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A B S T R A C T 

To enable an efficient alternative control of an assistive robotic arm using electromyographic 
(EMG) signals, the control method must simultaneously provide both the direction and the 
velocity. However, the contraction variations of the forearm muscles, used to proportionally 
control the device’s velocity using a regression method, can disturb the accuracy of the 
classification used to estimate its direction at the same time. In this paper, the original set of 
spatial features takes advantage of the 2D structure of an 8×8 high-density surface EMG 
(HD-sEMG) sensor to perform a high accuracy classification while improving the robustness 
to the contraction variations. Based on the HD-sEMG sensor, different muscular activity 
images are extracted by applying different spatial filters. In order to characterize their 
distribution specific to each movement, instead of the EMG signals’ amplitudes, these 
muscular images are divided in sub-images upon which the proposed spatial features, such 
as the centers of the gravity coordinates and the percentages of influence, are computed. 
These features permits to achieve average accuracies of 97% and 96.7% to detect 
respectively 16 forearm movements performed by a healthy subject with prior experience 
with the control approach and 10 movements by ten inexperienced healthy subjects. 
Compared with the time-domain features, the proposed method exhibits significant higher 
accuracies in presence of muscular contraction variations, requires less training data and is 
more robust against the time of use. Furthermore, two fine real-time tasks illustrate the 
potential of the proposed approach to efficiently control a robotic arm.  

© xxxxxxxxxxxxx. All rights reserved.   

1. Introduction

Used on a daily basis by disabled persons, JACO, shown in
Fig.1, is a 6 degrees-of-freedom (DOFs) robotic arm from 
Kinova Robotics with 3 flexible fingers controlled by a 
sensitive joystick [1,2]. However, more convenient controls 
must be developed for people unable to use the joystick; namely 
persons with damages to the motor system or neuromuscular 
disorders like cerebral palsy, spinal cord injury or stroke. This 
work develops an alternative control which simultaneously 
provides the direction and velocity of a robotic arm based on 
the forearm muscular signals. This approach is based 
exclusively on sEMG (surface Electromyography) electrodes. 

Two approaches were investigated in past decades to control 
some devices based on EMG signals [4]: the classification [5,6] 
and the regression [7]-[10]. The classification can control many 
DOFs with high precision, but one DOF at the time (sequential 
control) meanwhile the proportional control decreases its 
accuracy [7,11]. The regression provides simultaneous 
(combination of DOFs) and proportional controls [7]-[10]. 
However, its control is inaccurate for more than 2 DOFs [4].  

Because a large number of movements must be detected with 
high classification accuracy, the proposed control relies on a 
pattern recognition method [5,6] which uses extracted features 
from the EMG signals to feed a classifier. The recognized 
movements will be associated with the robot arm directions. At 
the same, a linear regression method [9,10] will be employed to 
associate the level of contraction (i.e. EMG amplitude) with the 
robot arm velocity. To do this without compromising the 
classification accuracy, an original set of features, chosen to be 
the more independent from the EMG amplitude as possible, is 
proposed. Doing so, the level of contraction could be varied to 
control the velocity without disturbing the recognition. 

Many studies, based on sEMG electrodes placed at precise 
anatomical positions, were conducted to develop pattern 
recognition methods by extracting various kinds of features 
from EMG signals [12]-[16] while using different classifiers 
[12,17]. The set of the four time-domain (TD) features proposed 
in [12] is adopted as a benchmark owing to its robust and 
efficiency in discriminating movements. The features’ choice 
has a greater impact than the classifier itself. A simple and 
stable LDA (Linear Discriminant Analysis) [17] results similar 
to more complex classifiers [12,17].  
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Increasingly used in biomedical research [18]-[22], high-
density surface EMG electrodes (HD-sEMG), composed of 
equally spaced sEMG electrodes organized in lines and 
columns, were also used to achieve pattern recognition in many 
studies [23]-[33]. The HD-sEMG sensors allows to reach high 
classification accuracies for a large number of movements, 
particularly when the method is based on the TD features 
[30,32]. In [30], accuracies between 85–98% are achieved to 
find 13 movements using a HD-sEMG sensor and an average 
accuracy of 96.1% to recognize 20 movements is reached in 
[32] with 2 HD-sEMG sensors. However, since TD features are 
dependent on the amplitude, it does not meet our objectives. 
However, another interest in the HD-sEMG sensor lies in its 2D 
arrangement. Indeed, this 2D structure can provide maps (or 
images) of the muscular activities during a given task [26] and 
the spatial distribution of the muscular activity returns muscular 
strategies. In [21,22], the center of gravity displacements of the 
muscle activity image were used to characterize this muscle 
distribution. The spatial distribution obtained from HD-sEMG 
sensors is shown to differentiate forearm movements [26,29]: 
each movement having a different muscular image. The authors 
in [28] measure the variations in the images of the forearm 
muscles from 3 HD-sEMG sensors to recognize 9 movements 
with 95% accuracy. In [33], a recognition method achieves an 
accuracy of 89.3% to detect 8 forearm movements by directly 
providing each sample of a HD-sEMG image to a deep 
convolutional network. Then, the application of majority voting 
returns 99% of accuracy. The authors in [35] reaches an average 
classification accuracy of 86.63% to recognize 8 movements 
using spatial features based on histograms of oriented gradient 
and a SVM classifier. Finally, a multi-class proportional 
estimator based on common spatial pattern computed from HD-
sEMG sensors was proposed in [34] to control a prosthesis in 
real-time. This 2D structure also allows the application of 
spatial filters of different orders [22,23]. The greater the 
increase in the spatial filter order, the greater the reduction of 
the crosstalk, and the more the measured signals reflect the 
behavior of the muscle layers close to the electrode [18,22]. 

Therefore, a HD-sEMG sensor makes it possible to observe the 
spatial distribution of different muscular depths. 

Without direct information on amplitude, the proposed 
features characterize the spatial distribution of the forearm 
muscle activity images corresponding to different depths 
(spatial filters) [23]. As such, the classification method based 
on these original spatial features, namely the coordinates of the 
centers of gravity and the percentages of influence, becomes 
robust to amplitude variations. In Fig.1, these features are fed 
into a LDA to find 16 movements translated into robot motions. 
At the same time, a linear regression method uses the mean 
amplitude of signals to proportionally control the velocity of the 
robotic arm with the muscular contraction. Considering one 
healthy subject experienced with the EMG control approach 
and ten inexperienced subjects, the proposed spatial features 
and the TD features are compared under different conditions 
such as the variation or not of the muscular contractions. In 
addition, two real tasks with the robotic arm conducted by the 
experienced subject evaluate the proposed control that provides 
both the direction and the velocity simultaneously. 

