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Classification of Breast Lesions Using Quantitative
Ultrasound Biomarkers

Navid Ibtehaj Nizam, Sharmin R. Ara, and Md. Kamrul Hasan

Abstract—Quantitative ultrasound (QUS) based parameters
like the effective scatterer diameter (ESD) and mean scatterer
spacing (MSS) are gaining attention recently as non-invasive
biomarkers for soft tissue characterization. In this work, we
propose a multiple QUS parameter based technique that employs
ESD and MSS, for binary classification of breast lesions. In
order to produce improved ESD estimates, we propose a modified
frequency domain technique for ESD estimation of breast tissues
from the diffuse component of backscattered radio-frequency
(RF) data. Ensemble empirical mode decomposition (EEMD) is
performed to separate the diffuse component from the coherent
component by decomposing the RF data into their intrinsic mode
functions (IMFs). A non-parametric Kolmogorov-Smirnov (K-
S) test is employed for automatic IMF selection along with
a multi-step system effect minimization process. The ESD is
estimated using a nearest neighborhood average regression line
fitting algorithm. Furthermore, we use an ameliorated EEMD
domain autoregressive (AR) spectral estimation technique for
MSS estimation. On using the ESD for binary classification
of 159 lesions, we obtain high sensitivity, specificity, accuracy
values of 91.07%, 96.12%, and 94.34%, respectively, with an
area under the receiver operating characteristics (ROC) curve
of 0.94. On combining ESD with MSS we obtain even more
improved sensitivity, specificity, and accuracy values of 96.43%,
95.15%, and 95.60%, respectively, with an area under the ROC
of 0.96. Such a high classification performance highlights the
potential of these QUS parameters to be used as non-invasive
biomarkers for breast cancer detection.

Index Terms—Quantitative ultrasound, effective scatterer di-
ameter, mean scatterer spacing, non-invasive biomarker, tissue
characterization, computer-aided diagnosis.

I. INTRODUCTION

Quantitative ultrasound (QUS) based parameters have been
employed for the characterization and classification of soft
tissues with a view to developing a diagnostic modality which
is less subjective to operator settings and interpreter variability
compared to diagnosis based on conventional ultrasound imag-
ing [1], [2], [3]. Moreover, QUS parameter based breast lesion
classification provides some inherent advantages compared to
diagnosis based on other modalities, which are commonly
employed for breast cancer detection. These advantages result
from the non-ionizing and non-invasive nature of ultrasound
(advantageous over mammography and needle biopsy) and
lower cost of operation (advantageous over magnetic reso-
nance imaging) [4]. The main idea behind the use of QUS
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for tissue characterization is that the disease processes alter
the physical properties of tissues and this, in turn, is reflected
by a change in the acoustic scattering properties of tissues [5].

The potential of effective scatterer diameter (ESD) and
mean scatterer spacing (MSS) as QUS parameters for classi-
fication and characterization of pathological tissues have been
reported extensively in the literature. These parameters, may
be referred to as microscopic QUS parameters, since they
are not observable from ultrasound B-mode or ultrasound
elastography images but, rather, need to be estimated from
histopathology slides using microscopy. The ESD of ocular
tumors [6], liver [7], renal tissues [8], glomerular tissues [9],
kidney [10], prostate [11], human aortae [12], and the uveal
melanomas [13] have been reported. Additionally, ESD has
been successfully used to distinguish between benign and
malignant lesions in the eyes [14] and in the lymph nodes
[15]. Ultrasonic characterization of human breast tissues,
based on ESD, has been reported in [3]. However, [3] used
ESD along with mean scatterer spacing (MSS) and effective
acoustic concentration (EAC) for tumor grading rather than
breast lesion classification. Our group previously used mean
scatterer spacing (MSS) for classification of breast lesions
on a small dataset using an ensemble empirical mode de-
composition (EEMD) domain autoregressive (AR) spectral
estimation technique [16]. A very recent work in [17] used
multiple QUS parameters for classification of breast masses
but that too, was done on a limited dataset. To the best of
our knowledge, no previous work has been reported on a
large dataset, for classifying between benign and malignant
breast lesions using microscopic QUS biomarkers like ESD
and MSS, either individually or combined.

QUS methods exploit the frequency dependence of
backscattered radio frequency (RF) signals for the estimation
of attenuation of sound waves in tissues and model the
backscattered data to estimate scatterer parameters such as
the size, shape, spacing and number density in tissues [18].
Previously, it has been established that the backscattered
RF data consists of a coherent component and a diffuse
component [19]. In [20], it has been reported that, for
the estimation of ESD, the coherent component behaves
as an interference and hence, needs to be suppressed. The
generalized spectrum and Rayleigh envelope statistics [21] and
Hanning tapers [22] have been used to separate the diffuse
echoes from the backscattered data but these algorithms
remain untested on human tissue. Recently, EEMD has
been successfully employed to separate the coherent and
diffuse components from deconvolved backscattered RF
data for MSS estimation of female breast tissues [16]. ESD
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estimation techniques proposed previously often employ a
Gaussian form factor to model tissue scattering [18], [23].
A technique that relies on the minimization of the average
squared deviation (MASD) between the theoretical and
measured power spectra using a Gaussian form factor model
has been proposed in [18]. However, this method does not
employ any signal decomposition technique for separation
of the coherent component from the diffuse component. A
frequency domain technique that employs a Gaussian form
factor based theoretical power spectrum has been proposed in
[23]. This method also does not use any signal decomposition
technique. Furthermore, the existing techniques use large 2-D
spatial signal blocks to generate a stable block power spectra
[18], [23], which is often an unrealistic approach because
the tissue pathology inside a large spatial region must be
considered uniform, a requirement that is too idealistic for
a heterogeneous tissue medium, and also for smaller-sized
lesions. To combat this problem, an attenuation estimation
technique has been developed in [24] which uses smaller
spatial areas in the lateral direction.

The contribution of this work is two-fold:

1) We propose an ESD and MSS based binary (benign-
malignant) classification technique for 159 breast lesions
using linear classifiers. The individual classification per-
formances of ESD and MSS are also considered.

2) We propose a new ESD estimation technique, based on a
frequency domain Gaussian form factor model [23], for
improved classification of breast lesions using EEMD
and a non-parametric Kolmogorov-Smirnov (K-S) [25]
test to automatically select the IMFs that show diffuse
scattering. Furthermore, we adopt a multi-step system
effect minimization process and a nearest neighborhood
average regression line fitting (NNARLF) algorithm for
accurate ESD estimation. We also modify an existing
EEMD domain autoreggresive (AR) spectral estimation
based MSS estimation technique [16] so that it can be
combined with ESD for binary classification on the same
dataset. The motivation behind combining ESD with
MSS is that the MSS has previously been shown to be
successful in binary classification of breast lesions [16].
Additionally, the MSS can be estimated using a scheme
similar to the proposed ESD estimation technique and
also, the use of multiple QUS parameters is a common
approach for ultrasonic tissue characterization [3], [17],
[26], [27]. A greater focus is placed on the technique
for ESD estimation because there are significant modi-
fications from the original frequency domain technique,
[23], on which our proposed ESD estimation technique
is based. Therefore, numerical results are produced to
highlight the important features of the proposed ESD
estimation technique. Also, comparisons with some of
the existing techniques are provided, for both ESD and
MSS [3], [18], [23], [28].

