
E
m

L
N

a

A
R
R
A

K
C
E
P
B
L
M

1

l
l
t
t
w
c
a
i
p
E
c
u
s

c
e
t
e
s
w

h
1

Biomedical Signal Processing and Control 58 (2020) 101837

Contents lists available at ScienceDirect

Biomedical  Signal  Processing  and  Control

journa l homepage: www.e lsev ier .com/ locate /bspc

valuation  of  convolutional  neural  networks  using  a  large
ulti-subject  P300  dataset
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Deep  neural  networks  (DNN)  have  been  studied  in  various  machine  learning  areas.  For  example,  event-
related  potential  (ERP)  signal  classification  is  a  highly  complex  task  potentially  suitable  for  DNN  as
signal-to-noise  ratio  is low,  and  underlying  spatial  and  temporal  patterns  display  a large  intra-  and  inter-
subject  variability.  Convolutional  neural  networks  (CNN)  have  been  compared  with  baseline  traditional
models,  i.e.  linear  discriminant  analysis  (LDA)  and  support  vector  machines  (SVM)  for  single  trial  clas-
sification  using  a large  multi-subject  publicly  available  P300  dataset  of school-age  children  (138  males
vent-related potentials
300
CI
DA
achine learning

and  112  females).  For  single  trial classification,  classification  accuracy  stayed  between  62%  and  64%  for
all tested  classification  models.  When  applying  the  trained  classification  models  to averaged  trials,  accu-
racy  increased  to  76–79%  without  significant  differences  among  classification  models.  CNN  did  not  prove
superior  to baseline  for  the  tested  dataset.  Comparison  with  related  literature,  limitations  and  future
directions  are discussed.

© 2020  Elsevier  Ltd.  All  rights  reserved.
. Introduction

In recent years, both fundamental and applied research in deep
earning has rapidly developed. In image processing and natural
anguage processing, it has led to significantly better classifica-
ion rates than previous state-of-the-art algorithms [7]. Therefore,
here has been a growing interest in applying deep neural net-
orks (DNNs) to various fields of applied research. Such an effort

an also be seen in electroencephalographic (EEG) data processing
nd classification. A well-known application of EEG classification
s a brain-computer interface (BCI) [18] which allows immobile
ersons to operate devices only by decoding their intent from
EG signal without any need for muscle involvement. A signifi-
ant challenge in BCI systems is to recognize the intention of the
ser correctly since the brain components of interest often have a
ignificantly lower amplitude than random EEG signal [18].

DNNs often do not require costly feature engineering, and thus
ould lead to more universal and reliable EEG classification. How-
ver, recent review of the field reached a conclusion that so far,
hese benefits have not been convincingly presented in the lit-

rature [14]. Many studies did not compare the studied DNN to
tate-of-the-art BCI methods or performed biased comparisons,
ith either suboptimal parameters for the state-of-the-art com-
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ttps://doi.org/10.1016/j.bspc.2019.101837
746-8094/© 2020 Elsevier Ltd. All rights reserved.
petitors or with unjustified choices of parameters for the DNN  [14].
Similar conclusion has been reached in another review of DNN and
EEG [22]. Many related papers suffer from poor reproducibility:
a majority of papers would be hard or impossible to reproduce
given the unavailability of their data and code [22]. Moreover,
one of the drawbacks of DNNs is having to collect a large training
dataset. Typical BCI datasets have very small numbers of training
examples, since BCI users cannot be asked to perform thousands
of mental operations before actually using the BCI. To overcome
this problem, it has been proposed to obtain BCI applications with
very large training data bases, e.g. for multi-subject classification.
Multi-subject classification has one more advantage — it solves the
problem of DNN long training times. Instead, a universal BCI sys-
tem can be trained only once and then just applied to a new dataset
from a new user without any additional training [14].

Guess the number (GTN) is a simple P300 event-related poten-
tial (ERP) BCI experiment. Its aim is to ask the measured participant
to pick a number between 1 and 9. Then, he or she is exposed
to corresponding visual stimuli. The P300 waveform is expected
following the selected (target) number. During the measurement,
experimenters try to guess the selected number based on manual
evaluation of average ERPs associated with each number. Finally,
both the numbers thought and guesses of the experimenters are

recorded as metadata. 250 school-age children participated in the
experiments that were carried out in elementary and secondary
schools in the Czech Republic. Only three EEG channels (Fz, Cz,

https://doi.org/10.1016/j.bspc.2019.101837
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2019.101837&domain=pdf
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Fig. 1. Comparison of target and non-target epoch grand averages. As expected,
 L. Vařeka / Biomedical Signal Pro

z) were recorded to decrease preparation time. Nevertheless, to
he author’s best knowledge, this is the largest P300 BCI dataset
vailable so far [19].

