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Abstract. We propose a novel algorithm for sleep dynamics visualization and

automatic annotation by applying diffusion geometry based sensor fusion algo-
rithm to fuse spectral information from two electroencephalograms (EEG). The

diffusion geometry approach helps organize the nonlinear dynamical structure

hidden in the EEG signal. The visualization is achieved by the nonlinear di-
mension reduction capability of the chosen diffusion geometry algorithms. For

the automatic annotation purpose, the support vector machine is trained to

predict the sleep stage. The prediction performance is validated on a publicly
available benchmark database, Physionet Sleep-EDF [extended] SC∗ (SC =

Sleep Cassette) and ST∗ (ST = Sleep Telemetry), with the leave-one-subject-

out cross validation. When we have a single EEG channel (Fpz-Cz), the overall
accuracy, macro F1 and Cohen’s kappa achieve 82.72%,75.91% and 76.1% re-

spectively in Sleep-EDF SC∗ and 78.63%, 73.58% and 69.48% in Sleep-EDF

ST∗. This performance is compatible with the state-of-the-art results. When
we have two EEG channels (Fpz-Cz and Pz-Oz), the overall accuracy, macro F1

and Cohen’s kappa achieve 84.44%,78.25% and 78.36% respectively in Sleep-

EDF SC∗ and 79.05%, 74.73% and 70.31% in Sleep-EDF ST∗. The results
suggest the potential of the proposed algorithm in practical applications.

1. Introduction

Sleep is a universal recurring dynamical and physiological activity in mammals.
According to American Academy of Sleep Medicine (AASM) [1, 2] that generalizes
Rechtschaffen and Kales (R&K) criteria [3], the sleep dynamics can be divided into
two broad stages, the rapid eye movement (REM) and the non-rapid eye movement
(NREM), and the NREM stage is further divided into shallow sleep (stage N1 and
N2) and deep sleep (stage N3). Up to now, we have accumulated a lot of physiolog-
ical knowledge about sleep dynamics [4] and a lot of research is actively carried out
to explore the unknowns [5]. Despite those unknowns, it has been well known that
a distortion of sleep dynamics could lead to catastrophic outcomes. For example,
sleep deprivation impacts decision making [6], REM disturbance slows down the
perceptual skill improvement [7], deprivation of slow wave sleep is associated with
Alzheimer’s disease [8], insufficient N2 sleep is associated with weaning failure [9],
several public disasters are caused by low sleep quality [10, 11], etc. Therefore,
in addition to the interest stemming from physiological aspects, we have a lot of
clinical applications from knowing the sleep dynamics.

The polysomnography (PSG) is the gold standard of evaluating the sleep dy-
namics [12]. However, scoring the overnight sleep stage from the PSG outputs by
human experts is time consuming and error-prone due to the huge signal loading
[13]. Due to the advance of the technology and computational power, in the past
decades a lot of effort has been devoted to establish an artificial intelligence (AI)
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system for the automatic sleep stage annotation purpose. In addition to being able
to accurately score sleep stages, an ideal AI system should also be able to “self-
learn” or “accumulate knowledge” from the historical database. In other words,
when the database with experts’ annotations grows, an ideal AI system should be
able to use those new annotations. It is worth mentioning that the challenge is
actually ubiquitous – for a new-arriving subject, how may one utilize the existing
database with the expert annotations?

1.1. Related Work. There have been many proposed algorithms for the sake of
automatic sleep stage scoring. Among many papers, we shall distinguish two com-
mon cross validation (CV) schemes. According to whether the training data and
the testing data come from different subjects, the literature is divided into two
groups, leave-one-subject-out and non-leave-one-subject-out CV. When the valida-
tion set and training set are determined on the subject level, that is, the training set
and the validation set contain different subjects, we call it the leave-one-subject-out
CV (LOSOCV) scheme; otherwise we call it the non-LOSOCV scheme. The main
challenge of the LOSOCV scheme comes from the inter-individual variability, but
this scheme is close to the real-world scenario – how to predict the sleep dynamics
of a new arrival subject from a given annotated database. On the other hand,
in the non-LOSOCV scheme, the training set and the testing set are dependent,
and the performance might be over-estimated. In this work, to better evaluate the
proposed algorithm caused by the inter-individual variability issue, we focus on the
LOSOCV scheme, and only summarize papers considering the LOSOCV scheme
and single- or two- channel EEG signal.

In [14], time-domain and frequency-domain features are designed to predict
awake, REM, light NREM stage (N1 and N2 are combined) and deep sleep stage by
support vector machine. The performance is evaluated in a private database with
4 subjects. In [15], 104 features are extracted from the EEG signals and selected
features are used to classify 4 sleep stages (N1 and N2 are combined) by random
forests. The following papers classify 5 sleep stages like our work. In [16], time-
domain and frequency-domain features are used as the input layer of the stacked
sparse autoencoder, which is a specific type of neural network model, with the
sigmoid activation function. The performance of the stacked sparse autoencoder
was evaluated in the publicly available benchmark database, Sleep-EDF SC∗ [17],
and the overall accuracy was 78.9%. Instead of extracting features based on the
domain knowledge, features in [18] are automatically learned by the convolutional
neural networks (CNNs). The overall accuracies was 74.8% for the same Sleep-EDF
SC∗ database. In [19], the authors also proposed a deep learning model, named
DeepSleepNet, which utilized CNNs to extract features and apply the bidirectional
Long Short-Term Memory to learn the stage transition rules from EEG epochs.
The DeepSleepNet algorithm reaches the state-of-the-art 82.0% of overall accuracy
on the Sleep-EDF SC∗ database. In [20], a similar approach based on the deep
CNN with modifications is considered and achieves a compatible result.

1.2. Our contribution. The main novelty and contribution of this paper is the
diffusion geometry based feature extraction when there is only one electroencephalo-
gram (EEG) channel, and diffusion geometry based sensor fusion when there are
two EEG channels. The goal is to extract intrinsic information hidden in the EEG.
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This novel diffusion geometry approach achieves the above-mentioned challenges –
an accurate automatic sleep stage scoring AI system.

The proposed algorithm is composed of feature extraction part and learning
part. The feature extraction part of the algorithm is based on a combination of two
modern signal processing tools, including the scattering transform [21] and diffusion
map (DM) [22] when only single channel is available or diffusion-based sensor fusion
(the multiview DM [23]) when two channels are available. The scattering transform
is a nonlinear-type signal processing tool motivated by studying the convolutional
neural network (CNN) with solid theoretical supports, which allows us an extrac-
tion of useful features from the EEG signal. We mention that while it is motivated
by studying CNN, the label is not used in the scattering transform, so it is an
unsupervised learning tool. We call the extracted features scattering EEG spectral
features. The scattering EEG spectral feature, however, is in general of high di-
mension and different from the intrinsic sleep dynamics. This difference comes from
various resources, including, for example, the inevitable noise and artifact. Thus,
an extra step is needed to reduce the dimension and refine/reorganize the scatter-
ing EEG spectral feature, which leads to the final intrinsic features for the sleep
dynamics. We suggest DM [22] or diffusion-based sensor fusion algorithms, like
multiview diffusion [23]. In short, the scattering EEG spectral features extracted
by the scattering transform are re-organized by modern diffusion geometry based
sensor fusion algorithms. We call the output features of the DM/diffusion-based
sensor fusion the intrinsic sleep dynamical features. The learning part of the al-
gorithm for the prediction purpose is based on the kernel support vector machine
(SVM) [24]. The prediction model for each testing subject is established by the
kernel SVM based on the intrinsic sleep dynamical features and the annotations of
all remaining subjects in the database.