This paper is structured as follows. Section 2 explains the
proposed methods for ESD and MSS estimation. Section 3
presents the ESD and MSS estimation results along with the

classification results obtained from our proposed QUS estima-
tors and compares the results with some existing techniques.
Section 4 discusses the important aspects of the proposed
method and focuses on its strengths and limitations. Finally,
Section 5 sums up the paper with some concluding remarks.

II. MATERIALS AND METHOD

A. Patient Data

The in vivo data used in this paper have been obtained
at the Bangladesh University of Engineering and Technology
(BUET) Medical Center with the help of a SonixTOUCH
Research (Ultrasonix Medical Corporation, Richmond BC,
Canada) scanner integrated with a L14–5/38 linear probe. The
probe was operating at 10 MHz with 65% bandwidth (−6-
dB bandwidth) at a sampling rate of 40 MHz. The pulse
length was approximately 0.4 mm and the beam width was
approximately 2.2 mm. The pulse length has been estimated
from the emitted pulse using the multiple input-output inverse
theorem [29]. The study has been carried out on 179 female
subjects, with their prior written constant, and the study was
approved by the Institutional Review Board (IRB) of BUET.
ESD estimation is carried out on 245 RF data records. Out of
the 245 data records, 56 are malignant, 79 are fibroadenomas,
24 are inflammatory lesions, 42 are cystic lesions, and 44
are normal (that is, no lesions are present). However, binary
classification of breast lesions is carried out on 159 RF records
excluding the cystic lesions and normal tissues. The cysts are
excluded since ESD and MSS cannot be reliably estimated
from them, as elaborated in the experimental results and dis-
cussion section. The age range of all patients was 13–75 years
(mean: 35.27 years). The patients having masses underwent
fine-needle aspiration cytology (FNAC) and/or excision biopsy
according to the suggestion of their physicians. All patients
having FNAC diagnosis positive for malignancy underwent
surgery. Therefore, diagnoses of malignant and some benign
lesions were confirmed by histopathology, and diagnoses of
the remaining lesions, by cytopathology. The details of the
RF data recorded from the breast tissues are summarized in
Table I.

TABLE I
PATIENT DATA SUMMARY

Tissue type No.of Mean age Method of Lesion size
RF data ±SD confirmation mean(mm×mm) ±SD(mm×mm)

Malignant 56 44.91±9.89 Biopsy 20.82×19.06±5.78×6.89
Fibroadenoma 79 27.48±9.13 FNAC/Biopsy 19.02×11.45±7.93×4.79

Cyst 42 39.13±8.90 FNAC 13.12×8.91±6.91×4.83
Inflammation 24 35.43±12.71 FNAC/Biopsy 21.53×13.15±8.39×4.39

Normal 44 - Not applicable Not applicable

B. TMP Data

A homogenous TMP, namely A, of Computerized Imaging
Reference Systems Inc. (CIRS), of dimension 3×4 cm2 is used
as the reference phantom. The TMP is made of zerdine, which
exhibits echogenic patterns similar to those obtained from soft
tissues. The speed of sound in the TMP is around 1540 m/s.
The TMP data was acquired using the same transducer settings
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as the in vivo data. For the estimation of average ESD we
have used two homogeneous CIRS TMPs, namely A and B,
which are inclusion-free, of dimensions 3 × 4 cm2 and one
heterogeneous TMP, namely C, of dimensions 4.5 × 4 cm2,
having a spherical inclusion of diameter 1.4 cm. The actual
average ESD, as supplied by the manufacturer, i.e, CIRS, are
used as gold standards for performance evaluation of the ESD
estimators. The ESD description of the experimental phantom
datasets are presented in Table II.

TABLE II
DESCRIPTION OF EXPERIMENTAL TMPS.

TMP Dataset Description
Average

ESD (µm)
Inclusion Background

A Homogeneous - 45
B Homogeneous - 45
C Heterogeneous 70 (spherical) 45

C. Binary Classification of Breast Lesions

The binary (benign-malignant) classification performances
of ESD, and the combination of ESD and MSS (both normal-
ized) are evaluated on the dataset with the help of support
vector machine (SVM), K-nearest neighbor (KNN), linear
discriminant analysis (LDA), multinomial logistic regression
(MNR), and Naïve Bayes (NB) classifiers. The best classifi-
cation performance obtained has been reported in this work.
Here, we used the commonly employed “one-versus-all” or
OVA based classification technique [30]. The total data set is
randomly divided into five groups for training and testing of
the characterization indices as in [30]. First, group 1 is used
as the test set and the remaining four groups are used as the
training set for each class. Next, group 2 is used as the test
set and the remaining four groups are used as the training
set. The process is repeated until the testing of each group is
completed. Details on the grouping for the binary classification
are provided in Table III. The classification is carried out on
159 out of the 245 RF data records (excluding cysts and nor-
mal breast data). The classification results include true positive
(TP), true negative (TN), false positive (FP), false negative
(FN), sensitivity, specificity, accuracy, positive predictive value
(PPV), negative predictive value (NPV), the sum of the last
five parameters, Sum5, and Matthew’s correlation coefficient
(MCC). From TP, TN, FP, and FN, we calculate the sensitivity,
specificity, accuracy, PPV, NPV and MCC [31], [32], [33].
Higher values of sensitivity, specificity, accuracy, PPV, and
NPV indicate better classification performance. For MCC, +1
indicates a perfect prediction, 0 indicates a uniform random
prediction, and −1 indicates an inverse prediction [32].

D. Proposed ESD Estimation Technique

The rest of this section is devoted to description of the
proposed ESD and MSS estimation algorithms, which have
been developed in order to produce improved breast lesion
classification results. A greater focus is placed on the ESD
estimation algorithm since the scheme is significantly modified

TABLE III
DIVISION OF BREAST LESION DATA INTO FIVE GROUPS FOR

TRAINING-TESTING.

Group no. Total(= Malignant+Fibro.+Inflam.)
1 33 (= 12+16+5)
2 32 (= 11+16+5)
3 32 (= 11+16+5)
4 32 (= 11+16+5)
5 30 (= 11+15+4)

Total 159 (= 56+79+24)

from the frequency domain Gaussian form factor technique
in [23], on which the proposed ESD estimation technique is
based.
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Fig. 1. A block diagram illustrating the proposed ESD estimation technique.
NNARLF refers to nearest neighborhood average regression line fitting.

1) Preprocessing: A block diagram of our proposed ESD
estimation algorithm is shown in Fig. 1. The preprocessing
of RF data refers to selection of regions of interest (ROI),
followed by deconvolution and filtering. It is to be noted that,
in order to accurately estimate ESD from the backscattered
RF data, system effects, that is the impact of the system point
spread function (PSF) and diffraction need to be minimized
[34]. In this paper, a multi-step system effect minimization
scheme has been proposed with deconvolution and filtering
serving as the first two steps. The last step of the system effect
minimization process is normalization using a reference TMP
as shown in the block diagram of Fig. 1, which is discussed
later in this section.