2. Proposed Pattern Recognition  

To fully control the direction and the velocity of a robotic 
arm with a HD-sEMG sensor placed on the forearm, the 
proposed pattern recognition, depicted in Fig. 1, consists of two 
main phases: the learning and the estimation phase. The 
learning phase is an offline process in which the M known 
movements chosen by the user to control the robotic device are 
performed and used to fix the LDA coefficients LDAz  and the 
parameters of the velocity control method, m  and m , based 
on linear regression. During the estimation phase, at each 
instant w, these coefficients are used in real time to provide an 
estimated code of movement  ˆ

mC w  and a velocity  m w  in 
order to control, at the same time, the direction and the velocity 

 

 
Fig. 1. Description of the proposed method of robotic arm control based on two main phases: learning and estimation. 
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of the robotic arm from unexpected movements. As shown in 
Fig.1, the proposed method takes strong advantage of the HD-
sEMG sensor. At each 125ms, the monopolar signals from an 
8×8 HD-sEMG sensor returns three different images of muscle 
activity obtained by applying three different spatial filters [22]. 
Each image is divided into sub-images of equal size in which 
two spatial features, robust to the variations of muscular 
contractions, are computed: the coordinates of the center of 
gravity and the percentage of influence. The following 
paragraphs detail each part of the method illustrated in Fig. 1. 

2.1. HD-sEMG acquisition & spatial filtering 

A HD-sEMG sensor of 8iN   rows and 8jN   columns of 
single sEMG electrodes is placed on a user’s forearm to record 
the muscular activity during a given movement m of the wrist 
or the hand, with 1,2, ,m M  and M the number of 

gestures. The signal of the electrode at row i and column 
j is the monopolar mode voltage between its position and the 
ground; with 1,2, , ii N ,  1,2, , jj N  and 1,2, ,n N  
where N is the number of samples with a sampling frequency of  
Fs = 2048Hz. To remove cardiac and power line interferences, 
a 30 to 450 Hz band-pass 4th order Butterworth filter and notch 
filters at 60Hz and its harmonics are applied to all signals.  

To extract more information from the HD-sEMG sensor,  
NR = 3 spatial filters are used at each sample n: the monopolar 
mode (1), the bipolar filter (2) and the inverse binominal filter 
(3) [22], recognized with superscripts «R1», «R2» and «R3». The 
signals      R1 R2 R3

, , ,, andi j i j i je n e n e n  are different spatial selectivity 
or resolutions referring to different muscle depths [23].  

   R1
, ,i j i je n e n  

 

(1) 
 

 
 

 

,R2
,

1,

sum i j
i j

i j

e n
e n

e n

 
 
  

 (2) 

1, 1 1, 1, 1
R3
, , 1 , , 1

1, 1 1, 1, 1

2

sum 2 12 2

2

i j i j i j

i j i j i j i j

i j i j i j

e n e n e n

e n e n e n e n

e n e n e n

    

 

    

              
                  
               

 (3) 

As shown in equations (2) and (3), it is not possible to apply:  
the bipolar filter (2) to the electrodes of the iN th  row and the 
inverse binominal filter (3) to the electrodes of the rows 1 and 

iN  and of the columns 1 and jN . For this reason, to obtain the 

same size for the signals  R1
,i je n ,  R2

,i je n  and  R3
,i je n , the 

equations (1) to (3) were computed for 2,3,..., 1ii N  and
2,3,..., 1jj N  . For the rest of the description, the following 

variable changes is applied: 1r i   and 1c j   
where 1,2,..., rr N  and 1,2,..., cc N  with 2 6r iN N  

and 2 6c jN N   . We define      R1 R1 R1
, 1, 1 , ,r c r c i js n e n e n  

     R2 R 2 R2
, 1, 1 ,r c r c i js n e n e n    and      R3 R3 R3

, 1, 1 , .r c r c i js n e n e n    
Fig.2.a presents a set of 6 6  EMG signals for each resolution. 

2.2. RMS HD-sEMG Maps 

In the next step, muscular activity images or maps are 
constructed by computing RMS values of all signals resolutions 
defined in (1). For all rows r and columns c, the RMS values 

 R1
,r ca w ,  R2

,r ca w  and  R3
,r ca w are computed for each non-

overlapped window w of 125ms from the signals   
 R1

,r cs n ,  R2
,r cs n  and  R3

,r cs n  with 1,2, , ww N , the indexes 
of the wN  windows of 125ms. These muscular activity maps are 
created every 125ms as the extracted features and the estimated 
displacement and velocity. This process time is compatible with 
real-time use, because a pattern recognition process inferior to 
300ms cannot be detected by the users [6].  

Fig.2.b illustrates the RMS values based on processing 
windows of 125ms for the three resolutions. At a given window 
w, the RMS values are reorganized in rows and columns to 
obtain the three r cN N  images, as presented in Fig.2.c for all 
resolutions. In order to illustrate the difference between the 
three images obtained from the same HD-sEMG sensor by 
applying different spatial filters, a linear interpolation was used 
to add more details on the three 6 6  images in Fig.2.c. 
However, it is important to note that the proposed features 
extraction is based on uninterpolated images. The left image in 
Fig.2.c presents the positions of the 6 6 considered electrodes 
(black dots) from the 8 8  electrodes of the HD-sEMG sensor. 