To show this performance of the proposed algorithm and have a fair comparison
with reported results, we consider the publicly available benchmark database, the
PhysioNet Sleep-EDF SC∗ (SC = Sleep Cassette) database [17], which consists of
healthy subjects without any sleep-related medication, and the PhysioNet Sleep-
EDF ST∗ (ST = Sleep Telemetry) [17], which consists of subjects who had mild
difficulty falling asleep. We mention that compared with the existing neural network
(NN) based algorithms mentioned in Section 1.1, the proposed algorithm, including
the feature extraction part and learning part, has solid theoretical backups. In
addition, later in this paper we will show that the proposed algorithm performs
better or at least equally to the existing reported results based on NN approaches
when there is a single EEG channel, and the performance is improved if we fuse
information from two EEG channels.

1.3. Organization of the paper. The rest of this paper is organized as follows.
In Section 2, we introduce the proposed algorithm and the databases we evaluate
the proposed algorithm. In Section 2.1 we summarize the theoretical background
of the scattering transform and introduce the scattering EEG spectrum as the dy-
namical features. In Section 2.2, we describe how to apply the diffusion geometry
to integrate and fuse the dynamical features in Section 2.1, and the prediction
model based on SVM is summarized in Section 2.3. In Section 2.4, we describe two
databases, including the Sleep-EDF Database [Expanded] from PhysioNet. The re-
sults of applying the proposed algorithm to the two databases are shown in Section
3.
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2. Material and Method

The main novelty of the proposed algorithm is the feature extraction that de-
pends on the diffusion geometry based sensor fusion tools, DM and multiview DM.
The feature extraction consists of two steps. First, we apply the scattering trans-
form to extract features from the EEG signal (indicated by Part 1 in Figure 1).
Second, we apply DM or multiview diffusion map (indicated by Part 2-1 and Part
2-2 in Figure 1) with a properly designed metric to determine the final features.
With the proposed features, we take the well established SVM to build up the
prediction model. Below, we detail the algorithm implementation step by step.

2.1. Feature extraction step, part 1: Scattering transform. In this paper,
we apply the recently developed scattering transform [21] to extract spectral fea-
tures [25] from a given EEG signal. The scattering transform is motivated by estab-
lishing a mathematical foundation of the convolutional neural network. It computes
coefficients of the given EEG signal by iteratively applying wavelet transforms and
nonlinear modulus operators. They have two benefits. First, they are invariant
to time-shifts and stable to time-warping deformation [25]. Second, they can ef-
fectively characterize self-similarity and intermittency properties of multiscale time
series [26]. These two benefits provide us with a better quantification of the EEG
dynamics. Here, we briefly review the scattering transform, particularly the first-
and second-order coefficients, which we use as the spectral features for the given
EEG signal.

Take a signal x defined on [0, T ]. Let ψ be an analytic wavelet, that is, a complex
band-pass filter with the support over positive frequencies and the central frequency
1. Denote the associated father wavelet by φ, which is a low pass filter. Denote

Q ∈ N to be the number of wavelets per octave; that is, the bandwidth of ψ̂ is of
order Q−1. To evaluate the wavelet coefficients, we dilate the mother wavelet ψ as
follows:

(1) ψj(t) = 2−j/Qψ(2−j/Qt) ,

where j ∈ {. . . ,−1, 0, 1, . . . ,H}, and H ∈ N is the maximal wavelet scale so that

the largest-scale wavelet will be of bandwidth T . Clearly, ψ̂j is centered at 2−j/Q

with the bandwidth 2−j/QQ−1, and hence ψH captures the frequency above 2−H/Q.
For the low frequency region [0, 2−H/Q], we follow the suggestion in [25] to cover
this region by Q − 1 equally spaced filters, denoted as ψH+1, . . . , ψH+Q, with the

frequency bandwidth 2−H/QQ−1 centered at l2−H/QQ−1, where l = 1, . . . , Q − 1.
Again, we follow the suggestion in [25] and call ψH+1, . . . , ψH+Q−1 wavelets. Denote

Λ = {2−j/Q}Hj=−∞ ∪ {l2−H/QQ−1}Q−1
l=1 to be the grid of center frequencies of all

considered wavelets.
With the above preparation, we are ready to establish the scattering transform

coefficients of the signal x. We start from collecting ordinary wavelet transform
coefficients x ? ψj1(t), where ? is the convolution operator and −∞ ≤ j1 ≤ H +Q,
and the moving average by the father wavelet x ? φH(t), where

(2) φH(t) := Q−12−H/Qφ(Q−12−H/Qt) .

Note that φ̂H has the frequency bandwidth 2−H/QQ−1. Denote

(3) S0x(t) := x ? φH(t) ,
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EEG, channel 1

Extract scattering EEG spectral features:
Scattering transform

Determine intrinsic sleep features:
DM with the L2 metric

EEG, channel 2

Extract scattering EEG spectral features:
Scattering transform

Determine intrinsic sleep features:
DM with the L2 metric

Determine common intrinsic sleep features:
multiview DM

Part 1

Part 2

Part 1

Part 2

Part 2

Figure 1. The flow chart of the proposed feature extraction steps
and a visualization of the extracted features by the diffusion map
and sensor fusion are shown. The signal is from 20 subjects in
Sleep-EDF SC∗ [17], where Channel 1 is Fpz-Cz and channel 2 is
Pz-Oz. In the bottom figure, only one of the multiview DMs is
shown. The ratios of the stages Awake, REM, N1, N2, and N3 are
19%, 18%, 7%, 42%, and 14%.

which is called the zeroth-order coefficients of the scattering transform. Clearly,
S0x(t) contains only the low frequency information of the signal x. On the other
hand, while the wavelet transform, x ?ψj(t), provides multi-scale spectral informa-

tion of x at the scale 2−j/Q, the scattering transform outputs translation-invariant
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coefficients by averaging the modulus of the complex coefficients x ? ψj(t) via the
following moving average step:

(4) S1x(t, j1) := |x ? ψj1 | ? φH ,

where −∞ < j1 ≤ H. We call S1x(t, j1) the first-order coefficients of the scattering
transform.