At first, 2-D rectangular regions of interest (ROI) are
selected from the B-mode images obtained from the recorded
RF data. Any lesion present had been pre-identified on the
B-mode image by the radiologist, who acquired the data. In
case of RF data containing lesions, a suitable 2-D rectangular
region within the border of the lesion is taken as the ROI.
Additionally, a second ROI is selected outside the lesion to
compare the ESD values inside and outside the lesion. This
has been illustrated schematically in the block diagram of Fig.
1. In case of normal breast data, a suitable ROI is selected
and it is ensured that the selected ROI is away from the
edges of the imaging plane. The dimension of each ROI is
approximately (10-12)×(6.25-9.40) mm2 which approximately
equals to 25 pulse lengths axially and 4 beam widths laterally.
The choice of such an ROI size has been previously shown
to improve the accuracy of QUS parameter estimates [35].
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Though ESD estimation from in vivo data uses only one ROI,
for estimating the average ESD from TMP datasets A and B,
25 ROIs are selected, each of dimension 1 × 1 cm2, while
for TMP dataset C, 10 ROIs are selected from outside the
inclusion and 5 ROIs are selected within the inclusion. In TMP
dataset C, we have also selected 5 heterogeneous ROIs across
the border of the inclusion such that the ROIs encompass both
the inclusion and the background. Since the manufacturers
quote an average ESD values for the TMPs, selecting a large
number of ROIs allows us to better evaluate the performance
of the ESD estimators.

Next, the RF data is deconvolved using a blind multi-
channel least-mean squares algorithm previously proposed
in [36]. The technique in [36] requires no prior knowledge
of the PSF. It uses a modified block-based cross-correlation
technique to overcome the non-stationarity of PSF and prob-
lems associated with incomplete ultrasound data acquistion.
Furthermore, it employs an l1-norm based cost function with
a damped variable step-size, which helps mitigate the impacts
of noise and results in a high convergence speed. Finally, the
PSF is estimated using a regularized multiple-input/multiple-
output algorithm, which is equally applicable for minimum and
non-minimum phase signals. This technique has been shown to
outperform most conventional deconvolution techniques [37]
and is, therefore, well suited for our work, to reduce the impact
of the system PSF.

Following deconvolution, an ideal bandpass filter of fre-
quency range 2−13 MHz is applied on the deconvolved data.
It has been established in [34] and very recently, in [38], that
the diffraction effect is most prominent in the low-frequency
region of the spectrum (below 2 MHz). It is to be noted
that deconvolution shifts the backscattered signal from being
centered at the pulse frequency (10 MHz) to lower frequencies.
A upper cut-off frequency of 13 MHz is used to eliminate any
high frequency acquisition noises that may be present [38].

2) Coherent Component Suppression using EEMD: The
backscattered RF data consist of two major components, a
coherent component and a diffuse component [19]. The diffuse
component represents scattering from aperiodic scatterers.
Although the coherent component has also been shown to
be of diagnostic importance in the estimation of other QUS
parameters like the MSS [2], accurate estimation of ESD
requires the suppression of the coherent component [21] as
the coherent component has been shown to increase the bias
and variance of ESD estimates [21]. Therefore, on removal of
the system PSF by deconvolution, only the coherent and the
diffuse components remain in additive form and hence, can be
separated by a suitable signal decomposition technique [16].

Empirical mode decomposition (EMD) decomposes a signal
into its IMFs in additive form [39]. The main advantage of
EMD over other data-driven approaches is that it requires
no pre-selection of basis functions and is suitable for both
stationary and non-stationary signals [39]. Hence, EMD can
be used to extract the diffuse component from the selected
ROI from the backscattered signal after deconvolution and
filtering has been carried out. However small perturbations
can adversely effect EMD and a completely different set
of IMFs may result each time it is performed. This would

increase the variance of any QUS parameter estimated from
these IMFs [40]. In order to produce stable IMF estimates,
EEMD is usually performed [41]. In EEMD, an ensemble of
random Gaussian noise is added to the backscattered signal to
produce an ensemble of signals. The EMD algorithm is applied
to each signal in the ensemble to produce an ensemble of
IMFs. These ensemble of IMFs are then averaged to produce
a new set of IMFs. The IMFs are normalized by dividing
with their maximum amplitude so that no undue weight is
given to any single IMF. Selection of IMFs is a crucial issue
in any algorithm involving EEMD [16], [42], as some IMFs
will contain information about the coherent scatterers while
the others will contain information about the diffuse scatterers
[16]. In order to identify the IMFs exhibiting diffuse scattering,
a K-S test is performed. The method used is described in [43].
The K-S classifier assumes that diffuse scatterers generate
Gaussian statistics and any deviation is a result of coherent
scattering. Those IMFs that show deviation from Gaussian
statistics (at 5% significance level) are excluded and the
remaining IMFs are added and used for further processing.
The list of the important symbols and acronyms used in this
paper are presented in Table IV, for convenience.

TABLE IV
SYMBOLS AND ACRONYMS.

Symbol Description
W (v) Gated backscattered RF signal in the frequency domain
T (f) Combined effect of transmitted pulse and transducer sensitivity in the frequency domain
D(f, z) Diffraction component of W (v) in the frequency domain
S(f,Deff , nz) Scattering component of W (v) in the frequency domain
Deff Effective scatterer diameter
nz Effective acoustic concentration
z Depth of the gated segment from the transducer face
A(f, z) Cumulative attenuation
ρ(f) Attenuation coefficient (AC) in unit Nepers/cm
Ac(f, z) Attenuation compensation function
W

′
comp(v) Attenuation compensated backscattered RF signal in the frequency domain

w
′
comp(n) Attenuation compensated backscattered signal in the discrete-time domain

gp(n) Random Gaussian noise in the discrete-time domain
NE Vector length of random Gaussian noise
w

′
pcomp(n) w

′
comp(n) with 30dB Gaussian noise added, used for EEMD decomposition

cpj(n) IMFs computed from w
′
pcomp(n) using EEMD

cj(n) Ensemble average of IMFs, computed over the noise vector length of NE

M No of IMFs responsible for diffuse scattering, selected through K-S test
w

′
icomp(n) Sum of all ensemble averaged IMF, responsible for diffuse scattering, in the discrete-time domain

W
′
S,comp(v) Frequency domain representation of w

′
icomp(n) for sample

W
′
R,comp(v) Frequency domain representation of w

′
icomp(n) for reference

RF Radio-frequency
ESD Effective scatterer diameter
EAC Effective acoustic concentration
MSS Mean scatterer spacing
AR Autoregressive
QUS Quantitative ultrasound
AC Attenuation coefficient
TMP Tissue-mimicking phantom
CIRS Computerized Imaging Reference Systems Inc.
ROI Region of interest
PSF Point spread function
EEMD Ensemble empirical mode decomposition
IMF Intrinsic mode function
K-S test Kolmogorov-Smirnov test
SD Standard deviation
MASD Minimization of the average squared deviation
MAPE Mean absolute percentage error
NN Nearest neighborhood
NNARLF Nearest neighborhood average regression line fitting
SAC Spectral autocorrelation
SSA Singular spectrum analysis
MCC Matthew’s correlation coefficient
ROC Receiver operating characteristic