The main aim of this paper is to evaluate one of the deep learning
odels, convolutional neural networks (CNN) for classification of

300 BCI data. Unlike most related studies, multi-subject classifica-
ion was performed with the future goal of developing a universal
CI. Two state-of-the art BCI classifiers were used as baseline to
inimize the risk of biased comparison. To avoid overtraining,

ross-validation and final testing using a previously unused part
f the dataset were performed. Another aim of this manuscript is
o evaluate some CNN parameters in this application.

.1. State-of-the-art

Although various BCI algorithms have been evaluated and pub-
ished in recent decades, there is still no feature extraction or

achine learning algorithm clearly established as state-of-the-art.
owever, several studies have focused on reviews and comparisons
ith partly consistent results. In [12], a comparison of several clas-

ifiers (Pearson’s correlation method, Fisher’s linear discriminant
nalysis (LDA), stepwise linear discriminant analysis (SWLDA), lin-
ar support-vector machine (SVM), and Gaussian kernel support
ector machine (nSVM)) was performed on 8 healthy subjects. It
as shown that SWLDA and LDA achieved the best overall per-

ormance. As originally proposed by Blankertz et al. [3] and also
onfirmed in a recent review [14], shrinkage LDA is another useful
ool for BCI, particularly with small training datasets. In [16], the
uthors demonstrated that LDA and Bayesian linear discriminant
nalysis (BLDA) were able to beat other classification algorithms.

Efforts to develop a universal multi-subject P300 BCI machine
earning have been relatively rare in the literature. In [21], the
uthors developed a generic shrinkage LDA classifier using the
raining data of 18 subjects. The performance was evaluated with
he data of 7 subjects. It was concluded that generic classifier
chieved comparable results regarding the effectiveness and effi-
iency as personalized classifiers.

. Methods

.1. Data acquisition

The data described in detail and accessible in [19] were used in
ubsequent experiments. The measurements were taken between

 am and 3 pm.  Unfortunately, the environment was usually quite
oisy since many children and also many electrical devices were
resent in the room at the same time. However, in any case there
ere no people standing or moving behind the monitor or in the

lose proximity of the measured participant.
The participants were stimulated with numbers between 1 and 9

ashing on the monitor in random order. The numbers were white
n the black background. The inter-stimulus interval was set to
500 ms.  The following hardware devices were used: the BrainVi-
ion standard V-Amp amplifier, standard small or medium 10/20
EG cap, monitor for presenting the numbers, and two  notebooks
ecessary to run stimulation and recording software applications.
he reference electrode was placed at the root of the nose and
he ground electrode was placed on the ear. To speed up the
uessing task, only three electrodes, Fz, Cz and Pz, were active.
he stimulation protocol was developed and run using the Pre-
entation software tool produced by Neurobehavioral Systems,

nc. The BrainVision Recorder was used for recording raw EEG
ata.

The participants were school-age children and teenagers (aged
etween 7 and 17; average age 12.9), 138 males and 112 females. All
there is a large P300 component following the target stimuli. Note that the P300
average latency is somewhat delayed compared to what is commonly reported in
the literature [15].

participants and their parents were informed about the programme
of the day and the experiments carried out. All participants took
part in the experiment voluntarily. The gender, age, and laterality
of the participants were collected. No personal or sensitive data
were recorded.

2.2. Preprocessing and feature extraction

The data were preprocessed as follows:

1. From each participant of the experiments, short parts of the
signal (i.e. ERP trials, epochs) associated with two  numbers dis-
played were extracted. One of them was the target (thought)
number. Another one was  randomly selected number out of the
remaining stimuli between 1 and 9. Consequently, similar num-
ber of training examples for both classification classes (target,
non-target) was  extracted. The extracted epochs were stored
into a file (available in [20]).