The time averaging operator in (4) results in the loss of the fine-scale information
in |x ? ψj1 | such as vibratos and attacks [25]. To retrieve the lost information, we
compute |x?ψj1 |?ψj2 . Again, to outputs translation-invariant coefficients, we apply
modulation and convolution operators on |x ? ψj | ? φH via:

(5) S2x(t, j1, j2) := ||x ? ψj1 | ? ψj2 | ? φH ,

where −∞ ≤ j1 < j2 ≤ H. Note that only the wavelet ψj2 with larger scale j2 > j1
are needed, since |x?ψj1 | has approximately the same frequency support as that of
ψj1 [25, (29)]. The outputs are called the second-order coefficients of the scattering
transform of x. This iterative procedure can be extended to higher orders. For
example, the third-order coefficients of the scattering transform of x can be defined
by evaluating |||x ? ψj1 | ? ψj2 | ? φj3 | ? φH , where −∞ ≤ j1 < j2 < j3 ≤ H. In this
paper, only the first-order and second-order coefficients are exploited.

Next, we follow the suggestions in [25] to post-process the scattering transform
coefficients. To de-correlate the correlations at different orders [25], the first-order
scattering coefficients are renormalized as follows:

(6) S̃1x(t, j1) =
|x ? ψj1 | ? φH(t)

|x| ? φH(t) + ε
,

where ε = 2−20, and the 2nd-order scattering coefficients are renormalized by coef-
ficients of the 1st-order:

(7) S̃2x(t, j1, j2) =
||x ? ψj1 | ? ψj2 | ? φJ(t)

|x ? ψj1 | ? φH(t) + ε
,

where ε = 2−20. Similar to the Mel-frequency cepstral coefficients, we follow [25]

and apply a logarithm to x?φH(t) and the normalized coefficients, i.e., log S̃1x(t, j1)

and log S̃2x(t, j1, j2). According to [25], this step can transfer the multiplicative
components into additive ones and improve the classification performance.

We now apply the scattering transform to extract features from the EEG signal.
Following the R&K [3] and AASM classifications [2], we take an epoch for the sleep
stage evaluation to be 30 seconds long. Suppose the l-th epoch starts at a certain
time tl and ends at tl + 30. Let xl(t) be a 90s EEG signal segment during the
period [tl − 60, tl + 30]; that is, we consider 60s extra EEG signal before the epoch
we have interest in and hence the signal length is T = 90s. The EEG signal is
sampled uniformly every τ second, where τ is the reciprocal of the sampling rate.
For example, τ = 1/100 for the Sleep-EDF Database. In this work, we consider
the wavelet ψ to be the Morlet mother wavelet, and take Q = 2. Numerically,
we represent xk as a 9, 000-dim vector and take H = 17, 0 ≤ j1 ≤ H for S1xk,
and 0 ≤ j1 < j2 ≤ H for S2xk. Since S0xl, S1xl and S2xl are redundant at the
time axis, they are subsampled at the rate 2H/Q−1; that is, over half-overlapping
time windows of size 2H/Q centered at the points tl := l2H/Q−1, where l ∈ N. The
collection of these subsampled coefficients are concatenated and called the scattering
EEG spectral feature of the k-th epoch, which we denote as u(k).
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2.2. Feature extraction step, part 2: (Multiview) diffusion map. In the
optimal situation, the sleep dynamics at each epoch can be well captured by the
scattering EEG spectral features. However, the scattering EEG spectral features
might be erroneous due to the inevitable noise, other sensor-specific artifacts and
the information distortion caused by the observation procedure. We then stabilize
these features to better quantify the intrinsic sleep dynamics by applying DM. DM
is a nonlinear manifold learning algorithm that not only is robust to noise but also
respects the nonlinear structure of the intrinsic dynamics. We detail its implemen-
tation below, together with its generalization, multiview DM, to fuse information
from multiple channels.

2.2.1. Extract intrinsic sleep dynamics by diffusion map. Take the scattering EEG
spectral features Ux,k := {u(j)}Jkj=1 generated from the single-channel EEG sig-

nal x(t) of the k-th subject, where k = 1, . . . ,K, which is a point cloud in an

Euclidean space. Denote Ux := ∪Kk=1Ux,k = {u(j)}Jj=1, where J =
∑K
k=1 Jk and

{u(J1+...+Jk−1+1), . . . ,u(J1+...+Jk)} comes from Ux,k. First, from the point cloud
Ux, we build a graph with Ux being vertices. The affinity between features u(i) and
u(j) is defined as

(8) Wx(i, j) = exp

{
−‖u

(i) − u(j)‖
ε

}
, for i, j = 1, . . . , J ,

where ε > 0 is chosen by the user and ‖ · ‖ is the Euclidean distance comparing two
scattering EEG spectral features. Thus, we have a J ×J affinity matrix Wx. Next,
define the degree matrix Dx of size J × J , which is diagonal, as

(9) Dx(i, i) =

J∑
j=1

Wx(i, j), for i = 1, . . . , J.

With matrices Wx and Dx, we could define a random walk on the point cloud Ux
with the transition matrix given by the formula

Ax := D−1
x Wx .(10)

Since Ax is similar to the symmetric matrix D
−1/2
x WxD

−1/2
x , it has a complete

set of right eigenvectors φ1, φ2, · · · , φJ ∈ RJ with corresponding eigenvalues 1 =
λ1 > λ2 ≥ · · · ≥ λJ ≥ 0, where φ1 = [1, 1, . . . , 1]T ∈ RJ . Indeed, from the eigen-

decomposition D
−1/2
x WxD

−1/2
x = OΛO>, where O is a J × J orthonormal matrix

and Λ is a J × J diagonal matrix, we have Ax = UΛV >, where U = D
−1/2
x O and

V = D
1/2
x O. With the decomposition Ax = UΛV >, the DM is defined as

(11) Φxt : u(j) 7→
(
λt2φ2(j), λt3φ3(j), . . . , λt

d̂+1
φd̂+1(j)

)
,

where j = 1, . . . , J and t > 0 is the diffusion time chosen by the user, and

d̂ is an estimate of the dimension of the intrinsic state. Here, d̂ can be ob-
tained according to the spectral gap in the decay of the eigenvalues {λj}Jj=1.

In other words, Φxt (u(j)) consists of the second to d̂ + 1 coordinates of e>j UΛt,
where ej is the unit J-dim vector with the j-th entry 1. As a result, the scat-

tering EEG spectral features Ux are converted into a set of new features in Rd̂

via the DM. Denote Fx := {Φxt (u(j))}Jj=1 ⊂ Rd̂. Therefore, we obtain the in-

trinsic sleep features for the recorded EEG signal x of the k-th subject Fx,k :=
{Φxt (u(J1+...+Jk−1+1)), . . . ,Φxt (u(J1+...+Jk))}.
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Note that the diffusion process plays an essential role in the whole algorithm,
since (11) is based on the diffusion nature of the random walk with the transition
matrix (10). Based on the spectral geometry result reported in [27], and the asymp-
totical spectral convergence results shown in [28, 29], we know that the Riemannian
manifold hosting the inaccessible intrinsic sleep features is almost isometrically re-
covered by DM (11). In addition to recovering the intrinsic state space, another
important property of DM is its robustness to noise. Essentially, the diffusion pro-
cess could be viewed as a nonlinear “averaging” process. This viewpoint was first
captured and proved in [30], and later extended to larger noise in [31]. Another
important fact is that the embedding provided by DM is unique up to a global
rotation, so it is not feasible to construct intrinsic sleep features for each subject
separately and pool them together for the prediction purpose. The proposed algo-
rithm here applies DM to all scattering EEG spectral features from all subjects to
construct intrinsic sleep features, which is over a universal coordinate that allows
us a comparison among different subjects. See Figure 1 for an example of DM

when d̂ = 3. It is clear that epochs of different sleep stages are clustered and well
separated.