3) NNARLF for ESD Estimation: The gated backscattered
RF signal intensity, W (v), where v = {f,Deff , z, nz} is the
set of variables on which the backscattered RF signal depends,
at the transducer face can be expressed in the frequency
domain as [44]

W (v) = T (f) ·D(f, z) ·A(f, z) · S(f,Deff , nz), (1)

where T (f) represents the combined effect of the trans-
mit pulse and the transducer sensitivity (electro-acoustic and
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acousto-electric transfer functions); D(f, z) is the effect of
diffraction; A(f, z) is the cumulative attenuation in the soft
tissue and S(f,Deff , nz) represents the scattering properties
of the tissue, including the ESD (Deff ) and EAC (nz); z
being the depth of the gated segment from the transducer
face [44], [45]. We acquire RF signals from the tissue sam-
ple and the reference TMP. The backscattered RF signal is
then deconvolved and filtered, as the first two steps of the
system effect minimization process. The resulting signal, in
the frequency domain, is given by W

′
(v). The cumulative

attenuation, A(f, z), in soft tissues is a function of frequency
f and depth z, and can be expressed as [46]

A(f, z) = e−4ρ(f)z = 10−2ρ(f)z/10, (2)

where ρ(f) denotes the attenuation coefficient (AC) in unit
Nepers/cm. It is reported in [46] that ρ(f) demonstrates a
linear frequency dependence. Therefore, it can be written as
ρ(f) = β · f , where β denotes the AC in Nepers/cm/MHz.
By compensating for the effect of frequency dependent at-
tenuation, using a depth-dependent (dependent on z) spectral
average based attenuation estimation technique developed in
[24], we get the compensated backscattered RF signal in the
frequency domain as

W
′

comp(v) = W
′
(v)Ac(f, z)

= T
′
(f) ·D

′
(f, z) · S(f,Deff , nz), (3)

where Ac(f, z) is the frequency dependent attenuation com-
pensation function defined as

Ac(f, z) = A−1(f, z); (4)

and T
′
(f) and D

′
(f, z) are residual effects of the system PSF

and diffraction, respectively, remaining after deconvolution
and filtering.

Now, let us consider the attenuation-compensated signal in
the discrete-time domain to be w

′

comp(n). To perform EEMD
of the attenuation-compensated RF data, an ensemble of NE
random Gaussian noise, gp(n) (p=1,· · · , NE) is added to
w

′

comp(n). That is, the ensemble is given by [47]

w
′
pcomp(n) = w

′

comp(n) + gp(n), p = 1, · · · , NE . (5)

The signal-to-noise ratio between the RF data and the Gaussian
noise is kept at 30 dB. After that, the EMD algorithm [39] is
applied to each of the signals in the ensemble to decompose
them into a sum of their IMFs, cpj(n), j=1,· · · , K, where K
is the number of IMFs and a residue, rp(n), given by [47]

w
′
pcomp(n) =

K∑
j=1

cpj(n) + rp(n), p = 1, · · · , NE . (6)

Finally, the IMFs using EEMD are obtained from the ensemble
average [47]

cj(n) =
1

NE

NE∑
p=1

cpj(n), j = 1, · · · ,K. (7)

The IMFs responsible for diffuse scattering, cd(n), d=1,· · · ,
M , where M is the number of IMFs (normalized) responsible
for diffuse scattering, are then identified by the K-S test [43].

The IMFs are normalized using their amplitude. Normalization
of the IMFs is done to ensure that no undue weight is given to
any one of the IMFs. The attenuation-compensated RF data,
for both the sample and the TMP, are then replaced by the
summation of the IMFs responsible for diffuse scattering as

w
′
icomp(n) =

M∑
d=1

cd(n), d = 1, · · · ,M, (8)

where, w
′
icomp(n) is the IMF-replaced signal in the discrete-

time domain.
If we consider W

′

S,comp(v) and W
′

R,comp(v) as the IMF-
replaced signals in the frequency domain for the sample and
the reference, respectively, for the same average sound speed
in the reference and sample tissues, the residual diffraction
terms can be considered equal. The sound speed in the
reference is known from the manufacturer’s specifications to
be approximately equal to that of soft tissues. Moreover, since
the sample and reference data are obtained using the same
transducer settings, the residual effect of the system PSF can
also be considered equal in the sample and the reference. It
is to be noted that the reference data is also passed through
the same preprocessing steps as the sample data. Hence, on
dividing W

′

S,comp(v) by W
′

R,comp(v), as the final step of
the multi-step system effect minimization process, we get the
normalized spectra, Wnorm(v), as

Wnorm(v) =
W

′

S,comp(v)

W
′
R,comp(v)

=
SS(f,Deff,S , nz,S)

SR(f,Deff,R, nz,R)
, (9)

where SR(f,Deff,R, nz,R) and SS(f,Deff,S , nz,S) repre-
sents the scattering properties of the sample and reference,
respectively. Taking the logarithm on both sides of (9), we get

10 logWnorm(v) = 10 log
SS(f,Deff,S , nz,S)

SR(f,Deff,R, nz,R)
. (10)

A model for tissue scattering, S(f,Deff, nz),in the fre-
quency domain was developed in [48] for clinical array
systems given by

S(f,Deff , nz) =
185Lq2(

Deff

2 )6nzf
4

[1 + 2.66(fq(
Deff

2 )2)]
×

e−12.159f
2(

Deff
2 )2 (11)

with L the gate length (mm), q the ratio of aperture radius
to distance from the region of interest, f the frequency in
MHz, and Deff the ESD in mm. The model was derived
using a Gaussian form factor model and it has been previously
established that a Gaussian form factor is suitable for modeling
the scattering from human tissues [18], [49]. The quantity, nz ,
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is termed the EAC and is defined in [18]. For sample and
reference, the tissue scattering is then represented as

SS(f,Deff,S , nz,S) =
185Lq2(

Deff,S

2 )6nz,Sf
4

[1 + 2.66(fq(
Deff,S

2 )2)]
×

e−12.159f
2(

Deff,S
2 )2 , (12)

SR(f,Deff,R, nz,R) =
185Lq2(

Deff,R

2 )6nz,Rf
4

[1 + 2.66(fq(
Deff,R

2 )2)]
×

e−12.159f
2(

Deff,R
2 )2 . (13)

Here, Deff,S is the ESD to be estimated from the sample
(tissue) and Deff,R is the ESD of the reference (TMP), which
is known from the manufacturer’s specifications. Dividing (12)
by (13), and considering the fact that 2.66(fq

Deff

2 )2 � 1
[23], we get the normalized tissue scattering as

SS(f,Deff,S , nz,S)

SR(f,Deff,R, nz,R)
=
D6
eff,Snz,S

D6
eff,Rnz,R

e−3.03975(D
2
eff,S−D

2
eff,R)f2

.