2.3. Spatial features extraction 

The proposed set of features attempts to characterize the 
spatial distribution of the muscular images of each resolution 
without a direct dependence to the signals amplitudes. Towards 
this end, each image resolution of a given processing window 
w is first divided into 9dN   sub-images of equal size, where 

the integer 3dN N    is the number of divisions per row 
and per column, as represented by the white lines in the images 
of Fig2.c. As shown in this figure, the sub-images are organized 
as a 3 3N N     matrix indexed 1, 2, ,r N   for the 
rows and with 1, 2, ,c N   for the columns. Because in the 
present work r cN N , each sub-image consists of 

/ / 2r cU N N N N           rows and columns of electrodes 
with the index vectors of the rows and columns 

 1, 2,..., [1, 2]r U u  and  1, 2,..., [1, 2]c U u . This 
means that, for the present case of image division, each sub-
image contains 4 electrodes (4 black dots in each sub-image of 
the left image in Fig2.c) where each electrode has its own RMS 
value  R1

,r ca w (c.f. the monopolar map in Fig2.c). Based on 
these definitions, the two proposed spatial features of the sub-
image for row r  and column c  applied to the monopolar 

map,  R1
,r ca w , at each w are the following: 

 The coordinates of the center of gravity (CG),  R1
,r c

x w   (4) 

and  R1
,r c

y w   (5), express the orientation of muscle activity 

of the given sub-image. The CG have been used in studies 

 ,i je n
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as [20,21] to characterize the muscular distribution, but has 
never been used as discriminant features in a pattern 
recognition context. Examples of the obtained centers of 
gravity appears in Fig.2.c for all resolutions (the white dots). 

    
    

R1
,R1

, R1
,

mean 1 , 1

mean 1 , 1r c

r c r r c c

r c r r c c

r a w r U c U
x w

a w r U c U
 

 

 

        
  

       

u u

u u
 (4) 

    
    

R1
,R1

, R1
,

mean 1 , 1

mean 1 , 1r c

r c r r c c

r c r r c c

c a w r U c U
y w

a w r U c U
 

 

 

        
  

       

u u

u u
 (5) 

 Computed in each sub-image, the percentage of influence, 
 R1

,r c
w   (6), presents the influence each sub-image of a 

given image at the instant w, as in Fig.2.c for all resolutions.  

    
 

R1
,R1

, R1
,

mean 1 , 1
100

mean 1,2,..., , 1,2,...,r c

r c r r r c

r c r c

a w r U c U
w

a w r N c N
 

 


       
   

   

u u  (6) 

The coordinates of the centers of gravity (CG) and the 
percentages of influence are computed for all resolutions. At 
each instant w, a vector of features is constructed and used as 
input of the classifier. Based on these two features, three vectors 

of features  SP
I wf (8),  SP

II wf (9) and  SP
III wf (10) (with «SP» 

for spatial features), are proposed and will be evaluated: 

 

     

     

     

R1 R1 R1
1,1 1,2 ,

SP R1 R1 R1
R1 1,1 1,2 ,

R1 R1 R1
1,1 1,2 ,

, , , ,

, , , ,

, , ,

T

N N

N N

N N

x w x w x w

w y w y w y w

w w w

 

 

 
  

  
  
     
 
    

f  (7) 

       SP SP SP SP
I R1 R2 R3, ,

T
w w w w 

 
f f f f  (8) 

     SP SP SP
II I I, 1

T
w w w  

 
f f f  (9) 

       SP SP SP SP
III I I I, 1 , 2

T
w w w w   

 
f f f f  (10) 

The size of the features vector of  SP
I wf  is equal to 

SP
I

Rf dN N N N  f , with 3fN   the number of features 

for a given sub-image. As shown in (9) and (10), the vectors of 
features  SP

II wf and  SP
III wf are based on the present and past  

values of  SP
I wf . The sizes of those two sets of features are 

SP SP
II I

2N Nf f  and SP SP
III I

3N Nf f  respectively. 

 
Fig. 2. Illustration of the successive steps to extract the spatial features from the EMG signal obtained from a HD-sEMG sensor placed on a forearm: a) example 
of the sEMG electrode signals from the HD-sEMG sensor following the application of the different spatial filters (resolutions) for M=16 different movements, b) 
appearance of the sEMG signals after the RMS computation in non-overlapped windows of 125ms for the three different resolutions, c) obtained 6×6 interpolated 
images of muscular distribution from the RMS values of the wth processing window for all resolutions and obtained 9 sub-images and their corresponding center 
of gravity position and percentage of influence used as spatial features in the proposed method. 
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2.4. Classifier 

The complexity of the proposed method represents an 
important issue because this pattern recognition should be 
implemented in an embedded processor and operated in real 
time. This complexity depends on the complexity of the used 
classifier. For this reason, the classifier considered herein is the 
LDA classifier, which, according to the literature, is the most 
popular for pattern recognition based on EMG, owing to its low 
complexity and stability [12]. During its learning phase, the 
LDA classifier computes the coefficients zLDA, at all instant w, 
from the features and knowledges on the movement codes 

 mC w . In Fig.1,  ˆ
mC w  is the estimated movement code at 

each w from the features of unknown gestures, during the 
estimation phase. The LDA classifier’s complexity directly 
depends on the size of the features vector. 

2.5. Velocity Control based on linear regression 

The proposed velocity control method of the robotic arm is 
based on linear regression [9]. It has to provide the velocity 
value  w proportionally to the muscular contraction level of a 
given movement m in real time and simultaneously as the 
classification.  To express the muscular contraction level at a 
given moment w with the HD-sEMG sensor, the mean of all 
RMS values of the image corresponding to the bipolar spatial 
filtering, noted  a w , is computed as shown in (11). The map 
of the bipolar spatial filtering was chosen because it is the most 
popular of the three used resolutions in EMG processing. 

    R2
,mean 1,2, , , 1,2, ,i j r ca w a w r N c N    (11) 

The proposed velocity control is based on one first order 
equation (12) per movement as followed for 1,2, ,m M : 

   m mw a w     (12) 

where m  and m , in Fig.1, are respectively the slope and the 
intercept values of the first order equation of the movement m, 
determined during the learning phase and used during the 
estimation phase. These two parameters require knowledges of 
the velocity range of the robotic arm min maxr       and the 
amplitude range of each executed movements 

min max
m m mr   

 
 to be estimated. Because the range of 

amplitude mr  differs for all movements, m  and m  must be 
estimated for each of them. The velocity range, min  and max  
is known because it is a parameter of the robotic arm.  

In order to compute min
m  and max

m , two kinds of 
contraction levels are performed for each movement during the 
EMG acquisition of the learning phase. Indeed, during this 
phase, the user executes each movement consecutively during 
10s, where the first 7s are conducted with a moderate and 
comfortable strength whereas the last 3s are conducted with the 
maximum possible force without modifying the movement. 
Based on these two contraction levels per movement m, min

m  

and max
m  are defined as the average amplitude during the 

moderate contraction and during the maximum contraction 
(13), respectively. The amplitude contractions of a given 
movement m during the learning phase are represented by ma , 

defined as  a w  in (11).  Mod.
ma and   Max.

ma are respectively 

the two distinct parts of ma  representing the moderate and the 
maximum level of muscular contraction of the movement m.  

