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Abstract: Diseases that affect the cardiovascular system affect about 50 million people in the world, thus 
heart disease prevention is one of the most important tasks of any health care system. Despite being 
popular, better automatic ECG signal analysis methods are still needed. This research is dedicated to 
design a new deep learning based method that effectively classify the arrhythmia in two stages using two 
second segments of 2D recurrence plot images from the ECG signal. The first stage discriminates between 
Noise and Ventricular fibrillation. The second stage discriminate between Atrial fibrillation, Normal, 
Premature atrial fibrillation and Premature ventricular fibrillation. Models are trained and tested using 
ECG databases that are publicly available in PhysioNet. The databases include the MIT-BIH Arrhythmia 
Database, Creighton University Ventricular Tachyarrhythmia Database, MIT-BIH Atrial Fibrillation 
Database, and MIT-BIH Malignant Ventricular Ectopy Database, comparing six types of arrhythmia, to 
achieve testing accuracy of up to 95.3 ± 1.27% and 98.41 ± 0.11% arrhythmia detection for the first and 
second stage respectively, from fivefold cross-validation. In conclusion, this contribution substantially 
advances the current methodology for discriminating between different types of arrhythmia and provide 
clinicians with an effective tool to assist in arrhythmia detection.  
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1. Introduction 

Globally, disease that affects the cardiovascular system is the leading cause of death, accounting for 
about one-third of deaths in 2008 [1, 2]. A majority of the deaths are due to Ventricular Fibrillation, a life-
threatening arrhythmia, and sudden cardiac deaths, which is common among adults. Arrhythmia is a class 
of conditions that falls under cardiovascular diseases (CVDs), characterized by irregular changes from the 
normal rhythm of the heart [3]. There are a number of arrhythmias, which include premature heartbeats, 
supraventricular (atrial fibrillation) tachycardia, bradyarrhythmias, and ventricular arrhythmias 
(ventricular fibrillation). Effective treatment of a number of arrhythmias relies on the early stage of 
detection [3]. However, atrial fibrillation is an irregular heart rate that has a very serious health implication, 
like an increased risk of stroke [10, 11]. The normal heart rate of a healthy person is between 60 to 100 beats 
per minute; however, AF causes a hike in heart rate of over 100 beats per minute [12, 13]. Most often, AF 
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results from an underlying condition like hypertension. It can affect people of any age but more common 
in the elderly population and rare in the younger generation [14].  Premature atrial contractions (PAC) is 
another common form of heart arrhythmia that is characterized by premature heartbeat from the atria. This 
kind of arrhythmia is common with healthy young and elderly people, and it is unclear as to what is the 
exact cause [15]. Premature ventricular contractions (PVCs) are extra abnormal beats that come from the 
ventricles. They usually occur when the ventricular contractions occur sooner than the next regular beat 
and followed by an even stronger heartbeat, causing disorder in pumping blood. PVCs that occur 
frequently can be a risk factor for arrhythmia-induced cardiomyopathy, a condition whereby the heart 
muscle becomes less effective and may develop heart failure [16]. Ventricular fibrillation is a type of 
arrhythmia that is often caused by a rapid heartbeat known as ventricular tachycardia (VT), which results 
from an abnormal electrical impulse in the ventricles. During this abnormal heartbeat, there is often a 
chaotic contraction in the ventricles. This can be seen in the study of the ECG, which shows the variation 
of the ECG signal without the QRS complex [17]. Therefore, the instinctive detection of ECG arrhythmia 
becomes an essential tool for risk assessment. 

Over the years, there has been an increased interest in time series methods and is justified by the 
number of applications used to generate data with time. There is also a large number of signal processing 
methods that advance change in the characterization of features in the power spectrum [4-6]. Despite the 
fact that frequency might be the most preferred representation domain, other possible alternatives in this 
subject are autocorrelation, wavelets, shapelet based time series, and principle component analysis [7-9]. 
However, recurrence plots are an advanced technique that distinguishes how resemblances between 
particular orders vary over time. Recurrence plots are a generally used procedure for qualitative evaluation 
of time series in dynamic systems. 

The ECG signal is essential in uncovering and examining the nature of cardiac health [18]. Therefore, 
the morphology of ECG signals incorporates crucial information about the state of the heart. However, it 
is very difficult to spot any changes in the ECG signals as its amplitude is measured in millivolts thus highly 
nonlinear [18, 19]. 

Nowadays, wearable devices dominate arrhythmia classification tools and they are recently giving 
outstanding results with the help of deep learning. Convolutional neural networks (CNN) are one of the 
widely used ECG classification methods. They are applied in a wide range of applications and recently 
used in 1D ECG arrhythmia classification where they produced promising results in the future of 
arrhythmia classification [20, 21]. Even though this technique gives promising results in a specific type of 
data, other methods are needed to enhance performance improvement. This may be because the data used 
is affected by the limitations of using one-dimensional data.  Tae [22] proposed an ECG arrhythmia 
classification method using deep two-dimensional CNN with grayscale ECG images. Transforming 1D 
ECG signals to 2D images has a number of advantages. Classification accuracy can be improved by using 
features like data augmentation to enlarge the training data. Feature extraction and noise filtering are no 
longer necessary which reduces the chances of ignoring some ECG beats.  CNN's are commonly used in 
deep learning tasks that are related to object recognition using a large number of images where it produces 
the highest level of performances [23-25]. 