(14)
In order to estimate the ESD from breast tissues, TMP dataset
A has been used as the reference. In case of estimating the
ESD from the TMP datasets, TMP dataset A has been used as
reference for TMP datasets B and C and TMP dataset B has
been used as the reference for TMP dataset A. Next, taking
logarithm on both sides of (14) yields

10 log
SS(f,Deff,S , nz,S)

SR(f,Deff,R, nz,R)
= 10 log

D6
eff,Snz,S

D6
eff,Rnz,R

− 13.20×

(D2
eff,S −D2

eff,R)f
2. (15)

To estimate ESD, we fit a regression line through the usable
(i.e., −6 dB) bandwidth of the normalized log scattering power
spectrum. From (10), this is equivalent to fitting a line through
the usable bandwidth of the normalized log power spectrum.
Assuming f2 = x, the regression line can be expressed as

y = mx+ c (16)

with

y = 10 log
SS(f,Deff,S , nz,S)

SR(f,Deff,R, nz,R)
, (17)

m = −13.20× (D2
eff,S −D2

eff,R), (18)

c = 10 log
D6
eff,Snz,S

D6
eff,Rnz,R

. (19)

Using average block power spectra generated from spatial
signal blocks of sufficiently large size, ESD can be estimated
from (18). On the other hand, probability that a single gated
RF block includes regions of heterogenous tissues increases
with the block size. Hence to trade-off between homogeneity
in the spatial blocks and consistency of the estimated power
spectrum, we use an NNARLF algorithm. We assume that the
ESD of the neighboring tissues of the scattering particles in
the neighboring blocks are almost the same for their physical
proximity. We later generate 2-D ESD colormaps on a B-mode
image and also carry out experiments on the TMP and in vivo
data to show the advantages of employing such a weighted
exponential neighborhood. Therefore, we calculate an average

regression line as the weighted average of the regression lines
of the neighboring blocks as

Y (is, js) =

∑is+La

i0=is−La

∑js+Ll

j0=js−Ll
y(i0, j0)w

(is.js)(i0, j0)∑is+La

i0=is−La

∑js+Ll

j0=js−Ll
w(is.js)(i0, j0)

(20)

where Y (is, js) denotes the weighted average value of
y(is, js), and w(is.js)(i0, j0) is the exponential weight function
for an interrogated point (is, js) on the 2-D ESD map, defined
as

w(is,js)(i0, j0) = e−|λa(i0−is)|−|λl(j0−js)|, (21)

where λa and λl denote the weighting factors in the axial and
lateral directions, respectively, and is−La ≤ i0 ≤ is+La and
js−Ll ≤ j0 ≤ js+Ll. La and Ll are the nearest neighborhood
(NN) factors in the axial and lateral directions, respectively.
From (21) it is evident that w(is.js)(i0, j0) has the maximum
value (unity) at (i0, j0) = (is, js). We define w(is,js) in a way
such that in the averaging process, the logarithm of measured
power spectrum of a neighboring window is properly weighted
to have less contribution with increasing distance from the
interrogated block. A 2-D weighted exponential neighborhood
having La = LI = 5 is illustrated in Fig. 2. The values on
the weight axis are arbitrary but show an exponential decay
as we move away from the interrogated window both axially
and laterally.

0
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( i!, j! )
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Fig. 2. An illustration of the exponentially weighted neighborhood.

Substituting the value of y from (16) into (20), we get

Y (is, js) =

∑is+La

i0=is−La

∑js+Ll

j0=js−Ll
(m(i0, j0) + c(i0, j0))w

(is.js)(i0, j0)∑is+La

i0=is−La

∑js+Ll

j0=js−Ll
w(is.js)(i0, j0)

. (22)

If we define the weighted average value of the slope as

M(is, js) =

∑is+La

i0=is−La

∑js+Ll

j0=js−Ll
m(i0, j0)w

(is.js)(i0, j0)∑is+La

i0=is−La

∑js+Ll

j0=js−Ll
w(is.js)(i0, j0)

,

(23)
and the weighted average value of the intercept as

C(is, js) =

∑is+La

i0=is−La

∑js+Ll

j0=js−Ll
c(i0, j0)w

(is.js)(i0, j0)∑is+La

i0=is−La

∑js+Ll

j0=js−Ll
w(is.js)(i0, j0)

,

(24)
then (22) can be written in the form of a regression line given
by

Y (is, js) =M(is, js)x+ C(is, js). (25)
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Now, from the slope, M , of the regression line that fits (25),
we can estimate the ESD, Deff,S , at the point (is, js) using
(18) as

Deff,S =

√
−M(is, js)

13.20
+D2

eff,R. (26)

In order to estimate the block power spectra of an interrogated
block with higher resolution, the block is divided into 1-D
segments with consecutive window segments in a block having
50% axial overlapping. The windowed segments are gated by
the Hamming window. The block power spectra are calculated
using the Welch method [50]. We select La = Ll= 5 as the NN
factors to estimate the local ESD for a particular interrogated
block. The impact of varying the NN factors on the ESD
estimation is discussed in the results section.

E. MSS Estimation Technique
Another QUS parameter which has previously been success-

fully used for breast tissue characterization is MSS [2], [3],
[16]. Specifically, a MSS estimation algorithm developed in
[16] produced promising binary classification results, albeit, on
a small dataset. MSS estimation on the same dataset as ESD
allows us to use multiple QUS parameters for breast lesion
classification. The use of multiple QUS parameters for tissue
characterization has been previously shown to produced im-
proved results [3], [26], [27]. What is more, because the MSS
is estimated from the coherent component of the backscattered
RF data and EEMD separates the diffuse and coherent com-
ponents, the MSS may be estimated simultaneously with the
ESD, using a branching scheme. In the technique proposed in
[16], the AR spectrum was estimated from the IMFs produced
by EEMD of the deconvolved RF data. In that work, the
IMFs, responsible for coherent scattering (from which the
MSS is estimated), were identified using an empirical criterion.
The K-S test was only used to validate whether or not the
selected IMFs are indeed a source of coherent scattering.
In this work, we have ameliorated the previously proposed
MSS estimation technique by incorporating the automatic
IMF selection scheme, along with bandpass filtering of the
deconvolved RF data. A block diagram to illustrate the MSS
estimation technique is shown in Fig. 3. We present the
values of the average MSS estimates for different types of
breast tissues and the performance of the MSS estimator as a
biomarker for breast lesion classification in the results section.

ROI Selection

Deconvolution
Bandpass

Filtering

EEMD &

IMF

Selection

AR Power

Spectrum Estimation

Preprocessing

RF
Data

 

MSS
Estimate

 

Fig. 3. A block diagram illustrating the proposed MSS estimation technique.

III. RESULTS

In this section, we present the classification results obtained
by combining ESD with MSS. We also present the single-
parameter classification results obtained using our ESD esti-
mates and compare that classification performance with the
classification results obtained using ESD estimated from other
techniques that employ a Gaussian form factor model [18],
[23]. In addition, we show the single-parameter classification
performance of the MSS estimator and compare its perfor-
mance with some existing techniques for MSS estimation [3],
[28]. However, at first, we focus on the ESD estimates obtained
using our proposed method and validate the accuracy of our
proposed algorithm by estimating the ESD from TMPs. Addi-
tionally, we present the results of ESD estimated using some of
the conventional Gaussian form factor based techniques [18],
[23]. Moreover, we present numerical results to validate the
different steps of the proposed ESD estimation algorithm and
hence, establish the suitability of the proposed ESD estimator
for breast lesion classification. Furthermore, we present the
MSS estimation results on in vivo breast tissues and compare
the estimates with some previously proposed techniques [3],
[28].