2. For epoch extraction, intervals between 200 ms  prestimulus
and 1000 ms  poststimulus were used. The prestimulus interval
between −200 and 0 ms  was  used for baseline correction, i.e.
computing average of this period and subtracting it from the
data. Thus given the sampling frequency of 1 kHz, 11,  532 × 3 ×
1200 (number of epochs × number of EEG channels x number of
samples) data matrix was produced.

3. To skip severely damaged epochs, especially caused by eye blinks
or bad channels, amplitude threshold was  set to 100 �V accord-
ing to common guidelines (such as in [15]). Any epoch x[c, t] with
c being the channel index and t time was rejected if:

max
c,t

|x[c, t]| > 100 (1)

With this procedure, 30.3% of epochs were rejected. In Fig. 1,
grand averages of accepted epochs (across all participants) are
depicted.

Feature extraction.  Many deep learning methods such as CNN
are designed to avoid significant feature engineering [2,28]. On
the other hand, linear classifiers usually perform better when the
dimensionality of the original data matrix is reduced, and only the

most significant features are extracted [3]. In the parameter opti-
mization phase, state-of-the-art classifiers were used either with
original data dimension, or after feature selection proposed in [3]
to compare the performance. The feature extraction method was
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Fig. 2. Flowchart of preprocessing, feature extraction and data splitting applied.
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ig. 3. Architecture of the convolutional neural network. There was one convolution
arget).  Batch normalization and dropout followed both the convolutional and dens

ased on averaging time intervals of interest and merging these
verages across all relevant EEG channels to get reduced spatio-
emporal feature vectors (Windowed means feature extraction,

M).  In line with recommendations for P300 BCIs, a priori time
indow was initially set between 300 and 500 ms  after stimuli [25].

his time window was further divided into 20 equal-sized time
ntervals in which amplitude averages were computed. Therefore,

ith three EEG channels, the dimensionality of feature vectors was
educed to 60. Finally, these feature vectors were scaled to zero

ean and unit variance.

.3. Classification

Fig. 2 depicts procedures used to extract features and split the
ata for classification.

Data splitting. Before classification, the data were randomly split
nto training (75%) and testing (25%) sets. Using the training set, 30
terations of Monte-Carlo cross-validation (again 75:25 from the
ubset) were performed to optimize parameters. Results using the
oldout testing set were computed in each cross-validation iter-
tion and averaged at the end of the processing. No parameter

ecision was based on the holdout set.

LDA. State-of-the-art [3] LDA with eigenvalue decomposition
sed as the solver, and automatic shrinkage using the Ledoit–Wolf

emma  [13] was applied.
er, one dense layer, and finally a softmax layer for binary classification (target/non-
rs.

SVM. The implementation was  based on libsvm [4]. Both recom-
mendations in the literature [8] and validation subsets were used
to find the optimal parameters. Finally, penalty parameter C was
set to 1, the kernel cache was 500 MB,  and degree of the polyno-
mial kernel function was set to 3. One-vs-rest decision function of
shape with the RBF kernel type and shrinking heuristics were used.

CNN. Convolutional neural networks were implemented in
Keras [5]. They were configured to maximize classification per-
formance on the validation subsets. Its structure is depicted in
Fig. 3. Initially, after empirical parameter tuning based on cross-
validation, the parameters were selected as follows:

– The first convolutional layers had six 3 × 3 filters. The filter size
was set to cover all three EEG channels. Both the second filter
dimension and number of filters were tuned experimentally.

– In both cases, dropout was  set to 0.5.
– The output of the convolutional layer was  further downsampled

by a factor of 8 using the average pooling layer.
– ELU activation function [6] was  used for both convolutional and

dense layers as recommended in related literature [23]. Com-

pared to sigmoid function, ELU mitigates the vanishing gradient
problem using the identity for positive values. Moreover, in con-
trast to rectified linear units (ReLU), ELUs have negative values
which allow them to push mean unit activations closer to zero
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Fig. 4. Decrease of classification loss based on the baseline CNN architecture is
shown. Although training loss kept declining throughout all 30 epochs, validation
loss reached the minimum after only five epochs. Because the patience parameter
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as  set to five, in this case, the training was stopped after 10 epochs. As seen from
he growing difference between training and validation loss, further training would
ead  to substantial overtraining.

while ensuring a noise-robust deactivation state [6]. The param-
eter  ̨ > 0 was set to 1:

f (x) =
{
x if x > 0

˛(ex − 1) if x ≤ 0

 Batch size was set to 16.
 Cross-entropy was used as the loss function.
 Adam [11] optimizer was used for training because it is com-
putationally efficient, has little memory requirements and is
frequently used in the field [22].