In this paper, CNN is used to classify 2D ECG arrhythmia in two stages. The work benefited from the 
advances of using 2-dimensional data to eliminate the limitations brought up by using 1-dimensional data 
that requires feature extraction, [26-28], and filtering for noise [29-31]. Two-dimensional image ECG 
classification greatly improves the classification accuracy in the sense that it utilizes every beat of the data 
that may be eliminated during feature extraction and noise filtering. Another advantage of using 2-D 
images in classifying ECG is that accuracy can be enhanced by features like data augmentation [32-34] that 
can be applied in case of data deficiency. 

The approach taken in the paper is evaluated based on its potential to discriminate between six types 
of arrhythmia (AF, Normal, Noise, PAC, PVC and VF) using ECG data acquired from the MIT-BIH 
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Arrhythmia Database, Creighton University Ventricular Tachyarrhythmia Database, MIT-BIH Atrial 
Fibrillation Database, and MIT-BIH Malignant Ventricular Ectopy Database in PhysioNet. RP is applied to 
convert the ECG data to 2D images, which allows the application of the above-mentioned features, thus 
improve the classification capabilities of the method. Two-stage classification is proposed in this research 
to improve the classification capability of the method in all the labels. Processing starts at the first stage, 
which discriminate between data with labels that needs immediate attention (Noise and VF). VF can be life 
threatening, and noise can hinder the classification process, thus needs to be detected first. Furthermore, 
these labels cannot be discriminated in the second stage due to the absence of the R-peak from their beats 
[44, 46]. The second stage classify the rest of the labels into respective types of arrhythmia by applying the 
R-peak detection algorithm as the labels are annotated beat by beat [41]. The results show that CNN using 
images generated using RP can be suitably applied for arrhythmia discrimination. 

The remaining part of the paper is arranged as follows: Sections 2 and 3 describe the analysis of the 
RP to produce the 2D segment representation of the ECG signal and the CNN architecture. In sections 4 
and 5, the methodology is analyzed, which includes the steps for the proposed method, training 
environment, evaluation procedures and results of the proposed approach. Finally, sections 6 and 7 provide 
the discussion and conclusions of the work respectively. 

2. Recurrence Plot 

Past researchers studied a way to quantify the recurrent behavior of a trajectory through a phase space 
[35]. Since the phase space does not have low dimensions to be pictured on, it is usually hard to visualize. 
Eckmann et al. [36] introduced a representation called recurrence plot (RP), which is able to reveal when 
these trajectories visit the same area. The RP representation allows us to investigate the m-dimensional 
trajectories in a bi-dimensional representation. A two-dimensional square matrix R, with both axes as time 
axes provide insight to picture the recurrence of a state at time 𝑖	and 𝑗. 

The numerical expression of the RP is shown in Equation (1). 

𝑅!,#
$.&!   =  𝛩 '𝜀! −	*+𝑥'---⃑ − 𝑥(---⃑ +*/ , 𝑥'---⃑ ∈ ℝ$, 𝑖, 𝑗 = 1…𝑁. (1) 

where Q is the Heaviside function defined in equation 2, ε is a threshold for closeness, 𝑥'---⃑  and 𝑥(---⃑ 	are 
the observed subsequences at the positions 𝑖	and 𝑗 . +|	·	|+  is the norm (e.g. Euclidean norm) and 
N is the number of states. 
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Equation 2 describes that the recurrence plot portrays the pairs of times the trajectory is at the same 
place. Since the RP is identified by 𝑅!,#= 1 (𝑖 = 		1…𝑁), it has a black main diagonal line, which is the line of 
identity, that has an angle of 𝑝𝑖/4.  Phase space trajectories are reconstructed from the totality of all 
recurrence points [56-58]. However, they cannot be reconstructed from a single recurrence point(𝑖, 𝑗). It 
puts a black dot at coordinates (𝑖, 𝑗) if the m-dimensional trajectory of the time series 𝑗 is close to 𝑖 and 
otherwise a white dot. Figure 1 shows typical RP examples for different types of signals.  