A. ESD Estimation Results on Tissue-mimicking Phantoms

To check the accuracy of our proposed average ESD estima-
tion technique and thus, justify the use of these ESD estimates
for breast lesion classification, we use three CIRS experimental
TMPs for which the average ESD values in the inclusion and
background are available from the manufacturer. The average
ESD of these phantoms are also estimated using the MASD
based method [18], and the frequency domain method [23]. It
is to be noted that a Faran form factor is usually employed
for modeling the scattering from TMPs [51]. But, since tissue
scattering is more accurately modeled by a Gaussian form
factor, to apply (9), a Gaussian form factor model has been
applied for the TMPs as well. Moreover, Gaussian form factor
models have also been previously used to model the scattering
from TMPs [52]. Table V presents the actual average ESD and
the average ESD estimated using our proposed algorithm as
well as the other techniques for the experimental phantoms.
The average ESD represents the average of the ESD values
estimated from each of the ROIs within a particular TMP. It is
evident that our proposed algorithm estimates the ESD for all
three TMP data with a higher degree of accuracy compared
to the other methods as reflected by a lower mean absolute
percentage error (MAPE) value. Moreover, our method also
shows a lower SD of estimates compared to the other methods.

We have also estimated the ESD from the heterogeneous
ROIs of TMP C using our proposed method. A scatter plot
showing how the ESD varies as we move laterally from a
region just outside the inclusion across the border of the
inclusion to a region within the inclusion is presented in Fig. 4.
It is evident from the figure that our proposed method is able to
reliably estimate the ESD in the homogeneous regions inside
and outside the inclusion with a mean value of approximately
48 µm outside the inclusion (represented by a red line) and
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TABLE V
ESTIMATED ESD VALUES (IN µM) WITH SD (IN BRACKET) FROM EXPERIMENTAL TMPS.

Method TMP Average ESD MAPE Average ESD MAPE
Dataset of Background (%) inside Inclusion (%)
Dataset (µm) (±SD) (%) (µm) (±SD)

MASD [18]
A 54.82(±8.88) 21.82 - -
B 52.18(±8.09) 15.96 - -
C 50.91(±7.99) 13.13 74.91(±7.87) 7.01

Frequency Domain [23]
A 53.84(±7.11) 19.64 -
B 50.10(±7.07) 11.33 - -
C 48.97(±7.39) 8.82 73.61(±7.09) 6.71

Proposed
A 47.02(±5.89) 4.49 -
B 47.76(±6.01) 6.13 - -
C 47.78(±5.85) 6.18 73.02(±6.33) 5.15

a mean value of approximately 74 µm within the inclusion
(represented by a green line). There is a sharp change in
the average ESD values across the border of the inclusion,
as expected. Now, in order to study how the different steps

Distance from the border of the ROI in the backgraound to the inclusion (cm)
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Fig. 4. Scatter plot showing the variation of ESD across different windows
on moving laterally from the edge of the ROI in the TMP background to the
edge of the ROI within the inclusion.

in the proposed algorithm impacts the accuracy of the ESD
estimates, the ESD was estimated for several ROIs of TMP
datasets A, B, and C by removing the different steps shown in
the flow chart of Fig. 1 one by one while retaining the others,
that is, an ablation approach is taken. The results are presented
in Fig. 5 in the form of a bar plot. The first column of the
bar plot presents the performance of the proposed algorithm
on the same datasets for comparison. It can be seen that
the overall estimation accuracy is most adversely impacted
on removing the EEMD step. There is also a slight rise in
the SD of estimates on removing the EEMD step. Removal
of the any one of the system effect minimization steps, i.e,
deconvolution, filtering, and normalization using a reference
TMP, also noticeably impacts the ESD estimation accuracy,
with a slight increase in the SD of ESD estimates in each
case. Hence, it justifies the use of a multi-step system effect
minimization technique since removal of any one of these
steps has detrimental effect on the overall ESD estimation
accuracy. The weighted neighborhood step seems to have the

least impact on the overall accuracy. However, this step is seen
to have a more negative impact on the SD of the estimates
compared to the other steps of the proposed method.

0
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15

MAPE (%)
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No Deconv. No EEMDNo Filt.  No Norm. No Neigh.Proposed

Fig. 5. Bar plot showing the impact on the percentage error and SD of the
ESD estimates from the experimental TMPs on removing the different steps
from our proposed algorithm.

B. ESD and MSS Estimation Results on In Vivo Breast Tissues

The results of estimating the ESD of in vivo breast tissues
using various techniques are presented in Table VI. It is evident
that, using our proposed method, the estimated ESD values
for fibroadenoma and malignant breast tissues fall within the
range of ESD values previously reported in the literature [3].
According to the best of our knowledge, the ESD values
of inflammatory lesions and cystic lesions have not been
previously reported. The ESD values in the region outside
the lesions are consistent in the range between 70 − 80 µm,
which is similar to normal tissues. The ESD estimates for
inflammatory tissues show little or no deviation from this
range. The estimated ESD values of cysts are rather erratic
(that is, the proposed technique often fails to produce any
ESD estimates) and show a high SD and hence, are not
presented. This is true for all the techniques used to obtain
the ESD estimates in Table VI. Therefore, it can be concluded
that ESD estimates of cystic lesions are of no diagnostic
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importance. This is in good concordance with the anatomy of
the cysts as they are fluid-filled sacs and thus, scattering from
cysts will largely be absent and some inconsistent scattering
may occur due to debris (such as those present in complex
cysts) [53]. Hence, they are excluded from the dataset when
benign-malignant classification of breast lesions is carried
out. Furthermore, it is seen that the average ESD value of
malignant lesions is greater than that of benign lesions which
also conforms with the previously reported results [3]. The
estimated average ESD values using the MASD-based method
[18] and the original frequency domain method [23] are also
presented in Table VI. We see that the SD of ESD estimates
are significantly higher than that of our proposed method and
the separation between the average ESD values for malignant
lesions and fibroadenomas are also smaller.

An important factor that has to be taken into consideration
while estimating ESD from in vivo tissues is the impact of the
kernel size of the weighted exponential neighborhood. The
algorithm involves the use of a 5 × 5 weighted exponential
neighborhood. The use of such a neighborhood allows the
modeling of tissue homogeneity over a small region rather
than a large spatial block where the tissue becomes more
heterogeneous. To investigate the impact of the size of the
neighborhood on the ESD estimates, the ESD is estimated
using our proposed algorithm for normal tissues for no neigh-
borhood, a neighborhood of size 3 × 3, and a neighborhood
of size 8 × 8. It has already been stated that the original
results are produced for a neighborhood of size 5 × 5. The
results are shown in Table VII. It is clear from the table
that the choice of neighborhood size does not greatly effect
the average value of the ESD estimates. However, the SD
of estimates seem to decrease significantly for a neighbor-
hood size close to our selected one. A large neighborhood
size or no neighborhood increases the SD of estimates and
this could be attributed to the increased heterogeneity for a
large spatial block of tissue. This observation is consistent to
that obtained for experimental TMPs where removal of the
weighted neighborhood step adversely impacted the SD of
estimates. To further substantiate our argument for choosing an
exponentially weighted neighborhood, we produce, in Fig. 6,
an ESD map for a representative fibroadenoma tissue for two
ROIs taken within the border of the lesion and two ROIs taken
outside the lesion. It is clear that the ESD values are consistent
(having a low SD) across the ROIs (both inside and outside
the lesion) and hence, a weighted exponential neighborhood
is a good model of tissue structure. The step-wise ablation
technique employed for the ESD estimation from experimental
TMPs cannot be adopted for the ESD estimation from in
vivo tissues since the gold standard (i.e., histopathology) for
all the data records are not available. However, the ablation
approach has been applied for the classification results based
on ESD estimates from in vivo tissues in the classification
results subsection.