 The number of training epochs was set to 30.
 Early stopping with the patience parameter of 5 was used.

. Results

As mentioned above, cross-validation for hyperparameter esti-
ation was followed by testing on a holdout set. Accuracy,

recision, recall and AUC (area under the ROC curve) have been
omputed [10]. In the validation phase, the aim was to reach the
onfiguration yielding the highest accuracy while ensuring it is
ot at the expense of precision and recall. In Fig. 4, an example of
earching for an optimal configuration of CNN weights and biases
ased on the training and validation sets is shown.

.1. Effect of parameter modifications on validation performance

Feature extraction for LDA and SVM. Parameter optimization of
he classifiers themselves has been discussed above. Addition-
lly, different feature extraction settings were compared regarding
he average classification results achieved during cross-validation.
esults of the comparisons are depicted in Table 1. Accuracy had
n increasing trend when the time window got prolonged to 800
nd 1000 ms.  It can be speculated that the standard apriopri time
indow is not enough for capturing target to non-target differ-

nces when classifying children data that display a large variety
n their P300 components. As expected, classification performance

ith WM features was slightly higher than for preprocessed epochs
ithout feature extraction. Based on the results, both LDA and SVM

onfigured as described above with the time window between 300

nd 1000 ms  were used in the testing phase.

CNN. The neural network architecture described above was
sed as the starting point. However, some parameter modifications
ere explored regarding their effect on the validation classification
g and Control 58 (2020) 101837

results. The results are shown in Table 2. Performance mostly dis-
played only small and insignificant changes with these parameter
modifications. Consistently with [23], batch normalization led to
slightly better accuracy. Moreover, the absence of batch normaliza-
tion made the results less predictable and more fluctuating as can
be seen in standard deviation of recall. Another clear decrease in
performance was  observed without dropout regularization. Finally,
average pooling was  better than max  pooling for the validation
data. Consequently, the initial configuration described in Section
2.3 was  used for testing.

3.2. Testing results

Based on the results in Section 3.1, both feature extraction
method for LDA and SVM, and CNN configuration achieving the
best average accuracy during cross-validation were selected for the
testing phase. Fig. 5 shows the achieved results. All tested mod-
els achieved comparable classification results. LDA had the highest
classification recall (around 67%). Single trial classification accuracy
stayed within the range between 62% and 64%.

Averaging of epochs associated with the same markers is a stan-
dard ERP technique for increasing signal-to-noise ratio [15]. When
averaging, repeated ERPs including the P300 are amplified while
continuous random EEG noise is suppressed. Because even in P300
BCIs, repeated stimulation is usually used to achieve good per-
formance [17], it is worth exploring how once trained classifiers
can generalize to averaged epochs. Therefore, consecutive groups
of one to six neighboring epochs from the testing set were used
instead of single trials. Fig. 6 depicts the results achieved. With aver-
aging, classification accuracy increased from original 61–64% up to
76–79%. There were no significant differences among classifiers,
although CNN displayed slightly higher standard deviations.

4. Discussion

Single trial classification accuracy was between 62% and 64%
for all tested classification models without significant differences.
Similar results have been commonly reported in the literature.
For example, in [9], 65% single trial accuracy was  achieved (using
one to three EEG channels and personalized training data). In [24],
40–66% classification accuracy was  reported, highly dependent on
the tested subject. Comparably, this manuscript achieved similar
performance for a large multi-subject dataset of school-age chil-
dren.

On single trial level, CNN achieved comparable performance to
both LDA and SVM. Similar performance was  also achieved when
applying averaged testing epochs. However, CNN seemed slightly
less stable and more dependent on training/validation split as can
be seen in standard deviations.