From the Heaviside function 𝜀! 	point of view, a RP is a state  𝑥# that is sufficiently close to 𝑥!, which 
means all the states 𝑥#  that are within an m-dimensional neighborhood of the size 𝜀! 	centered at  𝑥!  are 
recurrence points. Originally, the neighborhood of the RP uses L2-norm and its radius contains a fixed 
number of closest states  𝑥# [59].  In this case, the radius 𝜀! changes for every	𝑥!, (𝑖 = 1…𝑁) and  𝑅!,# =  𝑅#,! 
because the neighborhood of  𝑥! does not have to be the same as that of  𝑥# which leads to asymmetric RP. 
However, using a matrix and a fixed radius ensures that 𝑅!,#		= 	𝑅#,!which is the case in a symmetric RP. 
Choosing a neighborhood type to use depends on the application [56, 60]. 
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Figure 1. Typical examples of recurrence plots for a sinewave with two frequencies, figure (a) shows the plot of the 

sinewave data and the corresponding RP with a frequency of 3 Hz, and figure (b) shows the plot of the sinewave data 
and the corresponding RP with a frequency of 6 Hz.  
 

A pivotal parameter in the RP analysis is the recurrence threshold 𝜀 [56, 61-62]. Therefore, recurrence 
threshold selection remains an important task. The selected threshold needs to be as small as possible and 
at the same time an adequate number of recurrences and recurrence structures. The optimal choice of 𝜀 
depends on the application and the experimental conditions like noise. To select a threshold that will be a 
few percent of the maximum phase space diameter, a rule of thumbs is used, which should be in a region 
of 10% of the maximum phase space diameter. However, the presence of noise may require a larger 
threshold, because the influence of noise would distort the structure in the RP [56]. 

3. CNN architecture 

In this section, the proposed CNN architecture used to develop the classifier is described. Since we aimed 
at classifying arrhythmia, there is a need to find a genetic model that will recognize the type of arrhythmia in 
the RP segments. However, selecting the right model for the classifier is an important task.  The ImageNet 
large scale visual Recognition Competition (ILSVRC) recently demonstrated the fact that performance is 
closely related to the complexity of the CNNs [63]. Three different models re compared which took part and 
won the ILSVRC- 2012 [37] and runner-up 2014 [64] completion respectively to find the suitable classifier for 
the discrimination of arrhythmia. Besides being famous for winning the ILSVRC competition, these models 
have a simple enough architecture for the classification with relatively small number of layers. 

 Figure 2 summarizes the structure of the three architectures that are developed in this study.  The 
number of layers for the three models ranges from eight layers deep (a), 16 layers deep (b) and 19 layers deep 
(c). AlexNet [37] architecture consists of five convolutional layers, some of which precedes maximum pooling 
layers, and followed by three fully connected layers, and lastly a three-way softmax classifier for first stage or 
a four-way classifier for second stage. The VGG 16 and VGG19 architectures follow a similar setup as AlexNet 
except that they have more layers. The unique thing about the two architectures is that they follow the same 
arrangement of applying convolutional layers of 3×3 filters, same padding and maximum pooling layer of 
2x2 filters consistently throughout the architecture. In the end, they apply two fully connected layers followed 
by the softmax for the output. 

Table 1, summaries in details some of the main features of the three architectures. It accounts for the 
depth of each model, kernels and Units, and other parameters including activation function, sizes of the 
pooling layer and strides, and dropout rate. The purpose of applying these three CNN models is to contrast 
the adaptability of the architectures on the arrhythmia classification using RP segments from ECG signals. 
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Figure 2. The architecture for the CNNs. 

Table 1. Detailed parameters used for all the layers of 2D CNN models. 
Layer Kernel Size x Units Other Layers 

AlexNet VGG16 VGG19 AlexNet VGG16, 19 AlexNet VGG{16, 19} 
Conv2D 

 
Conv2D 
Conv2D 

Conv2D 
Conv2D 11 × 96 

3 × 64 
3 × 64 

Activation=ReLu, 
Stride = 4 

ReLu, Stride = 2 
ReLu, Stride = 2 

MaxPool2D MaxPool2D MaxPool2D - - Pool Size =3,  stride = 2 Pool Size =2,  stride = 2 
Conv2D 

 
Conv2D 
Conv2D 

Conv2D 
Conv2D 

5 × 256 
- 

3 × 128 
3 × 128 

Activation = ReLu 
 

Activation = ReLu 
Activation = ReLu 

MaxPool2D MaxPool2D MaxPool2D - - Pool Size = 3, stride = 2 Pool Size = 2, stride = 2 

Conv2D 
Conv2D 
Conv2D 

- 

Conv2D 
Conv2D 
Conv2D 

- 

Conv2D 
Conv2D 
Conv2D 
Conv2D 

3 × 384 
3 × 384 
 3 × 256 

- 

3 × 256 
3 × 512 
3 × 512 

   3 × 512* 

Activation = ReLu 
Activation = ReLu 
Activation = ReLu 

 

Activation = ReLu 
Activation = ReLu 
Activation = ReLu 

   Activation = ReLu* 

MaxPool2D MaxPool2D MaxPool2D - - Pool Size = 3, stride =2 Pool Size = 2, stride =2 