 Mod.
min meanm

m  a  and  Max.
max meanm

m  a  (13) 

Based on r  and mr , m  and m can be easily identified and 

used to find the velocity  w , with (12), during the estimation 
phase base on the movement m detected by the LDA classifier. 

3. Experiments, apparatus and Movements 

In order to correctly evaluate the proposed method, two 
main approaches have been conducted:  
 One healthy 38 years old subject, trained to control a robotic 

arm with the developed method based on EMG signals of 
M=16 forearm movements and their level of contraction was 
considered to observe results under optimal operating 
conditions. Doing so, the mistakes due to bad movements 
made by inexperienced subjects are limited.  

 Ten healthy 31.9 years old (on average with 9.67 years 
STD) volunteers without knowledge of the M=10 forearms 
movements were recruited to strengthen the analysis of the 
proposed method and to evaluate the impact of 
inexperienced subjects on the accuracy of the classification.  

All participants provided their informed consent in accordance 
with the University Human Research Ethics Committee (CER-
18-246-08-02.02).  

Two main experiments were designed: (i) without the 
robotic arm for the experienced subject and the inexperienced 
subjects and (ii) with the robotic arm for the experienced subject 
only. The experiment without the device was designed to 
evaluate in depth the proposed methods using off-line and on-
line data in comparison with the reference methods. All tested 
methods are defined in Table 2. The experiment with the robotic 
arm evaluates the ability of the proposed method to control it 
through two different tasks. 

The same apparatus and processing structure were used in 
all experiments and for all subjects. One 8×8 HD sEMG sensor 
(64-channels sEMG, ELSCH064NM3, OT Bioelettronica; 
Torino, Italy) was placed on the posterior proximal part of the 
right forearm to record extensor muscles of the subjects. The 
sEMG signals were recorded in monopolar mode. One ground 
was placed on the ulnar styloid process of the wrist of each arm. 
The sensor and grounds were connected to the multichannel 
amplifier (EMG-USB2, OT Bioelettronica; Torino, Italy) 
which is in turn connected to the computer. A Matlab function 
(Matlab Release 2012b, The MathWorks, Inc.; Massachusetts, 
United States) allowed access to all electrodes data in real-time 
with a sampling rate of Fs = 2048Hz and the methods were 
coded in Matlab. During the estimation phase, at each instant  
w, the Matlab program provides the robotic arm (JACO, Kinova 
Robotics; Montreal Canada) a direction and velocity command. 
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For the experiments involving the experienced subject, the 
16 movements of the Table 1 have been mapped with all the  
robot motions as intuitively as possible: the hand to open and 
close the robot hand, the wrist to control the x, y and z 
displacements, and the fingers to control the 3 rotations. There 
is one movement to return to the initial position (M4). If the rest 
movement (M1) is recognized, the robot remains in its previous 
position. Note that the HD-sEMG sensor detects the concentric 
and eccentric contractions to recognize the 16 movements. In 
their experiment, the ten inexperienced subjects performed the 
ten movements M1 to M10 of the Table 1.  

4. Experiments without the robotic arm  

4.1. Experiment of the experienced subject 

The experienced user equipped with the HD-sEMG sensor 
had to perform an intensive experiment with all movements in 
real-time by following the indications on the computer screen. 
This data acquisition of more than three hours consists in a 
succession of learning sessions (LS) and estimation sessions 
(ES) depicted in Fig.3.a: a total of 6 LS and 5 ES detailed in the 
following sections. This experiment was designed to 
intensively compare the real-time recognition performance of 
the proposed method with reference methods successfully 
applied in [30,32], and to observe their robustness in time and 
in present or absence of muscular contraction variations. 

In each learning session, three successive learning phases 
(LP) were performed (see Fig.3.b). As explained in section 2.5 
and exposed in Fig.3.d, in each learning phase, each movement 
was successively executed by the user during 10s with 7s of 
comfortable contraction and 3s of maximal contraction; a visual 
display showed to the user the movement to perform and its 
level. Because three learning phases were recorded per learning  

session, the impact in terms of recognition is observed whether 
10, 20 or 30 seconds of data per movement are used to fix the 
LDA. Based on the succession of learning and estimation 
sessions as in Fig.3.a, the robustness in time of the proposed 
methods is evaluated: each learning session adjusting or not the 
LDA coefficients for the following estimation session. 

In order to compare requested and executed gestures during 
the estimation sessions (see Fig.3.a), an interface was 

Table 1. The 16 human forearm movements and their associated robotic arm motions. 

Human forearm Movements Robotic Arm 
motions 

 Human forearm Movements Robotic Arm 
motions 

M1 
 

Rest Motion-less 
 

M9 
 

Wrist flexion and fingers 
Extension y-displ. (+) 

M2 
 

Hand close Hand close 
 

M10 
 

Fingers 
extension y-displ. (-) 

M3 
 

Hand open Hand open 
 

M11 
 

Pinch - thumb and 
little finger x-rotation (+) 

M4 
 

Thumb, index and 
little extension 

«Home» return to 
its initial position 

 
M12 

 

Pinch - thumb and 
ring finger x-rotation (-) 

M5 
 

Wrist flexion x-displ. (+) 
 

M13 
 

Pinch - thumb and 
middle finger y-rotation (+) 

M6 
 

Wrist radial flexion z-displ. (+) 
 

M14 
 

Pinch - thumb and 
index finger y-rotation (-) 

M7 
 

Wrist ulnar flexion z-displ. (-) 
 

M15 
 

Index finger crossed on 
the middle Wrist rotation (+) 

M8 
 

Wrist Extension x-displ. (-) 
 

M16 
 

Middle finger crossed on 
the index Wrist rotation (-) 

 

 

Fig.3. Description of the experiment without the robotic arm: a) general process 
as a succession of learning (LS) and estimation sessions (ES), b) learning 
session as a succession of learning phases (LP), c) estimation session as a 
succession of tasks Ta and tasks Tb, d) one learning phase during which each of 
16 movements are executed successively during 10s and e) a given estimation 
session task in which each movement (except M1) are randomly executed 
during 6.25s and separated from each other by the movement M1 during 3.75s. 
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developed to indicate the movements to perform in real-time. 
During each estimation session (ES), 10 estimation phases were 
successively performed through two different tasks: five phases 
without muscular contraction constraint (Ta in Fig.3.c) and five 
with muscular contraction constraints (Tb in Fig.3.c). Doing so, 
the robustness to muscular contraction variations could be 
observed. Indeed, in the task Ta, the user must perform the 
movement of the screen without any constraint. In the task Tb, 
in addition to performing the same movement as requested, the 
user must vary the muscular contraction, presented on the 
screen in real-time, from minimum to the maximum levels. As 
in shown Fig.3.e, all movements, except M1, appear during 
6.25s in a random order and are separated by 3,75s of the rest. 