2.2.2. Fuse two channels via multiview DM. If only one EEG signal x is available,
we proceed to the learning step in Section 2.3 with the intrinsic sleep features Fx
for channel x. If we have two or more channels, we can take them into account
simultaneously. In general, this problem is understood as the sensor fusion prob-
lem. While different EEG channels capture information from the same brain, the
information recorded might vary and they might be contaminated by brain-activity
irrelevant artifacts from different sources, including noise and other sensor-specific
nuisance. These artifacts not only deteriorate the quality of the extracted features
but might also mislead the analysis result. The main purpose of sensor fusion is dis-
tilling the brain information and removing those unwanted artifacts. A naive way
to combine information from x and y is simply concatenating features and form a
new feature. However, due to the inevitable sensor-specific artifacts or errors, such
a concatenating scheme might not be the optimal route to fuse sensors [32, 33]. We
consider the recently developed diffusion-based sensor fusion approach, multiview
DM [23] or equivalently the alternating DM [33], to fuse sensor information. Essen-
tially, the information from different sensors are “diffused” to integrate the common
information, and simultaneously eliminate artifacts or noise specific to each sensor.

In this work, we focus on two simultaneously recorded EEG channels x and y.
Here we detail the multiview DM algorithm. For each channel, we apply Sections

2.1 and 2.2 to obtain its intrinsic sleep features, denoted as Fx ⊂ Rd̂x and Fy ⊂ Rd̂y
respectively, where d̂x might be different from d̂y. Define

(12) Wx,y =

[
0J×J WxWy

WyWx 0J×J

]
∈ R2J×2J ,

where Wx and Wy are affinity matrices defined in (8), and define a diagonal matrix
Dx,y ∈ R2J×2J so that its i-th diagonal entry is the sum of the i-th row of Wx,y.
Denote qi ∈ R2J to be the i-th right eigenvector of the transition matrix D−1

x,yWx,y

corresponding to eigenvalue σi. Since for each i, qi(l) and qi(J + l) correspond to

the l-th epoch for each l ∈ {1, . . . , J}, we call the 2d̃-dimensional vector

(13) vj := [σt2q2(j) · · · σt
d̃+1

qd̃+1(j) σt2q2(J + j) · · · σt
d̃+1

qd̃+1(J + j)]>
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the common intrinsic sleep feature associated with the sleep stage of the j-th epoch,
where j ∈ {1, . . . , J}. Denote Fx,y := {vj}Jj=1. Hence, we obtain the common
intrinsic sleep features for the simultaneously recorded EEG signals x and y of the
k-th subject Fx,y,k := {v(J1+...+Jk−1+1), . . . , v(J1+...+Jk)}.

Note that since the transition matrix D−1
x,yWx,y is associated with the random

walk on the bipartite graph formed from epochs of x and y, its eigenvectors “co-
clustering” two channels [34]. Hence, we can use its eigenvectors as features for the
sleep stage. We mention that when there are only two channels, like in our case, the
multiview DM is equivalent to alternating DM [33], but when there are more than
two channels, the multiview DM is different from the generalization of alternating
DM to multiple channels [35]. An illustration of the result of multiview DM with

d̃ = 3 is shown at the bottom of Figure 1.

2.3. Learning step: Sleep Stage Classification by the support vector ma-
chine. In this work, we choose the standard and widely used kernel SVM [24] for
the learning step. SVM find a hyperplane in the feature space that separates the
data set into two disjoint subsets. Based on the reproducing kernel Hilbert space
theory, SVM is generalized to the kernel SVM, which allows for classification when
there exists a nonlinear structure in the feature space. Specifically, kernel SVM
finds a nonlinear surface separating the data set into two disjoints subsets. We
refer the interested reader to [24] for technical details.

In this work, we choose the radial based function, K(x, x′) = exp(−‖x−x
′‖22

2σ2 ),
where σ > 0, as the kernel function. In this sleep dynamics classification problem,
the label is multi-class so we need to further generalize the kernel SVM to the
multi-class SVM to complete our mission. To this end, we apply the one-versus-all
(OVA) classification scheme [36].

2.4. Material. To evaluate the proposed algorithm, we consider the commonly
considered benchmark database, Sleep-EDF Database [Expanded], from the public
repository Physionet [17]. It contains two subsets (marked as SC∗ and ST∗). The
first subset SC∗ comes from healthy subjects without any sleep-related medication.
The subset SC∗ contains Fpz-Cz/Pz-Oz EEG signals recorded from 10 males and 10
females without any sleep-related medication, and the age range is 25-34 year-old.
There are two approximately 20-hour recordings per subject, apart from a single
subject for whom there is only a single recording. The EEG signals were recorded
during two subsequent day-night periods at the subjects’ home. The sampling rate
is 100 Hz. The second subset ST∗ was obtained in a 1994 study of temazepam
effects on the sleep of subjects with mild difficulty falling asleep. The subset ST∗

contains Fpz-Cz/Pz-Oz EEG signals recorded from 7 males and 15 females, who
had mild difficulty falling asleep. Since this data set is originally used for studying
the effects of temazepam, the EEG signals were recorded in the hospital for two
nights, one of which was after temazepam intake. Only their placebo nights can be
downloaded from [17]. The sampling rate is 100 Hz. For both SC∗ and ST∗ sets,
each 30s epoch of EEG data has been annotated into the classes Awake, REM,
N1,N2, N3 and N4. The epochs corresponding to movement and unknown stages
were excluded and the the epochs labeled by N4 are relabeled to N3 according
to the AASM standard. For more details of the database, we refer the reader to
https://www.physionet.org/physiobank/database/sleep-edfx/.

https://www.physionet.org/physiobank/database/sleep-edfx/
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2.5. Statistics. To evaluate the performance of the proposed automatic sleep scor-
ing algorithm, we consider the LOSOCV scheme. For each database, one subject
is randomly chosen as the testing set and the remaining subjects form the training
set. Specifically, when there are n subjects, for the `-th subject, we train the kernel
SVM model using the common intrinsic sleep features ∪k=1,...,K, k 6=`Fx,y,k with the
provided labels, and test the trained model on Fx,y,` and report the results. Then
apply the same procedure for subject ` = 1, . . . , n. Note that this LOSOCV scheme
helps prevent overfitting in constructing the prediction model.

All performance measurements used in this paper are computed through the
unnormalized confusion matrix M ∈ R5×5. For 1 ≤ p, q ≤ 5, the entry Mpq

represents the number of expert-assigned p-class epochs, which were predicted to
the q-class. The precision (PRp), recall (REp), and F1-score (F1p) of the p-th class,
where p = 1, . . . , 5, are computed respectively through

(14) PRp =
Mpp∑5
q=1Mqp

, REp =
Mpp∑5
q=1Mpq

, F1p =
2PRp · REp
PRp + REp

.