- 

Conv2D 
Conv2D 
Conv2D 

- 

Conv2D 
Conv2D 
Conv2D 
Conv2D 

- 

3 × 512 
3 × 512 
3 × 512 

   3 × 512* 

- 

Activation = ReLu 
Activation = ReLu 
Activation = ReLu 

   Activation = ReLu* 

- MaxPool2D MaxPool2D - - - Pool Size = 2, stride = 2 

- 

Conv2D 
Conv2D 
Conv2D 

- 

Conv2D 
Conv2D 
Conv2D 
Conv2D 

- 

3 × 512 
3 × 512 
3 × 512 

   3 × 512* 

- 

Activation = ReLu 
Activation = ReLu 
Activation = ReLu 

   Activation = ReLu* 

- MaxPool2D MaxPool2D - - - Pool Size = 2, stride =2 
Flatten Flatten Flatten - - - - 
Dense 
Dense 

Dense 
Dense 

Dense 
Dense 

1 × 4096 
1 × 4096 

1 × 4096 
1 × 4096 

Tanh, Dropout Rate = 0.5 
Tanh, Dropout Rate = 0.5 

ReLu, Dropout=0.5 
ReLu, Dropout=0.5 

Dense Dense Dense 1 × {3,4}**   1 × {3,4}** Softmax Softmax 
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* indicate that the parameters do not include VGG16. ** indicate the output for first and second classification stage. 

3.1. ReLU layer 

Real-world data learned by ConvNet are usually non-negative linear values, so there is a need to 
introduce nonlinearity in the ConvNet. The Rectified Linear Unit (Relu) is by far the most commonly used 
activation function in deep learning 𝑓(𝑥) = max	(0, 𝑥) [38]. The Relu function returns the input directly if it 
receives any positive value x, but returns a zero for any negative value it receives [39]. Other functions like 
the saturating hyperbolic tangent (f(x) = tanh(x)) and sigmoid function 𝑓(𝑥) = ((1 + 𝑒*+))*, can be applied 
to increase the nonlinearity. ReLU is often preferred over them because of its ability to perform better than 
the other two [40] [64 ]. Having a value of 0 on the negative axis means that Relu networks will run faster. 

 

3.2. Pooling layer  

Pooling is a form of nonlinear downsampling applied in CNNs, and among the number of nonlinear 
functions available, max pooling is the most commonly applied. Generally, max-pooling aggressively down 
sample feature maps by taking the largest element from the rectified feature map. The idea behind the use of 
pooling is to reduce the size of the features, minimize the number of parameters and reduce the amount of 
memory applied in running the calculations. Pooling also reduces the amount of computation in the network, 
whiles contributing to controlling overfitting.  

4. Method 

Since the aim of this work is to classify arrhythmia, ECG data is obtained from Physio-Bank in Physio-
Net [32], which offers a huge collection of physiological signals. ECG data with AF, Normal, PAC, and PVC 
was obtained from the MIT-BIH Arrhythmia Database (MITDB) [41, 42] with a sampling frequency of 360 
Hz. Out of the 48 half-hours, ECG recordings from subjects in the MITDB, data from four subjects did not 
take part in the research because they used a pacemaker. The first channel is used, which is the lead II 
recording.  Among the 44 subjects from MITDB that took part in the research, eight of them were involved in 
AF classification, 39 took part in Normal, 27 took part in PAC classification, and 37 took part in PVC 
classification. However, the MITDB database lack data type to cover all the arrhythmia understudy, 
additional databases with AF, Noise, and VF data was also used from MIT-BIH Atrial Fibrillation Database 
(AFDB) [43], Creighton University Ventricular Tachyarrhythmia Database (CUDB) [44, 45], and MIT-BIH 
Malignant Ventricular Ectopy Database (VFDB) [46, 47] respectively. The sampling frequency used in AFDB, 
CUDB, and VFDB was 250 Hz. The MIT-BIH Atrial Fibrillation consists of 23 accessible long-term ECG 
recordings of subjects with atrial fibrillation. The CUDB incorporates 35 ECG recordings of subjects with 
ventricular tachycardia, ventricular flutter, and ventricular fibrillation. The VFDB incorporates 22 ECG 
recordings of subjects who experienced episodes of ventricular tachycardia, ventricular flutter, and 
ventricular fibrillation. More information about the databases is provided in Table 2. The table includes the 
databases used, the sampling frequency for each database, the total number of subjects that makes up the 
data in the database, and the number of subjects per database that took part in each type of arrhythmia. 

Initially, the window size is selected to convert the ECG to images. The normal ECG consists of a 
normal series of the P, Q, R, S, T waves as shown in Figure 3.  The normal sinus rhythm results from the 
occurrence of this pattern about 60-100 times per minute. Two-seconds segments are used to convert the 1D 
ECG signals to 2D images using recurrence plot, which helps provide a way to visualize the nature of a 
trajectory through phase space. The reason behind the selection is due to the fact that the number of R peaks 
to discriminate among the classes understudy is adequate. Figure 4 shows samples 2-second 1D ECG 
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segments for the six classes and their corresponding recurrence plot under study. They include data with (a) 
AF rhythm, (b) Normal beat, (c) PAC beat, (d) PVC beat, (e) VF, and (f) Noise respectively. 