The time-domain (TD) features [12], composed of the mean 
absolute value (MV), the zero-crossings (ZC), the slope sign 
changes (SC) and the waveform length (WL), demonstrated 
their efficiency and robustness. Considering the bipolar mode 
(noted by «R2»), these features were computed from  R2

,r cs w
defined in section 2.1 for all windows w, row r and column c. It 
results  R2

,MVr c w ,  R2
,ZCr c w ,  R2

,SCr c w  and  R2
,WLr c w . 

Similarly, the TD features were also computed from the 

 R1
,r cs w and  R3

,r cs w . Two versions of the TD features were 
considered as reference methods: one based on the commonly 
used bipolar mode,    TD TD

I R2w wf f  (14), and  TD
II wf  (15) 

based on the three defined resolutions.  

R2 R2
1,1 ,

R2 R2
1,1 ,TD TD

I R2 R2 R2
1,1 ,

R2 R2
1,1 ,

MV ,..., MV ,...

ZF ,...ZF ,...

SC ,...SC ,...

WL ,..., WL

r c

r c

r c

r c

T
N N

N N

N N

N N

w w

w w
w w

w w

w w

          
 
         
        
          
 
          

f f  (14) 

TD TD TD TD
II R1 R2 R3, ,

T
w w w w                

f f f f  (15) 

The size of  TD
I wf  is TD

I
f r cN N N N  f , with 4fN   the 

number of features for a given electrode and the size of  TD
II wf  

is TD TD
II II

RN N N f f . The five methods compared in this 

experiment are presented in the Table 2. 

4.2. Experiment of the inexperienced subjects 

To avoid the fatigue effect on the inexperienced subjects, a 
light version of the experience described in Fig.3 was built for 
the ten participants. In this experiment, only one learning 
session (LS) with two learning phases (LP) with 10 seconds for 
each of the 10 movements (M1 to M10 of the Table 1) was 
performed. During the unique estimation session (ES), 4 
estimation phases were successively performed through two 
different tasks: two phases without muscular contraction 
constraint (Ta in Fig.3.c) and two with muscular contraction 
constraints (Tb in Fig.3.c). In these tasks, each movement has to 
be realized during 20 seconds. The accuracy results of SPII and 
TDII (Table 2) obtained during this estimation session were 
compared with and without muscular contraction constraint. A 

one-way repeated ANOVA was performed on obtained 
accuracies. The statistical significance was set at p > 0.05. 

4.3. Results based on learning data of the experienced subject 

Considering the intensive experiment based on the 
experienced subject, in total data from 18LPN  frames of 
learning phases were recorded. And, as shown in Fig.3.d, each 
of the 16 movements was performed during 10s for a given 
frame of learning phase. Those frames of data are used to 
evaluate and compare the classification methods of the Table 2 
using the cross-validation strategy [30]. The cross-validation is 
performed by dividing the LPN  frames in two groups: cross

LN  

frames, with 1 cross
L LPN N  , to perform the learning process 

of the methods and cross cross
E LP LN N N   frames to carry out 

their estimation process. To observe the impact of the number  
of the 10s learning frames to adjust the LDA coefficients, 
several sizes of cross-validation group are considered:

1,2, , 1cross
L LPN N  . For each value of cross

LN , several 
combinations of frames are possible. For this reason, a 
maximum of 100 randomly chosen combinations is simulated. 
Fig.4 presents the mean percentage error for recognizing the 16 

Table 2. Tested classification methods in experiments without robotic arm in 
function of the set of features. 

Methods Descriptions 
SPI Proposed method based on the features set SP

I w  f  (8) 

SPII Proposed method based on the features set SP
II w  f  (9) 

SPIII Proposed method based on the features set of SP
III w  f  (10) 

TDI Time-domain method based on the set  features TD
I w  f  (14) 

TDII Time-domain method based on the features set TD
II w  f  (15) 

 

 
Fig.4. Mean error percentage obtained from the experienced subject based on 
number of learning frames of 10s, cross

LN  for pattern recognition methods based 
on features extractions depicted in Table 1 with an LDA classifier. 
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movements of cross
EN  10s frames according to cross

LN 10s 
frames per movement to carry out the learning process. 

Based on Fig.4, the following observations can be made. 
The proposed methods SPII and SPIII, based on spatial features 
and the LDA classifier, obtain the best results in term of error 
percentage for recognizing 16 movements: from an 
approximately 3.3% error with 1 learning frame to less than 1% 
error with more over 8 learning frames. Method TDII, which 
extracts the TD features from signals based on three different 
types of spatial filtering (see section 2.1), returns a percentage 
of error that is close to but higher than SPII and SPIII, except for 
1 learning frame where TDII obtains more than 5.5% error. 
Furthermore, as shown in Table 3, the proposed method SPII has 
smaller feature vectors than the methods SPIII and TDII. This 
observation is relevant since the complexity of the LDA 
classifier depends directly upon the size of the feature vector. 
The complexity of a pattern recognition system based on the 
proposed method SPII is less complex than one based on the 
method TDII (more than 2.5 time less complex) and returns 
better performances for recognizing 16 movements. Method 
TDI, used in [30,32], returns the worst performance for 
recognizing 16 movements, obtaining greater than 4.5% error. 
Method SPI, based on spatial distribution features, which has a 
small features vector size of 81, returns better performance than 
method TDI for finding 16 movements (up to an error of 2%). 