The overall accuracy (ACC), macro F1 score (Macro-F1) and kappa (κ) coefficient
are computed respectively through

(15) ACC =

∑5
p=1Mpp∑5
p,q=1Mpq

, Macro-F1 =
1

5

5∑
p=1

F1p, κ =
ACC− EA

1− EA
,

where EA means the expected accuracy, which is defined by

(16) EA =

∑5
p=1

(∑5
q=1Mpq

)
×
(∑5

q=1Mqp

)
(∑5

p,q=1Mpq

)2 .

To evaluate if two matched samples have the same mean, we apply the one-tail
Wilcoxon signed-rank test under the null hypothesis that the difference between the
pairs follows a symmetric distribution around zero. When we compare the variance,
we apply the one-tail F test under the null hypothesis that there is no difference
between the variances. We consider the significance level of 0.05. To handle the
multiple comparison issue, we consider the Bonferroni correction.

3. Results

In this section, we report the results of applying the proposed algorithm to
the above-mentioned two databases. We show a visualization of the (common)
intrinsic sleep features. Note that this can be viewed as a dimension reduction
of the EEG signals. The dynamics of the intrinsic sleep features are also shown
to compared with the hypnogram. The confusion matrices of the automatic sleep
stage classification on different databases are shown, and a performance comparison
with other reported results is also provided. The parameters in the numerical
implementation are listed here. For DM and multiview DM, the ε in (8) is chosen

to be the 1% percentile of pairwise distances, the diffusion time is t = 0.3. d̂ and d̃
are chosen to be 80. No systematic parameter optimization is performed. For the
reproducibility purpose, the Matlab code will be provided via request.
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3.1. Sleep-EDF database (SC*). We start from showing the visualization of the
intrinsic sleep features and the common intrinsic sleep features from the total 20
different subjects in the Sleep-EDF SC* database. See the middle of Figure 1 for a
visualization of each EEG channel by DM. In the bottom of Figure 1, we plot the
embeddings {[q2(i), q3(i), q4(i)]}Ji=1 and {[q2(i + J), q3(i + J), q4(i + J)]}Ji=1 for a
visualization of fusing two EEG channels generated by the multiview DM. Clearly,
we see that Awake, REM, N2 and N3 stages are well clustered in all plots, while N1
is less clustered and tends to mixed up with other stages. While the sleep dynamics
can be easily visualized in Figure 1, it is not easy to visualize the temporal dynamics
information. For this purpose, we show the final intrinsic features expanded in the
time line in Figure 2.

Figure 2. A visualization of the temporal dynamics in common
intrinsic sleep features extracted by the multiview DM. The first
intrinsic feature is colored in red, and the tenth intrinsic is colored
in blue. The expert’s labels are plotted on the top.

Since there are long periods of wakefulness at the start and the end of recordings,
when a subject is not sleeping, [19] only includes 30 minutes of such periods just
before and after the sleep periods. To have a fair comparison, we also follow this
truncation rule in this work. In the end, the labeled epochs are imbalanced, with
42.4% epochs labeled N2 and only 6.6% epochs labeled N1.

We run the leave-one-subject-out CV. The averaged confusion matrix of the
proposed algorithm over 20 subjects is shown in Table 1 for the single-channel case
and Table 2 for the two-channel case. For the the single-channel case (e.g., Fpz-Cz),
the overall accuracy is 82.72%, the macro F1 is 75.91% and Cohen’s kappa equals
76.10%. For the two-channel case, the overall accuracy is 84.44% and the macro F1
is 78.25%, with Cohen’s kappa 78.36%. Note that the N1 prediction is relatively
low compared with other stages. Particularly, the F1 is 46% and most N1 epochs
are classified as REM or N2. This misclassification is related to the scattered N1
epochs in Figure 1 that can be visually observed, and it is the main reason to
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drag down the overall accuracy and macro F1. We also note that N3 is commonly
classified wrongly as N2, Awake is commonly classified wrongly as N1, and REM
is commonly classified wrongly as N2. To further examine the performance, the
resulting hypnogram of one subject is shown in Figure 3. Note that the discrepancy
between the experts’ annotations and the prediction frequently happens when there
is a “stage transition”. Note that the sleep dynamics transition from one stage to
another one often happens in the middle of one epoch. Thus, those epochs with
sleep dynamics transition contain information that is not purely for one stage, and
hence harder to classify. In Table 3, we compare performance of the proposed
algorithm and several reported algorithms validated by the leave-one-subject-out
CV scheme.

Table 1. Performance of DM with the scattering transform eval-
uated by 20-fold leave-one-subject-out cross-validation on the Fpz-
Cz channel (top) and Pz-Oz channel (bottom) from the Sleep-EDF
SC∗ database. For the Fpz-Cz channel, the overall accuracy equals
82.72%, the macro F1 score equals 75.91% and Cohen’s kappa
equals 76.10%. The standard deviation of classification accuracy
(resp., the macro F1 score and Cohen’s kappa) for the 39-night
recordings is 8.90% (resp., 7.71% and 11.30%). For the Fz-Oz
channel, the overall accuracy equals 80.99%, the macro F1 score
equals 72.69% and Cohen’s kappa equals 73.49%. The standard
deviation of classification accuracy (resp., the macro F1 score and
Cohen’s kappa) for the 39-night recordings is 5.06% (resp., 5.99%
and 6.97%). The training set for each testing subject consists of
the recordings of the remaining 19 subjects during sleep.

Fpz-Cz
Predicted Per-class Metrics

Awake REM N1 N2 N3 PR RE F1

Awake (19%) 6871 (87%) 298 (4%) 563 (7%) 171 (2%) 24 (0%) 83 87 85

REM (18%) 295 (4%) 6253 (81%) 378 (5%) 790 (10%) 1 (0%) 79 81 80

N1 (7%) 549 (20%) 616 (22%) 1040 (37%) 591 (21%) 8 (0%) 46 37 41

N2 (42%) 416 (2%) 692 (4%) 272 (2%) 15821 (89%) 598 (3%) 87 89 88

N3 (14%) 101 (2%) 13 (0%) 0 (0%) 872 (15%) 4717 (83%) 88 83 85

Fz-Oz
Predicted Per-class Metrics

Awake REM N1 N2 N3 PR RE F1

Awake (19%) 6803 (86%) 420 (5%) 466 (6%) 220 (3%) 18 (0%) 84 86 85

REM (18%) 310 (4%) 6038 (78%) 350 (5%) 1019 (13%) 0 (0%) 77 78 78

N1 (7%) 794 (28%) 647 (23%) 755 (27%) 602 (22%) 6 (0%) 42 27 33

N2 (42%) 211 (1%) 703 (4%) 226 (1%) 15943 (90%) 716 (4%) 84 90 87

N3 (14%) 4 (0%) 9 (0%) 2 (0%) 1250 (22%) 4438 (78%) 86 78 82

3.2. Sleep-EDF database (ST*). See Figures 4 and 5 for a visualization of DM
and multiview DM of the ST* database. While Awake, REM, N2 and N3 stages
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Table 2. Performance of the multiview DM with the scatter-
ing transform evaluated by 20-fold leave-one-subject-out cross-
validation on the Fpz-Cz and Pz-Oz channels from the Sleep-EDF
SC∗ database. The overall accuracy equals 84.44%, the macro
F1 score equals 78.25% and Cohen’s kappa equals 78.36%. If the
classification accuracy, macro F1 score, and Cohen’s kappa are
computed for each night recording, the standard deviation of clas-
sification accuracy (resp., the macro F1 score and Cohen’s kappa)
for the 39-night recordings is 5.36% (resp., 6.40% and 8.01%). The
training set for each testing subject consists of the recordings of
the remaining 19 subjects during sleep.