The MSS estimation results for different types of breast
tissues are presented in Table VIII. The MSS values esti-
mated for fibroadenomas, malignant lesions and normal breast
tissues fall within the range of values previously reported
[2], [3]. As in the case of ESD, the MSS values of cysts
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Fig. 6. ESD map for four ROIs for a representative fibroadenoma tissue. A
deeper shade of blue indicates higher ESD values. The values on the axes are
arbitrary.

and inflammatory lesions have not been reported before. The
estimated MSS values for inflammatory lesions are slightly
higher than those for normal tissues while the MSS values
for cysts are inconsistent as expected and the algorithm fails
to produce any reasonable estimates similar to the case for
ESD estimation. Therefore, the average MSS value of cysts are
not presented in the table. The average MSS value for ROIs
taken outside the lesions is estimated to be 0.70 (±0.04) mm,
corresponding to that of normal tissues. The first and second
rows of the table present the results for MSS estimation using
a modified spectral autocorrelation (SAC) based technique
[3] and a singular spectrum analysis (SSA) based technique
[28]. These two techniques have been chosen, for comparison,
because the modified SAC based technique [3] has been used
for tissue characterization while the SSA based technique [28]
is a signal decomposition based technique, not unlike our
proposed MSS estimation technique. It is evident that, in both
these techniques, the separation between the average MSS
values of different groups of tissues is smaller with a higher
SD.

C. Classification Results

Table IX presents the classification results based on only
ESD for the proposed method, the MASD-based method [18],
and the frequency domain method [23]. For the proposed
method, a classification scheme based on ESD alone pro-
duces sensitivity, specificity, and accuracy values of 91.07%,
96.12%, and 94.34%, respectively which is significantly better
than the other techniques used for comparison in this paper
[18], [23]. Additionally, the Sum5 and MCC values of 469.44
and 0.8755, respectively are clearly more superior compared
to the other techniques. When the Fisher’s exact test [54] is
used for testing statistical significance, the proposed method
achieved significantly better quality metrics than the MASD-
based method [18] and the frequency-domain method [23]
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TABLE VI
ESTIMATED VALUES OF ESD WITH SD (IN BRACKET) USING DIFFERENT METHODS FOR NORMAL AND PATHOLOGICAL TISSUES.

ESD (±SD) (µm)

Malignant Fibroadenoma Inflammatory Normal

Method in out in out in out

MASD [18] 100.67 86.12 94.09 82.10 88.31 90.35 76.13

(±21.13) (±8.41) (±18.17) (±7.24) (±11.34) (±10.01) (±7.01)

Frequency domain [23] 109.21 80.04 101.41 79.31 81.24 82.45 75.88

(±17.34) (±8.21) (±13.12) (±8.54) (±9.81) (±11.01) (± 6.74)

Proposed 123.05 74.90 98.71 74.89 75.72 75.77 75.12

(±8.85) (±4.19) (±9.55) (±4.11) (±4.09) (±4.07) (±4.01)

TABLE VII
ESTIMATED VALUES OF ESD WITH SD (IN BRACKET) FOR NORMAL

TISSUES WITH DIFFERENT NEIGHBORHOOD SIZES.

Size of Neighborhood ESD (± SD) (µm)
No Neighborhood 76.89 (± 8.56)
3× 3 74.99 (± 4.09)
5× 5 75.12 (± 4.01)
8× 8 76.46 (± 7.56)

TABLE VIII
ESTIMATED VALUES OF MSS WITH SD (IN BRACKET) USING DIFFERENT

METHODS FOR NORMAL AND PATHOLOGICAL TISSUES.

MSS (±SD) (mm)
Method Malignant Fibroadenoma Normal Inflammatory
Modified SAC [3] 0.75 (±0.05) 0.77 (±0.05) 0.80 (±0.07) 0.78 (±0.07)
SSA [28] 0.87 (±0.05) 0.83 (±0.05) 0.80 (±0.05) 0.82 (±0.06)
Proposed Method 0.79 (±0.04) 0.75 (±0.03) 0.69 (±0.03) 0.73 (±0.04)

with p value equal to 0.005 and 0.00001, respectively. The
area under the receiver operating characteristic (ROC) curve
calculated using a bootstraping strategy (200 bootstraps) to
obtain the mean and 95% confidence intervals (CIs) of the
ROC curve and AUC yields a mean AUC value of 0.94 with
a CI of 0.90-0.98 for classification based on our proposed ESD
estimator.

Table X presents the classification performance of MSS
for different methods. The first and second rows of the table
presents the classification performance of the MSS values
estimated from the modified SAC [3] and SSA [28] based
techniques, respectively. The third row presents the results
obtained using the modified technique used in this paper. We
see that the classification results, obtained using are proposed
technique, are superior compared to the other techniques [3],
[28]. However, the classification performance of MSS on this
dataset is not as high as that of ESD. Next, the results of
combining ESD with MSS is shown in Table XI. It is observed
from the table that when ESD is fused with MSS, we obtain
improved sensitivity, specificity, accuracy, and MCC values of
96.43%, 95.15%, and 95.60%, and 0.9054, respectively. The
mean AUC value, in this case, is found to 0.96 with a 95% CI

of 0.91-0.98. These performance metrics are clearly better than
classification based on only a single QUS parameter (either the
ESD or MSS). The first two rows of Table XI again presents
the classification results obtained using our proposed ESD
and MSS estimation techniques, for reference. As discussed
before, the classification performance of the combination of
ESD and MSS has been evaluated directly using SVM, LDA,
MNR, KNN, and Naïve Bayes classifiers. In Table XI, the
reported Sum5 value of 476.69 is obtained for a quadratic
LDA classifier and represents the best Sum5 value obtained
out of all the above mentioned classifiers. The average Sum5

value (±SD), found by averaging the Sum5 values obtained
from each of the mentioned classifiers, is 473.02 (± 3.47).
This indicates that the classification performance obtained
using the combination of ESD and MSS is fairly stable.

Finally, we investigate how the different steps of the pro-
posed algorithm impact the classification accuracy when only
ESD is used for classifying the breast lesions. The results
are shown in Table XII. It is clear from the table that
removing the EEMD step has the most drastic impact on
classification performance with a sharp fall in the sensitivity,
specificity, and accuracy results from the proposed method.
Furthermore, removal of the exponential neighborhood step
has a significantly detrimental impact on the classification
performance. This can be correlated to the earlier observations,
from experimental TMPs and in vivo tissues, that removing
the weighted neighborhood step significantly increases the
SD of the ESD estimates. It is also clear that removing any
one of the system effect minimization steps also impacts
the classification performance adversely. This again confirms
the idea that system effect minimization requires a multi-
step approach. Therefore, the different steps of the proposed
ESD estimation algorithm indeed contributes to improving the
classification performance. Furthermore, the use of Sum5 to
indicate the classification performance has been previously
established in [16], [27], [55]. In this paper, we have also
used MCC to evaluate the classification performance which is
shown to have a high degree of correlation with the Sum5

values. That is, a higher Sum5 value generally leads to an
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TABLE IX
BREAST LESION CLASSIFICATION RESULTS USING ESD FOR DIFFERENT METHODS.