4.4. Estimation results for the experienced subject 

As indicated in section 4.1, a methodology was developed 
to evaluate the methods of Table 2 in real-time execution, under 
presence or absence of contraction variations and in function of 
time of use. Fig.5 presents the results obtained from simulated 
methods when a relearning occurs every ten estimation phases 
as described in section 4.1. Because each estimation phase (see 
section 4.1) takes exactly 2.6 minutes, a learning session is 
made around every 26 minutes. Three learning phases are 
performed during each learning session. For this reason, 
Fig.5.a, Fig.5.b and Fig.5.c, respectively, present the percentage 
of error during the estimation phase when 10, 20 or 30 seconds 
of data per movement are used to fix the LDA coefficients. 

Regarding the results without constraints (constant 
amplitude of the EMG signals), methods SPII and SPIII attain a 
mean error of about 3% for recognizing 16 movements in real-
time context. Method SPII outperforms method TDII when only 
10s (in Fig.5.a) and 20s (in Fig.5.b) per movement are used in 
the learning session. However, as shown in Fig.5.c, for 30s per 
movement to fix the LDA classifier, method TDII returns close 
results compared with SPII and SPIII. Method SPII is the best 
version of the proposed methods and, in addition to attaining 
the smallest mean error percentage for recognizing 16 
movements, it offers the major advantage of using a small 
number of learning data for performing well compared with 
method TDII.  

Considering the results with contraction variations during 
the movements’ execution, method TDII returns 3% more error 
than without this constraint whereas method SPII obtained 
similar results with or without the muscular contraction 
constraint. The proposed method based on features presents a 
robustness to the amplitude variation of the EMG signals. 
Therefore, it can allow a simultaneous and efficient control of 
a device direction and velocity from muscular activity. 

Fig.6 shows the mean percentage error in the recognition of  
16 movements based on the successive estimation sessions of 
the experiment, with and without the muscular contraction 
constraints, when a learning session has been processed before 

 
Fig.5. Mean error percentage obtained from the experienced subject based on two real-time conditions: to perform a movement without muscles contraction 
constraint (task Ta) or with muscles contraction variations (task Tb). These results are obtained by following the process described in Fig. 3 for the 5 methods of 
the Table 2 during the estimation phase when 10 a), 20 b) or 30 c) seconds of data per movement are used to fix the LDA coefficients during the learning sessions. 
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Table 3. Size of features vectors in function of the used method 

Methods Size of the features vector used as LDA input 

SPI SP
I

R 3 9 3 81f dN N N N      
f  

SPII SP
II

R2 2 3 9 3 162f dN N N N        
f  

SPIII SP
III

R3 3 3 9 3 243f dN N N N        f  

TDI TD
I

4 6 6 144f r cN N N N      
f  

TDII TD
II

R 4 6 6 3 432f r cN N N N N        
f  
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each estimation session, as shown in in Fig.6.a and Fig.6.c, and 
when learning has been achieved only before the first 
estimation session, for Fig.6.b and Fig.6.d. It is important to 
note that there is approximatively 40 minutes between each 
estimation session (8 to 10 minutes for each learning session 
and 26 to 30 minutes for each estimation session) and 
approximatively 3 hours and 15 minutes between the first and 
last estimation phase for Fig.6.b and Fig.6.d. As is the case for 
all methods, the greater the time gap between the update of the 
LDA classifier and an estimation phase, the greater the error of 
movement recognition. In Fig.6.c, this increase in error is more 
significant when there are variations in the muscle contractions. 
However, the error degradation is less important for method 
SPII compared to method TDII.  

4.5. Estimation results for the inexperienced subjects 

Fig.7 show the overall mean error of classification obtained 
during the estimation session of the experimentation performed 
by the ten inexperienced subjects along two tasks (or 
conditions): one without muscles contraction constraint and one 
with muscles contraction variations (see section 4.2). Based on 
the same data for the learning phase used to fix their respective 
LDA classifier and the same data collected during the 
estimation phase, Fig.7 compared the results of the methods 
SPII and TDII presented in Table 2.  

Without muscles contraction constrain, SPII and TDII 
respectively return 3.3%±0.9 and 6.1%±1.3 of mean error 
percentage (or 96.7% and 93.8% of mean accuracy percentage) 
to recognize 10 movements. As observed with the experienced 
subject, even if the method SPII presents a better mean accuracy 
percentage, there is no significant difference with the method 
TDII (p = 0.08). However, in presence of muscles contraction 
variations, SPII and TDII respectively obtain 5.8%±1.2 and 
12.6%±1.7 of mean error percentage (or 94.2% and 87.4% of 
mean accuracy percentage) to find 10 movements. In this case, 
there is a significant difference between the results obtained 
with SPII and TDII (p = 0.0014). In addition, the method TDII 
with muscle contraction variations also shows a significant 
difference with the methods SPII and TDII without muscles 
contraction constraint (p = 3×10-6 and p = 0.0027). Finally, there 
is no significant difference between the method SPII with or 
without muscles contraction constraint (p = 0.098). 

5. Experiments with the robotic arm  

To present a first proof of concept of the proposed method’s 
ability to control the robotic arm, two tasks of gradual difficulty, 
illustrated in Fig.8, were performed by the same experienced 
subject. Based on the results of section 4, method SPII is used 
in this experiment to control the direction of the robotic arm. 

 
Fig.7. Mean error percentage obtained from the ten inexperienced subjects 
based on two real-time conditions: to perform a movement without muscles 
contraction constraint (task Ta) or with muscles contraction variations (task Tb). 
These results are obtained by following the process described in section 4.2 for 
the methods SPII and TDII of the Table 2 during the estimation session. 
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Fig.6. Mean error percentage obtained from the experienced subject for methods 
SPII and TDII based on the considered estimation session (ES) a) with a learning 
session (LS) performed before each ES and without contraction constraint, b) 
with an LS performed before each ES and with contraction variations, c) with 
only the first LS used for all ES and without contraction constraint and d) with 
only the first LS used for all ES and with contraction variations. 30s of data per 
movement were used to fix the LDA coefficients during each learning session.  
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Fig.8. Illustration of two real-time tasks performed with the robotic arm 
controlled using the proposed method based on the spatial features extraction 
SPII and speed control proportional to level of contraction: a) 3D pointing task 
with a pen and b) 3D fine manipulation task. 

a)

b)
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Our hypothesis is that the control of the robot velocity 
proportionally to the muscular contraction level is more 
intuitive and efficient than the use of constant velocities. Three 
kind of velocity controls were employed: one with the proposed 
method (proportional to contractions), one with a constant 
moderate velocity (10cm/s) and one with a constant high 
velocity (20cm/s). The robotic arm is controlled as follows: the 
pattern recognition method based on SPII controls the direction 
with the estimated movements of Table 1 and the muscular 
contraction of a given movement proportionally controls its 
velocity. This approach is possible because the proposed pattern 
recognition method is robust to EMG amplitude variations. 

