
http://dx.doi.org/10.1111/1469-8986.3510127

[9]

[16]

[17]

[21]

N. Lippman, K. M. Stein, B. B. Lerman, Comparison of methods for
removal of ectopy in measurement of heart rate variability, Am. J. Physiol.-
Heart C. 267 (1) (1994) H411-H418. doi:10.1152/ajpheart.1994.267.
1.H411.

G. D. Clifford, L. Tarassenko, Quantifying errors in spectral estimates
of HRV due to beat replacement and resampling, IEEE Trans. Bio-Med.
Electron. 52 (4) (2005) 630-638. doi:10.1109/TBME.2005 . 844028.

R. A. Thuraisingham, Preprocessing RR interval time series for heart rate
variability analysis and estimates of standard deviation of RR intervals,
Comput. Meth. Prog. Bio. 83 (1) (2016) 78-82. doi:10.1016/j.cmpb.
2006.05.002.

M. Peltola, Role of editing of R-R intervals in the analysis of heart rate
variability, Front. Physiol. 3 (2012) 148.|doi:10.3389/fphys.2012.00148.

S. De Waele, P. M. Broersen, The Burg algorithm for segments, IEEE
Trans. Signal Process. 48 (10) (2000) 2876-2880. doi:10.1109/78.869039.

N. R. Lomb, Least-squares frequency analysis of unequally spaced data,
Astrophys. Space Sci. 39 (2) (1976) 447-462. doi:10.1007/BF00648343.

M. A. Salo, H. V. Hulkuri, T. Seppanen, Ectopic Beats in Heart Rate
Variability Analysis: Effects of Editing on Time and Frequency Domain
Measures, Ann. Noninvas. Electro. 6 (1) (2006) 5-17. doi:10.1111/j.
1542-474X.2001.tb00080.x.

S. L. Marple Jr, Digital spectral analysis with applications, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1987.

J. Burg, Maximum entropy spectral analysis, in: Proc. 37th Meet. Soc.
Exploratorial Geophys., Oklahoma City, OK, 1967, reprinted in Modern
Spectrum Analysis , IEEE Press, 1978.

J. D. Scargle, Studies in astronomical time series analysis. IT - Statistical
aspects of spectral analysis of unevenly spaced data, Astrophys. J. 263
(1982) 835-853. [doi:10.1086/160554!

J. Mateo, P. Laguna, Analysis of heart rate variability in the presence of
ectopic beats using the heart timing signal, IEEE Trans. Biomed. Eng.
50 (3) (2003) 334-343. |doi:10.1109/TBME.2003. 808831

A. I. Rincon Soler, L. E. Virgilio Silva, R. Fazan Jr., L. O. Murta Jr,
The impact of artifact correction methods of RR series on heart rate
variability parameters, J. Appl. Physiol. 124 (3) (2018) 646—652. doi:
10.1152/japplphysiol.00927.2016.

A. Choi, H. Shin, Quantitative Analysis of the Effect of an Ectopic Beat
on the Heart Rate Variability in the Resting Condition, Front. Physiol. 9
(2018) 922. ldoi:10.3389/fphys.2018.00922!

20


https://doi.org/10.1152/ajpheart.1994.267.1.H411
https://doi.org/10.1152/ajpheart.1994.267.1.H411
http://dx.doi.org/10.1109/TBME.2005.844028
https://doi.org/10.1016/j.cmpb.2006.05.002
https://doi.org/10.1016/j.cmpb.2006.05.002
http://dx.doi.org/10.3389/fphys.2012.00148
http://dx.doi.org/10.1109/78.869039
http://dx.doi.org/10.1007/BF00648343
https://doi.org/10.1111/j.1542-474X.2001.tb00080.x
https://doi.org/10.1111/j.1542-474X.2001.tb00080.x
http://dx.doi.org/10.1086/160554
http://dx.doi.org/10.1109/TBME.2003.808831
https://doi.org/10.1152/japplphysiol.00927.2016
https://doi.org/10.1152/japplphysiol.00927.2016
https://doi.org/10.3389/fphys.2018.00922

[22]

K. K. Kim, J. S. Kim, Y. G. Lim, K. S. Park The effect of missing RR-
interval data on heart rate variability analysis in the frequency domain,
Physiol. Meas. 30 (10) (2009) 1039-1050. doi:10.1088/0967-3334/30/
10/005.

P. M. Broersen, S. De Waele, R. Bos, Application of autoregressive spectral
analysis to missing data problems, IEEE Trans. Instrum. Meas. 53 (4)
(2004) 981-986. doi:10.1109/TIM.2004.830597.

A. Beex, M. Rahman, On averaging Burg spectral estimators for segments,
IEEE Trans. Acoust., Speech, Signal Process. 34 (6) (1986) 1473-1484.
d0i:10.1109/TASSP.1986.1164987.

A. L. Goldberger, L. A. Amaral, L. Glass, et al., Physiobank, physiotoolkit,
and physionet components of a new research resource for complex
physiologic signals, Circulation 101 (23) (2000) e215-€220. doi:10.1161/
01.CIR.101.23.e215.

Spectrum: spectral analysis in python, https://github.com/cokelaer/
spectrum, (accessed 10-aug-2017).

The wfdb software package, http://www.physionet.org/physiotools/
widb.shtml) (accessed 10-aug-2017).

G. B. Moody, Spectral analysis of heart rate without resampling, in: Proc.
Computers in Cardiology, London, 1993, pp. 715-718. doi:10.1109/CIC.
1993.378302.

H. Akaike, A new look at the statistical model identification, TEEE
T. Automat. Contr. 19 (6) (1974), 716-723. |doi:10.1109/TAC.1974.
1100705.

A. Boardman, F. S. Schlindwein,A. P. Rocha, A. Leite A study on the
optimum order of autoregressive models for heart rate variability, Physiol.
Meas. 23 (2) (2002), 325-336. doi:10.1088/0967-3334/23/2/308.

21


https://doi.org/10.1088/0967-3334/30/10/005
https://doi.org/10.1088/0967-3334/30/10/005
http://dx.doi.org/10.1109/TIM.2004.830597
http://dx.doi.org/10.1109/TASSP.1986.1164987
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1161/01.CIR.101.23.e215
https://github.com/cokelaer/spectrum
https://github.com/cokelaer/spectrum
http://www.physionet.org/physiotools/wfdb.shtml
http://www.physionet.org/physiotools/wfdb.shtml
http://dx.doi.org/10.1109/CIC.1993.378302
http://dx.doi.org/10.1109/CIC.1993.378302
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1088/0967-3334/23/2/308

	Introduction
	Methods
	Concatenation
	Interpolation
	Correlogram
	Yule-Walker method
	Lomb-Scargle method
	Burg algorithm for segments

	Experimental setup
	Creating the surrogates
	Introducing gaps
	Assessing the algorithms

	Results
	Concatenation and linear interpolation
	Correlogram
	Yule-Walker method
	Lomb-Scargle method
	Burg algorithm for segments

	Discussion
	Conclusion