 
Table 2. Summary of databases used for each label. The databases including MIT-BIH Atrial Fibrillation Database (AFDB), 
Creighton University Ventricular Tachyarrhythmia Database (CUDB), MIT-BIH Arrhythmia Database (MITDB), 
and MIT-BIH Malignant Ventricular Ectopy Database (VFDB) .     

Database Sample Hz Total 
Subject 

Number of Subjects / database 
AF N PAC PVC VF Noise 

AFDB 250 23 8 - - - - - 
CUDB 250 35 - - - - - 17 
MITDB 360 44 8 39 27 37 - - 
VFDB 250 22 - - - - 11 - 

 

 
Figure 3. The normal ECG beat showing the normal series of the P, Q, R, S, T waves. 

 
 

（a） 

  

（b） 

 

 

(c) 

 
 

(d) 

 

 

(e) 

  

(f) 

Figure 4. Typical ECG segments for the six classes that make up the 2-second segments and the corresponding recurrence 
plot. (a) 2-sec segment for AF, (b) 2-sec segment for Normal, (c) 2-sec segment for PAC, (d) 2-sec segment for PVC, (e) 2-
sec segment for VF, and (f) 2-sec segment for Noise. The difference in sample size between ECG segments is caused by 
the difference in sampling rate between databases. 
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4.1. Flowchart  

The real-time application of arrhythmia discrimination should be able to segregate between different 
types of arrhythmia without prior knowledge of the subject’s medical history. The chief purpose of the study 
is to develop an algorithm to be applied to devices and be able to detect and classify different types of 
arrhythmia in users. As shown in Figure 5, the designed flowchart illustrates the process of identifying the 
different types of arrhythmia. The classification procedure discriminates the data in two stages. Regardless of 
the type of arrhythmia, the two-second data segment of the ECG signal is converted to 2D using RP and input 
to the first stage. The first stage classifies the data between three classes, Noise, VF and Other segments. Noisy 
data can be difficult to deal with and the VF arrhythmia can be deadly, thus require immediate attention and 
discrimination in the first stage. The label Others in the first stage contains four different types of arrhythmia, 
which includes AF, Normal, PAC and PVC. If the algorithm detects either VF or Noise in the first stage, and 
more ECG data is available, it takes as an input the next 2-second segment of the ECG data to the first stage 
or otherwise ends the process. If classified in the first stage, the arrhythmia labeled Others goes to the second 
stage for further processing.  

The second stage discriminates the data labeled Others in the first stage, into AF Normal, PAC, and PVC. 
In the second stage, the same 2-second ECG segment is converted into RP again. Converting the ECG 
segments to RP in the second stage requires the application of the R peaks detection algorithm [47] since the 
Noise and VF data has been classified in the first stage. To make the 2-seconds segments of the second stage, 
the 1-second equivalent data segment is taken from the ECG signal before and after the detected R-peak. This 
is done to make it easier for the model to distinguish between classes. A detailed explanation for the process 
is provided in the seven steps below.  

The steps for the proposed method 
• Segmenting ECG signals into 2-sec segments; 
• Converting the 2-sec segments to recurrence plot for the first classification stage; 
• Training the classifier to separate labels between Noise, VF and Other segments; 
• Applying the R-peak detection algorithm on the labels classified as Others; 
• Taking 1-sec equivalent of data before and after the R-peak to make a 2-sec segment of the second stage; 
• Converting the 2-sec segments of the second stage to recurrence plot; 
• Training the classifier for the classification of AF, Normal, PAC and PVC. 
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Figure 5. Flowchart of the proposed approach to classify different types of arrhythmia segments. AF: atrial Fibrillation; VF: 
ventricular fibrillation; PVC: premature ventricular contraction; NSR: normal sinus, PVC premature atrial contraction, Noise. 

 
Figure 6. Typical signal samples for different classes. (a) Electrocardiogram (ECG) signal including different type of 
arrhythmia. (b-d) Zoomed-in non-overlapping segments (others) of the first stage. (e-g) Zoomed-in overlapping segments 
of the second classification stage of arrhythmia from (c). (e) Normal, (f) PVC, and (g) Normal. The black circle marks the 
beginning and end of each second stage segment. 