The first task is a 3D pointing at circle targets of different 
sizes. A custom device was designed to hold the pen firmly and 
to absorb the shocks on the pen during vertical directions with 
a spring. As shown in Fig.8.a, six targets are pointed at: three 
on a horizontal plan and three others on a vertical plan placed 
in front of the robot at a slight angle to increase difficulty. On 
each plan, the three targets have a diameter of 0.8, 1.6 and 2.4 
cm, respectively. For each trial, the robot hand is placed at its 
initial position reached with the «home» movement (M4 in 
Table 1) and the recorded time begins at its first move. During 
all trials, the order of the targets is the same and the recorded 
time is stopped when the last target is pointed at. For a given 
target, if the mark made by the pen is outside the circle, the 
smallest distance between the pen mark and the circle was 
measured. 10 trials were performed for each velocity control 
made successively to avoid any kind of learning. The results in 
Table 4 show that the mean time for performing the task is 
similar for all velocity control approaches and that the smaller 
the target, the greater the error. However, using a velocity 
control based on the muscle contraction makes it is easier to 
point at the target correctly. Indeed, the total mean distance 
outside the targets is equal to 0.3mm with this approaches 
instead of 2.7mm and 3mm for constant velocities of 10cm/s 
and 20cm/s. To complete this 3D task, 9 movements were used: 
M1, M4, M5, M6, M7, M8, M9, M10 and M12. This 
experiment shows that the proposed control allows to 
efficiently achieve 3D tasks with a millimeter range accuracy. 

The second experiment with the robot is a 3D task that 
consists of picking up three standard tacks and deposing them 
in a cylindrical container 5 cm in diameter. The position of the 
three tacks is clearly identified on a sheet placed on a cork 
board, and the container has been positioned at the edge this 
sheet as illustrated in Fig.8.b. At the beginning of the task, the 
robotic hand is located above the cylindrical container, after 
which each tack is picked up in the same order. Because this 
task requires finer motions, a constant slow velocity of 5cm/s 

was also tested. 6 trials were conducted for each velocity 
control. During each trial, the time to perform the task was 
recorded and the number of tacks successfully placed in the 
container was noted. As Table 5 shows, it was possible to move 
100% of the tacks correctly when the velocity control was 
proportional to contraction and when the velocity was fixed to 
the slower value. However, the approach based on proportional 
velocity allows the task to be performed an average of 35s (0.59 
min) faster than the low velocity. For this very accurate task, 
the results obtained for the velocities equal 10cm/s, and 20cm/s 
were very poor with respectively 44.4% and 27.8% of tacks 
correctly placed in the cylinder. In addition to calling for high 
precision of execution, this task required the repeated use of 15 
out of 16 movements, all except the “Home” movement, M4. 

6. Discussion 

The main contribution of this article consists of proposing 
an original set of spatial features designed to perform high 
classification accuracy while improving the robustness of the 
classification against the variations of muscular contraction. 
Indeed, considering the prediction results obtained with the 
experienced healthy subject, average accuracies of about 97% 
was reached with the proposed method (SPII) under the 
presence or the absence of the muscular contraction variations 
to recognize 16 movements, as shown in Fig.5.c. Based on the 
prediction results from the ten inexperienced subjects and the 
proposed features (SPII), average accuracies of 96.7%±0.9 and 
94.2%±1.2 were obtained to detect 10 movements, respectively 
under the presence or the absence of the muscular contraction 
variations, as illustrated in Fig.7. This difference between these 
two experimental conditions is not significant (p = 0.098), but 
certainly occurs because it is not so easy for inexperienced 
subjects to make a movement while controlling the change of 
muscle contraction. Besides, the subject, experienced to 
perform the 16 movements while varying their muscular 

Table 4. Mean and standard deviation of time to perform the first task with robotic arm, of distance outside a given target and of total distance outside all targets 
based on robot velocity controls considered.  

Robot velocity controls 
Mean (SD) time to 

realize the task 
(minute) 

Mean (SD) distance outside a given target (millimeter) Total mean 
(SD) distance 

outside all 
targets 

(millimeter) 

Horizontal position Vertical position 
Target1 
ø2.4cm 

Target2 
ø1.6cm 

Target3 
ø0.8cm 

Target4 
ø2.4cm 

Target5 
ø1.6cm 

Target6 
ø0.8cm 

Constant at 10cm/s 2.08 (0.1) 0 (0) 1.6 (0.9) 2.3 (0.6) 2.7 (1.1) 3.8 (0.7) 5.6 (0.9) 2.7 (1.9) 

Constant at 20cm/s 2.05 (0.2) 0 (0) 0.6 (0.3) 3.2 (1.1) 2.4 (1.1) 5.2 (1.1) 6.9 (1.3) 3.0 (2.6) 

Proportional to the contraction 2.06 (0.1) 0 (0) 0 (0) 0.8 (0.3) 0. 1 (0.1) 0.4 (0.2) 0.9 (0.6) 0.3 (0.4) 
 

 

Table 5. Mean and standard deviation of time to perform the second task with 
robotic arm and percentage of success based on robot velocity controls 
considered.  

Robot velicity 
Controls 

Mean (SD) time to 
realize the task 

(minute) 

Percentage of 
success of the task 

(%) 

Constant at 5cm/s 2.67 (0.2) 100 

Constant at 10cm/s 2.1 (0.2) 44.4 

Constant at 20cm/s 2.2 (0.3) 27.8 

Prop. to the contr. 2.08 (0.1) 100 
 



 11 

contraction, successfully controls the direction and velocity of 
a robotic arm in real-time with the proposed features (SPII) as 
shown in section 5 with two challenging tasks. These real-time 
results represent a proof of concept of the proposed method to 
efficiently control a 6 degrees-of-freedom robotic arm using 
EMG signals. This robustness of the muscular contraction 
variation is clearly due to the fact that the proposed features 
takes advantage of the 2D structure of the HD-sEMG sensor to 
characterize the muscular distribution instead of the EMG 
signals amplitude, as it is the case for the TD features [12].   