Fpz-Cz+Pz-Oz
Predicted Per-class Metrics

Awake REM N1 N2 N3 PR RE F1

Awake (19%) 7034 (89%) 148 (2%) 525 (7%) 197 (2%) 23 (0%) 90 89 90

REM (18%) 125 (2%) 6070 (79%) 528 (7%) 991 (13%) 3 (0%) 85 79 82

N1 (7%) 498 (18%) 436 (16%) 1218 (43%) 643 (23%) 9 (0%) 47 43 46

N2 (42%) 115 (1%) 492 (3%) 313 (2%) 16337 (92%) 542 (3%) 86 92 89

N3 (14%) 17 (0%) 0 (0%) 1 (0%) 921 (16%) 4764 (84%) 89 86 84

Figure 3. The resulting hypnogram of one subject from SC*. The
gray curve is the expert’s label, and the black dots are the predicted
sleep stages. The discrepancy is emphasized by the black circles.

are still well clustered in all plots, compared with the normal subjects in the SC*
database, the separation is less clear.

We run the leave-one-subject-out CV. The averaged confusion matrix of the
proposed algorithm over 22 subjects is shown in Table 4 for the single-channel case
and Table 5 for the two-channel case. For the single channel case (e.g., Fpz-Cz
channel), the overall accuracy is 78.63%, the macro F1 is 73.58%, and Cohen’s
kappa is 69.48%. For the two-channel case, the overall accuracy is 79.05% and the
macro F1 is 74.73%, with Cohen’s kappa 70.31%. In this database, there are 10%
epochs labeled as N1, which is slightly higher than that of the SC∗ database. While
the prediction performance of N1 is slightly higher (50% when we use the Fpz-Cz
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Table 3. Comparison between DM-HMM and other sleep stage
scoring methods in terms of the overall accuracy (ACC), macro-
F1 score (MF1) and Cohen’s kappa. Note that the total number
of epochs in the ST∗ dataset is 21076 but the performance of our
algorithm is evaluated on 20988 epochs. In fact, we do not predict
the sleep stages of the first 3 epochs and the last epoch of each
recording in the ST∗ dataset because the features for each epoch
is extracted from a 90s signal. As a result, 21076 − 88 = 20988
epochs in the ST∗ dataset are evaluated.
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Figure 4. A visualization of the intrinsic sleep features (from
single channel) extracted from 22 different subjects from
the Sleep-EDF database (ST*). In subplot 3.2, we plot
{[q2(i), q3(i), q4(i)]}Ji=1, and in subplot 3.2, we show {[q2(i +
J), q3(i+J), q4(i+J)]}Ji=1. The ratios of the stages Awake, REM,
N1, N2, and N3 are 10%, 20%, 10%, 45%, and 15% respectively.
Each point corresponds to a 30-second epoch.

Figure 5. A visualization of the common intrinsic sleep fea-
tures (from two channels) extracted from 22 different subjects
from the Sleep-EDF database (ST*). In subplot 3.2, we plot
{[q2(i), q3(i), q4(i)]}Ji=1, and in subplot 3.2, we show {[q2(i +
J), q3(i+J), q4(i+J)]}Ji=1. The ratios of the stages Awake, REM,
N1, N2, and N3 are 10%, 20%, 10%, 45%, and 15% respectively.
Each point corresponds to a 30-second epoch.

channel and 52% when we use two channels), it is still relatively low. Also, note
that the prediction performance of N3 is lower, and a significant portion of N3 is
mis-classified as N2.

3.3. More comparisons.

3.3.1. Handling imbalanced data. An ideal approach to handle the imbalanced data
is collecting more data for the small-sized group to enhance the prediction accuracy.
In the SC∗ dataset, there were long periods of awake epochs before the start and
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Table 4. Performance of DM with the scattering transform eval-
uated by 22-fold leave-one-subject-out cross-validation on the Fpz-
Cz or Pz-Oz channel from the Sleep-EDF ST∗ database. For Fpz-
Cz, the overall accuracy equals 78.63%, the macro F1 score equals
73.58% and Cohen’s kappa equals 69.48%. The standard devia-
tion of classification accuracy (resp., the macro F1 score and Co-
hen’s kappa) for the 22-night recordings is 7.97% (resp., 8.11%
and 10.25%). For Pz-Oz, the overall accuracy equals 75.74%, the
macro F1 score equals 69.97% and Cohen’s kappa equals 65.39%.
The standard deviation of classification accuracy (resp., the macro
F1 score and Cohen’s kappa) for the 22-night recordings is 7.24%
(resp., 8.30% and 8.92%).

Fpz-Cz
Predicted Per-class Metrics

Awake REM N1 N2 N3 PR RE F1

Awake (10%) 1726 (78%) 63 (3%) 364 (16%) 55 (3%) 5 (0%) 79 78 78

REM (20%) 84 (2%) 3196 (77%) 326 (8%) 518 (13%) 6 (0%) 86 77 82

N1 (10%) 327 (16%) 256 (13%) 1003 (49%) 444 (22%) 2 (0%) 50 49 50

N2 (45%) 51 (0%) 190 (2%) 307 (3%) 8502 (90%) 439 (5%) 81 90 85

N3 (15%) 10 (0%) 1 (0%) 7 (0%) 1034 (33%) 2093 (67%) 82 67 74

Pz-Oz
Predicted Per-class Metrics

Awake REM N1 N2 N3 PR RE F1

Awake (10%) 1803 (81%) 38 (2%) 334 (15%) 37 (2%) 1 (0%) 74 81 78

REM (20%) 59 (2%) 3272 (79%) 204 (5%) 592 (14%) 3 (0%) 78 79 79

N1 (10%) 449 (22%) 383 (19%) 801 (39%) 395 (20%) 4 (0%) 49 39 44

N2 (45%) 110 (1%) 401 (4%) 282 (3%) 8176 (86%) 520 (6%) 79 86 82

N3 (15%) 5 (0%) 75 (3%) 9 (0%) 1195 (38%) 1861 (59%) 78 59 67

after the end of sleep that we can use. To further evaluate the algorithm, we consider
longer periods of wakefulness just before and after the sleep periods. Apart from
the 2 recordings (sc4092e0 and sc4192e0), we included 90 minutes of awake periods
before and after the sleep periods. For the sc4092e0 and sc4192e0 recordings, we
only included 60 minutes of awake periods just before and after the sleep periods
due to the appearance of artifacts (labeled as MOVEMENT and UNKNOWN),
which were in the start or the end of each recording. With more awake epochs,
the corresponding comparison matrix is shown in Table 6. In comparison with
the result subject to the 30-minute truncation rule, the accuracy and F1 of Awake
increase from 88% and 90% to 91% and 94% respectively, and the accuracy and F1
of N1 change from 43% and 46% to 63% and 43% respectively. Note that the F1
of N1 decreases since the precision decreases due to the increased number of awake
epochs and increased number of epochs erroneously classified as N1.