Figure 6 shows a representation of ECG data from one of the subjects that took part in the research. 
The figure summarizes the procedure followed when taking the ECG segments in preparation for the signal 
to be converted into the images for the first and second classification stage using RP method. (a) is a 30-
second representation of the subject’s ECG signal with different types of arrhythmia. The 2-second segment 
is applied on the data to prepare it for the application for the first stage RP as marked by the dotted lines. 
The different colors represent different segments. The application of the 2-second segments in (a) results in 
different classes as represented in (b), (c), and (d). If classified as Others in the first stage, the R peak 
detection algorithm begins the process of preparing the data for the second stage. After the detection of the 
R peak, one-second equivalent of data is taken before and after the R peak to make a 2-second segment of 
the second stage. As shown in Figure 6, if the first segment is classified as Others, the R peak detection will 
not be applied on the first segment due to edge effect. When applied to the next segment (c) of the first 
stage, the first segment for the second-stage (e) will have data from both (b) and (c) as shown by the blue 
dotted lines. The starting and end time for each data segment is marked by a circle (O) on each segment. It 
is worth mentioning that it is possible that one segment can have more than one arrhythmia type. To avoid 
confusion, the segment is labeled using the annotation of the beat in the detected R-peak. 

4.2. Training on supercomputer  
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Training CNN can be very difficult and time-consuming, so high computing power is required for both 
accuracy and time-saving. Training CNNs with CPU is almost impossible depending on the size of the 
network and the data required. However, employing GPUs in training CNNs has a great effect on the desired 
accuracy and the time required for the process. Latter-days GPUs are very efficient in image processing and 
computer graphics manipulation for large data due to their parallel structure.  Nvidia Tesla K40 GPU is used 
hosted in a supercomputer provided by Lenovo for testing the first stage of the classification. The 
supercomputer provided us with access to a GPU that was able to achieve a very appealing computational 
efficiency which allows training a model with 250 epochs within 8 hours. For the second classification stage, 
2x Nvidia Tesla V100 is used with 32G vRam from Lenovo after they upgraded their supercomputer which 
allowed us to train one cross-validation in each GPU at a time and further reduce the computation time. 

4.3. Classification metrics 

The classification evaluation of the proposed ECG arrhythmia discrimination is validated in six ECG 
labels from the MIT-BIH arrhythmia database including Normal, AF, PAC, PVC, Noise and VF samples. The 
labels are randomly selected into three subsets that include training, validation, and testing. Three measures 
are used to evaluate the performance of the proposed classification method, which includes sensitivity, 
positive predictive value (PPV), and Accuracy and defined in equations (3)-(5) below. The positive predictive 
value is the percentage of the total relevant results that are correctly classified, which is the number of 
correctly predicted labels divide by the total number of labels. On the other hand, sensitivity is the percentage 
of the results that is relevant, which is the number of correctly predicted labels divide by the number of 
generated labels. The accuracy is calculated as the sum of the correctly classified data divided by the total 
number of data. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 × 100% (3) 

𝑃𝑃𝑉  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 × 100%	
(4) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 × 100%	
(5) 

where TP is the true positive rate, FN is the false-negative rate, TN is the true negative rate, and FP is the false 
positive rate. 

5. Results 

5.1. Choosing the optimum number of epochs 

The convolutional network training procedure implemented in (Karpagachelvi et al., 2010) is adopted. 
A batch size of 128 is set throughout the training of the two stages. The first classification stage involves the 
classification of images into one of the three classes mentioned. A total of 29217 images are used for the first 
classification stage; 20531 Others, 4256 Noise, and 4430 VF. The second classification stage involves the 
classification of images into AF, Normal, PAC, and PVC. On the other hand, 19640 images are used in the 
second stage, from which 6488 from AF, 7228 for normal, 2559 for PAC and 3365 for PVC.  Each class of 
images is trained and tested together, and performance evaluation is measured based on the accuracy of the 
predicted results. Two measurements have usually reported loss and accuracy. An image is correctly 
classified if the predicted class is the same as the label. To find the best model to use with the classification, 
the number of epoch is varied and the optimum is selected by comparing the performances. Number of 
epochs for training started at 100 epochs to 250 epochs and 350 epochs for first and second classification stage 
respectively. We used an arithmetic progression sequence with a common difference of 50 epochs to help us 
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find the optimum number of epochs. This section also shows data imbalance in the first stage, thus the reason 
for training only up to 250 epochs in the first stage.  

Table 3. Evaluation of first stage model using the training, validation and testing accuracies to choose the optimum 
number of epochs 

Epoch 
 Training    Validation   Testing  

Alex VGG16 VGG19 Alex VGG16 VGG19 Alex VGG16 VGG19 

100 98.06% 96.91% 97.55% 94.45% 93.70% 94.21% 91.09% 87.35% 81.01% 
150 99.16% 98.42% 97.01% 95.01% 94.04% 93.94% 89.20% 84.95% 87.93% 
200 99.62% 99.63% 99.29% 95.39% 93.81% 94.17% 92.61% 81.08% 83.55% 
250 99.47% 99.67% 99.71% 95.20% 93.92% 94.73% 91.83% 89.92% 84.21% 

The bold numbers suggest the optimum number of epochs using the testing accuracy  

5.1.1. Results for finding the optimum number of epochs for the first stage 

Table 3 shows the performance evaluation of the models used to find the number of epochs that have a better 
classification performance. A comparison of the sensitivity and the positive predictive value for the number 
of epochs used is shown in Table 4. The highest performance model is selected for the first stage and cross-
validation. The results for training and testing using a different number of epochs suggests that 200 epochs 
are the preferred optimum number of epochs to be used in the first classification stage using AlexNet model. 
The 200 epochs give better training, validation and testing performance in comparison with the 100, 150, and 
250 epochs tried. On the other hand, results for testing VGG-16 and VGG-19 using different number of epochs 
suggests that 250 and 150 epochs are the preferred optimum number of epochs, with testing accuracy of 
89.92% and 87.93% respectively. Comparison between architectures suggest that AlexNet is the preferred 
model architecture for the first classification stage of arrhythmia giving a better performs than the other two 
architectures (Table 3).  