Consistently with related deep learning literature [23], a combi-
nation of ELUs, dropout and batched normalization were beneficial
for classification performance. Unlike many image classification
applications, average pooling was better than max pooling, per-
haps because it is not associated with data loss. Even less prominent
features may  contribute to classifier discriminative abilities. To fur-
ther verify how the CNN was able to classify between targets and
non-targets, the network was exposed to all target, or all non-
target patterns. Average hidden layer outputs (the 4th average
pooling layer used as an example) across these conditions were
calculated and shown in Fig. 7. There is a clear difference between
some CNN outputs although the most remain stable across both

conditions.

In our previous work [27], we applied stacked autoencoders
(SAE) to the same GTN dataset. In contrast with the current work,
manual feature extraction using discrete wavelet transform was



L. Vařeka / Biomedical Signal Processing and Control 58 (2020) 101837 5

Table  1
Average cross-validation classification results based on the feature extraction method with the LDA classifier configured as described in Section 2.3. Averages from 30
repetitions and related sample standard deviations (in brackets) are reported. WM – windowed means (time intervals relative to stimuli onsets in square brackets).

Feature extraction AUC Accuracy Precision Recall

WM [300–500 ms]  59.56% (1.04) 59.54% (1.04) 59.48% (1.83) 61.69% (2.08)
WM  [300–800 ms]  60.94% (1.04) 60.93% (1.05) 60.75% (1.9) 63.38% (1.85)
WM  [300–1000 ms]  61.77% (0.9) 61.76% (0.91) 61.45% (1.9) 64.64% (1.48)
None  61.09% (1.13) 61.08% (1.13) 61.68% (1.67) 59.90% (1.35)

The bold values denote the configuration that yielded the highest accuracy.

Table 2
Average cross-validation classification results based on the CNN parameter settings. Averages from 30 repetitions and related sample standard deviations (in brackets) are
reported. CNN configuration described in Section 2.3 was used as the baseline model.

Changed parameter AUC Accuracy Precision Recall

None 66.12% (0.68) 62.18% (0.94) 62.76% (1.95) 61.34% (2.63)
RELUs  instead of ELUs 66.36% (0.62) 61.85% (1.15) 62.7% (2.19) 60.1% (3.04)
Filter  size (3, 30) 65.84% (0.49) 61.95% (1.18) 62.7% (2.1) 60.5% (3.91)
12  conv. filters 66.31% (0.51) 61.83% (1.1) 62.3% (2.21) 61.6% (3.08)
No  batch normalization 65.99% (0.77) 60.55% (1.52) 61.02% (3.16) 61.5% (7.21)
Dropout 0.2 67.67% (0.65) 60.8% (1.49) 61.33% (2.31) 60.33% (4.0)
No  dropout 68.63% (1.11) 59.49% (1.2) 59.61% (1.93) 60.7% (4.44)
Dense  (150) 66.07% (0.8) 61.81% (0.95) 62.33% (1.83) 61.18% (2.49)
Two  dense l. (120-60) 65.72% (0.77) 62.11% (0.9) 63.14% (2.03) 59.5% (2.55)
Max-  instead of AvgPool 64.23% (1.15) 58.94% (1.94) 60.22% (4.18) 59.24% (13.76)

The bold values denote the configuration that yielded the highest accuracy.

Fig. 5. Testing results for single trial classification (error bars show standard deviations).
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Fig. 6. Testing results when averaging neighb

erformed. Instead of single trial classification, success rate of
etecting the number thought based on multiple single trial classifi-
ation results was computed. Maximum success rate on the testing
ataset was 79.4% for SAE, 75.6% for LDA and 73.7% for SVM. It seems

hat while SAE combined with traditional feature engineering and
nvolving multiple trials per marker can outperform linear classi-
ers, the same benefits cannot be repeated when applying CNN to
ingle trial classification of raw EEG data.
pochs (error bars show standard deviations).

Computational efficiency is another important factor to consider
when applying the methods in online BCI systems. Experimental
comparison was performed with Intel Core i7-7700K, four cores,
4.2 GHz, 64 GB RAM and NVIDIA GeForce GTX  1050 Ti GPU. CNN

took 46 s to train on CPU and 26 s to train on GPU. Both LDA and
SVM were much faster to train, with 300 and 1600 ms,  respectively.
However, training times were not critical in the presented experi-
ment since any universal classifier needs to be trained just once and
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Fig. 7. Average outputs of the 4th (pooling) layer are depicted after the CNN
was  exposed to all target/non-target patterns. X-axis corresponds to indices of
convolutional filters (six in total). Y-axis is the output of convolution originally cor-
responding to time information, after average pooling further downsampled by a
factor of 6. There is a clear difference in outputs, mainly in the bottom part of the
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aps. However, many outputs seem independent of classification labels, poorly
ontributing to CNN discrimination abilities.