Another approach is handling the imbalanced data according to the class-balanced
random sampling scheme proposed in [16] under the same 30-minute truncation
rule. Specifically, for each recording, we randomly sample K epochs for per-stage,
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Table 5. Performance of the multiview DM with the scatter-
ing transform evaluated by 22-fold leave-one-subject-out cross-
validation on the Fpz-Cz and Pz-Oz channels from the Sleep-EDF
ST∗ database. The overall accuracy equals 79.05%, the macro F1
score equals 74.73% and Cohen’s kappa equals 70.31%. The stan-
dard deviation of classification accuracy (resp., the macro F1 score
and Cohen’s kappa) for the 22-night recordings is 7.21% (resp.,
7.58% and 9.38%).

Fpz-Cz+Pz-Oz
Predicted Per-class Metrics

Awake REM N1 N2 N3 PR RE F1

Awake (10%) 1838 (83%) 19 (1%) 323 (15%) 29 (1%) 4 (0%) 79 83 81

REM (20%) 26 (1%) 3344 (81%) 288 (7%) 465 (11%) 7 (0%) 86 81 84

N1 (10%) 344 (17%) 244 (12%) 1059 (52%) 380 (19%) 5 (0%) 52 52 52

N2 (45%) 109 (1%) 253 (3%) 352 (4%) 8265 (87%) 510 (5%) 81 87 84

N3 (15%) 8 (0%) 10 (0%) 10 (0%) 1016 (32%) 2101 (67%) 80 67 73

where K is the number of epochs of the least represented stage (N1). We apply
this class-balanced random sampling scheme before using the SVM to train the
common intrinsic sleep features. See Table 6 for details. Compared with Table 2,
the accuracy of N1 can be improved from 43% to 76% and the overall accuracy
decreases to 81.12%.

3.3.2. With and without the sensor fusion. To appreciate the significance of the
diffusion geometry based sensor fusion framework, we report the results without
the critical setup in the proposed algorithm – the sensor fusion. We consider the
case if we simply concatenate intrinsic sleep features of two channels, instead of
taking the common intrinsic sleep features; that is, we concatenate Φxt (u(j)) and
Φyt (u(j)) in (11) directly to replace (13) when we train the kernel SVM model. We
also compare the single EEG channel result with the fusion result; that is, we train
the kernel SVM on the intrinsic sleep features extracted from the Fpz-Cz or Pz-Oz
channel.

Different comparisons of the SC∗ database are shown in Figure 6. It is clear that
the averaged ACC, MF1 and Cohen’s kappa are consistently downgraded in these
three cases. In Figure 6, we see that compared with single channel or sensor fusion
with a direct concatenation, the proposed sensor fusion of two channels consistently
improve the result with statistical significance, for both mean and variance of ACC,
MF1 and Cohen’s kappa. This fact reflects the essential property of the diffusion-
based algorithms. Via the diffusion-based sensor fusion, the intrinsic sleep features
are “stabilized”, and hence a smaller variance.

4. Discussion and Conclusion

The diffusion geometry based sensor fusion framework is proposed to capture
the geometric structure of the sleep dynamics. We take the scattering transform of
EEG signals as the initial feature and test the framework on the publicly available
benchmark database. With the learning algorithm SVM, we obtain an accurate
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Table 6. Performance of the multiview DM with the scatter-
ing transform evaluated by 20-fold leave-one-subject-out cross-
validation on Fpz-Cz and Pz-Oz channels from the Sleep-EDF
SC* database with two different approaches to handle the imbal-
anced groups. (1) take a longer awake periods; (2) apply the class-
balanced random sampling scheme proposed in [16]. For the ap-
proach (1), the overall accuracy equals 83.69%, the macro F1 score
equals 77.11% and Cohen’s kappa equal 78.14%. If the classifica-
tion accuracy, macro F1 score, and Cohen’s kappa are computed
for each night recording, the standard deviation of classification
accuracy (resp. the macro F1 score and Cohen’s kappa) for the
39-night recordings is 7.23% (resp. 5.47% and 8.77%). For the ap-
proach (2), the overall accuracy equals 81.12%, the macro F1 score
equals 77.33% and Cohen’s kappa equals 74.82%. If the classifica-
tion accuracy, macro F1 score, and Cohen’s kappa are computed
for each night recording, the standard deviation of classification
accuracy (resp., the macro F1 score and Cohen’s kappa) for the
39-night recordings is 6.29% (resp., 7.30% and 8.77%).

Longer awake periods

Fpz-Cz+Pz-Oz
Predicted Per-class Metrics

Awake REM N1 N2 N3 PR RE F1

Awake (34%) 15478 (91%) 221 (1%) 1245 (7%) 76 (1%) 44 (0%) 97 91 94

REM (15%) 114 (2%) 5954 (77%) 1071 (14%) 570 (7%) 8 (0%) 80 77 79

N1 (5%) 167 (6%) 499 (18%) 1754 (63%) 351 (12%) 33 (1%) 33 63 43

N2 (35%) 130 (1%) 740 (4%) 1196 (6%) 14337 (81%) 1396 (8%) 91 81 85

N3 (11%) 18 (0%) 3 (0%) 44 (1%) 407 (7%) 5231 (92%) 78 92 84

Class-balanced random sampling scheme [16]

Fpz-Cz+Pz-Oz
Predicted Per-class Metrics

Awake REM N1 N2 N3 PR RE F1

Awake (19%) 6444 (81%) 103 (1%) 1313 (17%) 31 (0%) 36 (1%) 96 81 88

REM (18%) 35 (1%) 5794 (75%) 1322 (17%) 563 (7%) 3 (0%) 87 75 81

N1 (7%) 186 (7%) 238 (8%) 2123 (76%) 242 (9%) 15 (0%) 33 76 46

N2 (42%) 58 (0%) 529 (3%) 1595 (9%) 14517 (82%) 1100 (6%) 92 82 86

N3 (14%) 15 (0%) 1 (0%) 65 (1%) 469 (8%) 5153 (91%) 82 90 86

prediction model, and the result is compatible with several state-of-the-art algo-
rithms based on neural network (NN). In addition, the chosen tools all have solid
theoretical backup. All these summarize the usefulness of the diffusion geometry
framework for the sleep dynamics study. We mention that the proposed framework
is flexible to study other physiological dynamics but not only for studying the sleep
dynamics. For example, its variation has been applied to study f-wave from subjects
with atrial fibrillation [37], intra-cranial EEG signal [38], fetal electrocardiogram
(ECG) extraction from single lead trans-abdominal maternal ECG signal [39], etc.