5.1.2. Results for finding the optimum number of epochs for the second stage 

Table 5 shows the performance of the models used to find the number of epochs that performs better in 
the second classification stage. A comparison of the sensitivity and the positive predictive value for the above-
varied epochs is shown in Table 6. The model with the highest performance is chosen for the second 
classification stage and did cross-validation. From the results in Table 5, it is clear that 150 epochs for AlexNet 
are the optimum number of epochs since it gives the highest testing accuracy over the other number of  

Table 4. Evaluation of first stage model using the sensitivity and PPV to choose the optimum number of epochs. 
Sensitivity 

Epoch 
AlexNet VGG16 VGG19 

Noise Others VF Noise Others VF Noise Others VF 
100 97.50% 94.70% 48.02% 99.22% 87.65% 63.28% 99.22% 79.92% 57.63% 
150 57.86% 99.93% 97.65% 97.79% 84.68% 63.84% 96.56% 86.84% 81.92% 
200 68.35% 99.68% 96.18% 99.06% 80.28% 55.65% 99.84% 82.86% 60.17% 
250 65.74% 99.62% 94.69% 97.50% 92.14% 56.78% 99.37% 84.03% 58.47% 

PPV 
100 64.63% 99.22% 100% 55.66% 99.93% 95.73% 45.25% 99.88% 97.14% 
150 99.53% 89.72% 77.36% 52.17 % 99.73% 86.92% 60.55% 100.00% 76.12% 
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200 97.65% 91.56% 92.64% 45.87% 99.88% 89.55% 49.23% 99.92% 94.67% 
250 96.09% 93.79% 79.23% 63.06% 99.48% 86.27% 50.12% 99.88% 95.39% 

The bold numbers suggest the optimum number of epochs using the mean for specificity and the positive predictive value  
Table 5. Evaluation of second-stage model using the training, validation and testing accuracies to choose the optimum 
number of epochs 

# of 
Epochs 

Training Validation Testing 
Alex VGG16 VGG19 Alex VGG16 VGG19 Alex VGG16 VGG19 

100 99.53% 98.80% 98.88% 99.26% 97.34% 97.45% 98.11% 86.86% 94.09% 
150 99.77% 99.20% 99.11% 99.44% 97.32% 96.96% 98.53% 87.15% 95.13% 
200 99.58% 99.33% 99.23% 98.20% 97.42% 97.45% 98.36% 96.03% 93.88% 
250 99.70% 99.52% 99.47% 98.47% 97.46% 97.20% 98.11% 96.03% 95.92% 
300 99.70% 99.55% 99.34% 98.12% 97.48% 97.12% 98.23% 90.83% 92.61% 
350 99.74% 99.57% 99.58% 98.34% 97.17% 97.56% 98.44% 91.52% 89.70% 

  The bold numbers suggest the optimum number of epochs using the testing accuracy  

epochs. For VGG-16 and VGG-19, 200 and 250 epochs respectively give the highest testing accuracy for both 
architectures, thus can be referred to as the optimum number of epochs for both architectures. The 
AlexNetmodel architecture give a better prediction alternative for the second classification stage. This is 
evidence from the results of the optimum number of epochs presented in Table 5. 

Initially, AF data is utilized from AFDB together with Normal, PAC and PVC from MITDB for the second 
classification stage. After carefully considering that the MIT database also contains data with AF and the fact 
that the AF from AFDB (AF_AFDB) is more serious than that from MITDB (AF_MITDB), AF images are tested 
from MITDB with the model trained only on AF images from AFDB. This was done to test if AF_MITDB will 
affect the accuracy of the model.  Upon testing the model, a reduced testing accuracy of 63% is obtained on 
the AF_MITDB, which proved the need to include AF_MITDB on the training set. After adding the AF data 
from MITDB on the training set, and five classes on the testing sets, which included Normal, AF_MITDB, 
AF_AFDB, PAC, and PVC.  

In a real-life scenario, types of arrhythmia are not limited to exactly the same kind that is experienced in 
every individual. To see if the model that is trained with data from a few subjects in the MITDB can perform 
well to any individual that is experiencing the same kind of arrhythmia, the performance of the model is 
evaluated by testing it on all the patients in the MITDB. Since the MITDB contains a large number of classes, 
some of which are not part of the study, specific focus is given to the performance of the model based on the 
classes of interest. Finally, the second stage is trained once more using part of the data in every patient in the 
MITDB database. Out of the 48 subjects in the MITDB, data from 44 subjects are used to train and test the 
second stage of arrhythmia. Four subjects including mitdb102, mitdb104, mitdb107, and mitdb217 did not 
take part in the study because they used a pacemaker. 