ot with every new BCI user. Testing times were calculated relative
o one processed feature vector and were low enough for all clas-
ifiers (CNN took 0.3 ms  to classify one pattern on CPU and 0.1 ms
n GPU, LDA took 0.1 and SVM 0.2 ms). It can be concluded that all
ested algorithms can be used in online BCIs. Neural networks are
lower to train and this could be a problem for personalized BCIs,
etrained with each new user.

There are several limitations of the reported experiments. As
 noise suppression procedure, severely damaged epochs (with
mplitude exceeding ±100 �V when compared to baseline) were
ejected before further processing. While epoch rejection is benefi-
ial for classification accuracy, on the other hand, it would also lead
o lower bit-rates when used in on-line P300 BCI systems because of
ata loss. Artifact correction methods based on Independent Com-
onent Analysis were not feasible because of the low number of EEG
hannels (three). Moreover, the low number of EEG channels could
ave a detrimental effect on classification performance because of

imited spatial information provided on the input. Another possi-
le limitation was that there might be an architecture of CNN that
ould lead to better classification performance and had not been

iscovered by the author. However, several manipulations of CNN

arameters were tested using cross-validation, including adding

 new dense layer, with only very modest changes in validation
lassification accuracy.
g and Control 58 (2020) 101837

Recent review of EEG and DNNs [22] studies reported the
median gain in accuracy of DNNs over traditional baselines to be
5.4%. It also revealed significant challenges in the field. Low number
of training examples is a common complaint especially for event-
related data that contain the relevant information in time domain.
In this case, only a small fraction of continuous EEG measurement
near the onset of trials can be used and strategies such as overlap-
ping time windows to obtain more examples in frequency domain
are not feasible. In the current study, 11,532 epochs were used
which is below mean number of examples (251,532) and medium
number of examples (14,000) in the reviewed papers [22]. Strate-
gies such as data augmentation can be considered to increase the
number of training examples to be sufficient for DNNs. Moreover,
half of the studies [22] used between 8 and 62 EEG channels. Adding
more channels to Fz, Cz and Pz could increase spatial resolution
and accuracy but would also increase preparation time and the
participant’s discomfort. In future work, more on the effect of num-
ber of EEG channels on the P300 classification accuracy can be
investigated. Furthermore, soft or hard thresholding based on dis-
crete wavelet transform can be considered for noise cancellation
[1]. Another line of research would be to propose different deep
learning models for the same classification task, with extensive
parameter grid search, or genetic algorithms. Based on the recent
review of the field [29], frequently cited and promising networks
include Recurrent Neural Networks, especially Long short-term
memory (LSTM). Moreover, a CNN layer to capture spatial patterns
can be followed by a LSTM layer for temporal feature extraction
[29].

5. Conclusion

The aims of the presented experiments were to compare CNN
with baseline classifiers (LDA, SVM) using a large multi-subject
P300 dataset. CNN was  applied to raw ERP epochs (with the
dimensionality of 3 × 1200). Baseline classifiers were applied to
windowed means features (with the dimensionality of 60). Empir-
ical parameter optimization was performed using cross-validation
and classifiers were tested on a holdout set. Various CNN parame-
ters are discussed. Single trial classification accuracy was between
62% and 64% for all tested models with CNN able to match but not
outperform its competitors. When the trained models were applied
to averaged trials in the testing phase, accuracy increased up to
76–79%. Achieved accuracy is comparable with state-of-the-art
despite using a multi-subject dataset from 250 children. Poten-
tial explanation of the results are discussed. Based on the results,
LDA and SVM with state-of-the-art feature extraction still seem to
be a good choice for P300 classification, especially with relatively
small training datasets. CNN might need more spatial information
in the data (by means of more channels) to better understand the
patterns. Alternatively, the dataset was not large enough for CNN
to prove its benefits and, e.g. data augmentation techniques could
help to overcome this obstacle. Both the preprocessed data [20]
and Python codes [26] are available to ensure reproducibility of the
experiments.
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