Method TP TN FP FN Sens. Spec. Acc. PPV NPV Sum5 MCC

(%) (%) (%) (%) (%)

MASD [18] 20 93 10 36 35.71 90.32 71.06 66.66 72.09 335.83 0.3175

Frequency Domain [23] 29 85 18 27 51.79 82.52 71.69 61.70 75.89 343.60 0.3591

Proposed 51 99 4 5 91.07 96.12 94.34 92.73 95.19 469.44 0.8755

TABLE X
BREAST LESION CLASSIFICATION RESULTS OBTAINED USING MSS FOR DIFFERENT METHODS.

Method TP TN FP FN Sens. Spec. Acc. PPV NPV Sum5 MCC

(%) (%) (%) (%) (%)

Modified SAC [3] 37 55 48 19 66.07 53.40 57.86 43.53 74.32 295.18 0.1864

SSA [28] 20 89 14 36 35.71 86.41 68.55 58.82 71.20 320.70 0.2577

Proposed 42 72 31 14 75 69.90 71.70 57.53 83.72 357.86 0.4304

TABLE XI
BREAST LESION CLASSIFICATION RESULTS OBTAINED USING A COMBINATION OF ESD AND MSS.

Parameter TP TN FP FN Sens. Spec. Acc. PPV NPV Sum5 MCC

(%) (%) (%) (%) (%)

ESD 51 99 4 5 91.07 96.12 94.34 92.73 95.19 469.44 0.8755

MSS 42 72 31 14 75 69.90 71.70 57.53 83.72 357.86 0.4304

ESD and MSS 54 98 5 2 96.43 95.15 95.60 91.53 98.00 476.69 0.9054

MCC value closer to +1 with a minor exception, which is
observed, if we compare the ‘No Normalization’ and ‘No
Deconvolution’ cases in Table XII.

IV. DISCUSSION

In this paper, we proposed a mutli-QUS parameter based
breast lesion classification scheme using ESD and MSS. In
order to obtain reliable ESD estimates for breast lesion clas-
sification, an improved ESD estimation technique for breast
tissues has been proposed based on the separation of the
diffuse component from the coherent component using EEMD
and a multi-step system effect minimization technique. Also,
a nearest neighborhood algorithm has been applied to fit
an average regression line in the frequency domain, from
which the ESD is estimated. The proposed ESD estimator
has been shown to outperform the conventional techniques,
which employ a Gaussian form factor as exhibited by a
lower MAPE value in Table V. An ablation technique has

been applied to show the suitability of a multi-step system
effect minimization technique in Fig. 5 and Table XII . The
use of a weighed exponential neighborhood for an average
regression line fitting has also been justified through ablation
in Table XII and and an ESD map in Fig. 6. The higher
values of the performance metrics in Table IX compared to
the other techniques show the suitablity of the proposed ESD
estimator to be used as a breast lesion classification tool.
Table XI demonstrates the suitability of the proposed ESD
and MSS estimators to be used as CAD tools for breast lesion
classification, when they are used in conjunction. This opens
up an avenue for the use of QUS parameters like the ESD and
MSS as non-invasive quantitative biomarkers for breast cancer
detection. However, it is to be noted that values of ESD and
MSS can not be estimated for cystic lesions. But, as cysts are
classified as benign lesions, a ESD/MSS based classification
scheme will be unable to characterize cysts correctly. Hence,
this is clearly a limitation of such a classification scheme.
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TABLE XII
BREAST LESION CLASSIFICATION RESULTS OBTAINED USING ONLY ESD BY REMOVING THE DIFFERENT STEPS IN THE PROPOSED TECHNIQUE.

Condition TP TN FP FN Sens. Spec. Acc. PPV NPV Sum5 MCC

(%) (%) (%) (%) (%)

Proposed 51 99 4 5 91.07 96.12 94.34 92.73 95.19 469.44 0.8755

No Filtering 49 97 6 7 87.50 94.17 91.82 89.09 93.27 455.86 0.8202

No Normalization 51 54 9 5 91.07 91.26 91.19 85.00 94.95 453.48 0.7666

No Deconvolution 49 96 7 7 87.50 93.20 91.19 87.50 93.20 452.60 0.8070

No Neighborhood 39 100 3 17 69.64 97.08 87.42 92.86 85.47 432.48 0.7230

No EEMD 43 81 22 13 76.78 78.64 77.99 66.15 86.17 385.74 0.5385

However, some strain imaging techniques have been developed
which can successfully characterize cysts [56], [57] and hence,
may be used in conjunction with ESD and MSS for breast
lesion classification. Furthermore, it is clear from (19) that the
proposed technique is able to estimate another QUS parameter,
EAC. But, the EAC values estimated using this technique
have a poor classification performance on this dataset. Thus,
a careful revision of the proposed method may be required
to get insights into the poor performance of an EAC based
classifier. In addition, this paper employs a Gaussian form
factor to model tissue scattering. Although, this has produced
reasonable ESD estimates in this work, similar schemes using
other form factors such as the Faran form factor, need to be
implemented before an informed decision can be made about
which form factor best models scattering from breast tissues
for QUS parameter estimation. Also, the true gold-standard
for QUS parameters relating to tissue micro-structures like the
ESD and MSS has to be obtained using microscopy analysis
from histopathology slides. Because of a lack of histopathol-
ogy slides for our dataset, we could not carry out such an
analysis. If future works can correlate ESD to breast tissue
histopathology, it may be more reliably employed as a non-
invasive tissue marker for breast cancer detection. Moreover,
recent trends suggest the use of deep neural networks for
ultrasonic tissue characterization [58]. The dataset used in this
work is still too limited for such an approach. Future works,
on a larger dataset, may look to combine the feature based
approach of conventional QUS classifiers with the data-driven
approach employed in deep neural networks for a more robust
classification scheme.

V. CONCLUSION

This paper has presented a multi-QUS biomarker based
breast lesion classification scheme which uses ESD and MSS
as the QUS parametes. An improved frequency domain tech-
nique for ESD estimation from the diffuse component of the

backscattered data using EEMD has also been proposed. The
ESD estimates based on this technique has been shown to pro-
duce a better classification perfomance compared to some of
the existing techniques for ESD estimation. Additionally, when
the ESD is fused with another prominent QUS parameter,
the MSS, estimated from an ameliorated EEMD domain AR
spectral estimation technique, the classification performance
further improves. Therefore, the proposed ESD estimator, in
conjunction with the proposed MSS estimator, show promises
to be used as CAD tools for breast lesion classification. Also,
it opens the possibility for the use of these QUS parameters
as non-invasive biomarkers for breast cancer detection.
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