4.1. Dealing with misclassification of stage 1 sleep. Although our overall
prediction accuracy is compatible with the state-of-the-art prediction algorithm in
the Sleep-EDF SC* database, like [19], we see that the prediction accuracy of N1
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Figure 6. Comparison between different information fusion meth-
ods in terms of the accuracy (ACC), macro F1-score (MF1) and
Cohen’s Kappa for the SC* database. To evaluate if the mean is
improved, the one-tail Wilcoxon signed-rank test is applied under
the null hypothesis that the difference between the pairs follows
a symmetric distribution around zero. To evaluate if the variance
is smaller, we apply the one-tail F test under the null hypothesis
that there is no difference between the variances. ? (respectively
??) means statistical significance without (respectively with) the
Bonferroni connection when the mean is compared; # (respectively
##) means statistical significance without (respectively with) the
Bonferroni connection when the variance is compared.

is low by our algorithm (when there is only a single channel, Fpz-Cz, and with the
same number of epochs, the F1 of N1 prediction is 41% by our method and 46.6%
in [19, Table III], and the overall accuracy is 82.72% by our method and 82% in [19,
Table III]). This prediction rate of N1 is also low in the Sleep-EDF ST* database.
This low prediction rate partially comes from the relatively small size of N1 epochs,
and partially comes from available channels that we discuss below.
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Based on the AASM criteria [1, 2], to distinguish N1 and REM, we need elec-
trooculogram and electromyogram signals, which are not available in the dataset.
The EEG backgrounds of N1 and N2 are the same, and experts distinguish N1 and
N2 by the K-complex or spindle, as well as the 3-minute rule. While we use 90
seconds signal to establish intrinsic sleep features, the 3-minute rule is not consid-
ered in the algorithm. In the proposed algorithm, the temporal information among
epochs is not fully utilized when we design the intrinsic sleep feature. How to in-
corporate the temporal information into the diffusion geometry framework will be
explored in the future. Furthermore, there are other information in addition to the
spectral information discussed in this paper. We do not extensively explore all pos-
sible information, but focus on the diffusion geometry and sensor fusion framework.
For example, while the vertex sharp is a common “landmark” indicating transition
from N1 to N2, we do not take it into account. Another interesting reasoning
that it is possible to improve the N1 accuracy is based on the deep neural network
(DNN) result [19]. This suggests that by taking experts’ labels into account, some
distinguishable EEG structure of N1 that is not sensible the scattering transform
can be efficiently extracted by the DNN framework proposed in [19]. In conclusion,
since the proposed features depend solely on the scattering transform, we may need
features of different categories to capture this unseen N1 structure.

Note that beside N1, the prediction performance of N3 is also lower in the Sleep-
EDF ST* database, where the subjects take temazepam before data recording. It
has been well known that in general benzodiazepine hypnotics [40] reduces the low
frequency activity and enhances spindle frequency. Since our features are mainly
based on the spectral information, a N3 epoch might look more like N2 epochs,
and hence the confusion and the lower performance. This outcome emphasizes the
importance of the drug history when designing the algorithm.

4.2. Comparison with DNN. Compared with the DNN approach [19], which is
supervised in nature, our feature extraction step is unsupervised in nature. Recall
that the main difference between the supervised learning and unsupervised learn-
ing is that the label information is taken into account in the supervised learning
approach. The success of DNN in many fields is well known [41], and it is not
surprised that it has a great potential to help medical data analysis.

While DNN is in general an useful tool for the engineering purpose, it is often
criticized of working as a black box. For medical problems and datasets, when
interpretation is needed, a mathematically solid and interpretable tool would be
useful. The algorithm we proposed, on the other hand, has a clear interpretation
with solid mathematical supports. Specifically, the scattering transform we choose
has a solid harmonic analysis support, and it is motivated by capturing the essence
of CNN. In this sense, our approach combines the “neural network” and diffusion
geometry to design features for the sleep dynamics. Note that besides knowing that
the scattering transform allows us capturing the dynamical information from the
spectral domain in a nonlinear way, we cannot claim that we have a full interpre-
tation of what physiological information the scattering transform tells us. This is a
physiological problem we need to explore in the future work. Moreover, a peculiar
property of medical databases, the “uncertainty”, deserves more discussion. Take
the sleep dynamics studied in this paper as an example. It is well known that
the inter-expert agreement rate is only about 80% for normal subjects, not to say
for subjects with sleep problems [13]. With this uncertainty, a supervised learning
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algorithm might learn both good and bad labels. On the other hand, the proposed
feature extraction approach is independent of the provided labels, and the chosen
scattering features all come from the EEG signal, and speak solely for the sleep
dynamics but not the labels. To some extent, the “uncertainty” issue is less critical
via our feature extraction approach, since the uncertain labels are not taken into
account in the feature extraction step.

Since both supervised and unsupervised approaches have their own merits, it
is natural to seek for a way to combine both. We are exploring the possibility of
combining DNN and the proposed feature extraction techniques, and the result will
be reported in the future work.

4.3. Limitation and future work. Despite the strength of the proposed method,
the discussion is not complete without mentioning its limitations. While we test the
algorithm on two databases, and compare our results with those of state-of-the-art
algorithms, those databases are small. To draw a conclusion and confirm its clinical
applicability, a large scale and prospective study is needed.

Although extended theoretical understandings of applied algorithms, including
the scattering transform and diffusion-based sensor fusion have been established in
the past decade, there are still open problems we need to explore. For example,
there are open questions on the the statistical property of scattering transform on
EEG. While alternating diffusion map and multiview DM are designed for the same
“sensor fusion ” purpose, they are developed under different motivations, and the
consequence is never discussed. The relationship between alternating DM and mul-
tiview DM when there are more than 2 channels is also not clear at this moment.
It is well known that DM leads to an embedding free up to rotation, so aggregating
intrinsic sleep features from different subjects is not a suitable approach. While
the proposed approach, constructing a universal coordinate by applying DM on the
pool of all scattering EEG spectral features from all subjects, leads to a satisfac-
tory result, in general we run into the computational issue. Finding a systematic
numerical solution to this problem is out of the scope of this work. The imbalanced
dataset is a general challenge in data science. May we take more physiological
knowledge to conquer this limitation is an interesting direction to explore. Another
open problem is how to further take the temporal information, like the 3-minute
rule, into account when we deal with the inter-individual prediction. The above
mentioned limitations will be studied and reported in the future work.

5. Conclusion

A novel sleep stage prediction algorithm with an accurate automatic sleep stage
annotation is proposed. The main novelty is organizing scattering EEG spectral
features by the unsupervised diffusion geometry based sensor fusion framework,
which has a solid mathematical backup. In addition to providing a visualization of
the sleep dynamics, the prediction result is compatible with several state-of-the-art
algorithms based on neural network. In addition to visually seeing the relationship
between different sleep stages, the prediction result suggests its potential in prac-
tical applications. The flexibility of the proposed sensor fusion framework allows
researchers to further explore other research problems that have complicated dy-
namics. For the reproducibility purpose and its application to other problems, the
Matlab code will be provided via request.
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