As shown in [30,32], the TD features applied to HD-sEMG 
sensor signals allows to reach high classification accuracies for 
a large number of movements. However, unlike the proposed 
spatial features, the TD features render the classification 
method more sensible to the variation of the muscular 
contractions. The experimentation performed by the ten 
inexperienced subjects demonstrates that the accuracy obtained 
by the TD features TDII to find 10 movements decreases 
significantly from 93.8%±1.3 to 87.4%±1.7 (see Fig.7) when 
the muscular contraction is varied. The same conclusions are 
observed in the intensive experiment realized with the 
experienced subject to detect 16 movements. The accuracy of 
the TD features TDI, similar to [30,32], decreases from about 
94% to 89.5% with or without muscular constraints and the 
accuracy of the TD features TDII, with spatial filters, decreases 
from about 97% to 94%. This sensitivity to the contractions 
variation is directly due to TD features that relies on the EMG 
signals’ amplitudes. Besides, as seen in Fig.6 and addressed in 
[24], the TD features are also more sensible, than spatial 
features, to the time of use which incurs some amplitude 
variations due to the muscle fatigue. Another interest of the 
robustness to the muscular contraction variations appears when 
inexperienced subjects used the proposed method. Indeed, these 
subjects are more susceptible to realize their movements with 
an inconstant different amplitude. As shown in Fig.7, based on 
the same learning data, the proposed spatial reaches a better 
average accuracy even without contraction constraints than TD 
features: 96.7% against 93.8% to find 10 movements. 

In addition to the proposed features designed to efficiently 
and simply characterize muscular distribution, by computing 
the centers of gravity in sub-images rather the entire muscular 
image as made in [20]-[24] and the percentage of influence, 
another contribution of the proposition is the use of spatial 
filters [23]. Besides, the performances comparison in Fig.5 of 
the methods TDI, based on the classic bipolar mode, and TDII, 
based on the 3 different images corresponding to 3 different 
spatial filters, depicts the merits of the spatial filtering inferred 
from a HD-sEMG sensor only, which permits to extract 
additional information from the same raw signals. Finally, as 
discussed in section 4.3 and 4.4, the pattern recognition based 
on the proposed spatial features also requires less learning data 
and reduces the computational complexity compared to when 
TD features are used.  

In the present work, contrary to [30,32], no method of 
dimension reduction as PCA (Principal Component Analysis) 
has been applied. Because the proposed method fully takes 
advantage of the 2D structure of HD-sEMG sensors, the 
reduction of the number of electrodes is not an avenue for a 
practical or clinical solution. The idea consists in developing 
more convenient HD-sEMG sensors. 

There is no clear diagnosis that makes it difficult for a 
patient to use the joystick of a robotic arm. It varies depending 
on the type and the severity of the conditions and, for this 
reason, there are different alternative ways to control the robotic 
arm. All alternative control approaches have their advantages 
and disadvantages according to the targeted person or the 
environment in which the method is employed. For example, 
efficient combinations of inertia measurement unit (IMU) and 
EMG sensors to control a robotic arm were proposed in 
[2,3,37,36]. This approach can become problematic for patients 
unable to properly and repetitively control their movements. 
Therefore, based on a small number of movements and a switch 
mode, contrary to the proposed method in this study, this 
alternative control requires more steps and time to realise 
complex tasks. In [38], the authors propose a brain-computer 
interface (BCI) using a non-invasive EEG (electro-
encephalogram) signals to reach and grasp an object with a 
robotic arm in 3D space. This impressive approach requires no 
body movement, which is a big advantage for people having 
damages to the motor system or neuromuscular disorders. 
However, BCI based on non-invasive permits a proportional 
and simultaneous control to realize simple tasks, and, even if 
the BCI techniques are constantly improving, the accuracy is 
not that high, the time response is not satisfactory and it is not 
reliable [38,39]. In addition to its performances already 
mentioned, the proposed method in this paper permits to 
achieve complex tasks with a robotic arm in real-time. This 
approach can also be used on other parts of the human body 
(shoulder, back, leg or calf) in order to adapt the control to the 
patient’s condition. In addition, its robustness to the muscular 
contraction variations, already discussed, could significantly 
reduce the effects of spams and tremors of patients. Finally, the 
proposed approach based on HD-sEMG sensors can be directly 
applied to EEG sensors as it is planned in our future works.   

Based on the present results for an experienced subject and 
inexperienced subjects, a study currently uses the proposed 
method to provide an efficient biofeedback in order to improve 
the rehabilitation of the paralyzed or partially paralyzed arm of 
patients with stroke. In this case, several healthy people and 
patients are tested to observe the impact of the proposed method 
according to the targeted application. In the present study, the 
experiment with the robot arm is a concept of proof that 
demonstrate the potential of the proposed control to achieve 
fine tasks. But real-time tasks with robust psychometric 
properties and performed by several subjects would have a 
stronger significance. Based on methods with spatial features, 
future studies will also be conducted to analyze their behaviours 
when it is used by different kind of patients unable to use the 
joystick, to observe the impact of recurrent spasms on the 
recognition performances and to perform a simultaneous 
control rather than a sequential and proportional control. 

7. Conclusion 

To simultaneously control both the direction and the 
velocity of an assistive robotic arm using muscular activity, the 
proposed pattern recognition method uses a HD-sEMG sensor 
placed on the forearm to create images of muscular distribution 
of different resolutions from which the extracted original spatial 
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features are fed to the LDA classifier. Doing so, the impact of 
the amplitude variations of the EMG signals is substantially 
reduced. The muscular contraction level of a given movement 
can be used to proportionally control the velocity of the robotic 
arm without disturbing the recognition of the movement used at 
the same time to control its direction. Based on an experienced 
subject and ten inexperienced subjects, it was shown that the 
pattern recognition based on the proposed spatial features 
exhibits a smaller average percentage of error, requires less 
learning data, is significantly more robust to muscular 
contraction variations, is more robust to the time of use and has 
lower computational complexity. Furthermore, two fine real-
time tasks performed by the experienced subject expose the 
potential of the proposed approach to efficiently control a 
robotic arm.  
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