5.2. Performance evaluation 

This section summarizes the performance evaluation of the classification using the results obtained when 
training and testing the two stages. Data for the training, validation, and testing were distributed at 70%, 15% 
and 15% of the total data respectively. The testing results are used to evaluate the performance of the models 
of the two stages. The confusion matrix table is used to chart the predicted vs actual results of the 
classification. The confusion matrix table describes an output of negative vs positive outcome of the testing 
results. Table 7 shows the summary of the training time, and the memory requirements of the three 
architectures for the arrhythmia classification based on ECG RP images. The AlexNet model offers a better 
alternative in terms of computational cost and the memory requirements than both VGG models. Although 
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AlexNet is preferred in this study, it is hindered in small hardware because it is still needed high 
computational cost. In this regard, high performance hardware accelerators are needed for reducing both 
execution time, learning accuracy and power consumption [72]. 

 
 

Table 6. Evaluation of second-stage model using the sensitivity and PPV to choose the optimum number of epochs 
Sensitivity 

Epoch  
ALEX VGG16 VGG19 

AF Normal PAC PVC AF Normal PAC PVC AF Normal PAC PVC 

100 95.92% 99.08% 94.72% 99.40% 91.93% 75.37% 77.84% 98.08% 95.09% 92.10% 86.54% 98.19% 

150 97.41% 99.89% 96.57% 99.37% 90.02% 78.62% 76.78% 97.98% 95.01% 95.17% 86.54% 98.49% 

200 97.61% 99.44% 97.55% 98.11% 95.26% 99.00% 85.75% 97.28% 92.35% 92.85% 88.13% 99.19% 

250 97.09% 99.33% 97.06% 98.43% 91.18% 72.80% 73.61% 97.68% 96.59% 95.01% 90.50% 98.29% 

300 98.85% 98.76% 97.06% 95.60% 95.42% 86.77% 81.53% 96.37% 86.02% 95.01% 88.13% 99.40% 

350 98.13% 99.66% 97.55% 96.54% 95.42% 86.77% 81.53% 96.37% 96.42% 78.04% 82.85% 98.29% 

PPV 

100 98.29% 98.67% 93.73% 97.43% 78.48% 97.11% 86.76% 88.94% 90.93% 98.14% 96.19% 92.85% 

150 97.41% 99.89% 96.57% 99.37% 77.67% 98.03% 97.00% 86.94% 93.68% 96.46% 97.62% 94.49% 

200 97.61% 99.44% 97.55% 98.11% 94.01% 95.28% 99.39% 98.37% 94.31% 97.72% 90.27% 90.61% 

250 97.09% 99.33% 97.06% 98.43% 74.41% 98.54% 92.08% 87.22% 92.29% 97.44% 98.00% 97.99% 

300 98.85% 98.76% 97.06% 95.60% 82.64% 96.93% 96.56% 96.47% 97.73% 93.91% 89.30% 87.49% 

350 98.13% 99.66% 97.55% 96.54% 82.64% 96.93% 96.56% 96.47% 80.10% 99.26% 96.32% 92.24% 

The bold numbers suggest the optimum number of epochs using the mean for specificity and the positive predictive value  

Table 7. Training time and memory requirements of the three CNN architectures on the arrhythmia 
classification using 150 epochs 

 AlexNet VGG16 VGG19 
Time (hrs) 5.37 7.6 7.75 
Memory (MB) 228 525 545 

5.2.1. Evaluation of the first classification stage 

The evaluation of the first classification stage is based on the accuracy of the training, validation, and 
testing of the model. The accuracy of the testing results, the PPV and the sensitivity of the model are calculated 
from the predicted results using the classification matrices table. Table 8 illustrates the evaluation of the first 
stage cross-validation using the optimum number of epochs in AlexNet. The evaluation involves the training, 
validation and testing accuracy for the optimum number of epochs obtained earlier after the training and 
testing process. The first columns represent the cross-validation number and the rest of the columns are the 
accuracies for training, validation, and testing respectively. The last row gives the mean and standard 
deviation for the accuracy of the training, validation, and testing which show 99.7 ± 0.08%, 97.60 ± 0.25%, and 
95.30 ± 1.27% respectively. Table 9 gives the evaluation of the performance of the first stage using the 
sensitivity and the PPV for the fivefold cross-validation. The evaluation also includes the mean and standard 
deviation for the sensitivity and PPV respectively. The mean and standard deviation of the sensitivities for 
the first classification stage are 94 ± 2.04%, 92.3 ± 3.62%, and 97.6 ± 0.88% for VF, Noise, and Others. The results 
for the mean and standard deviation of the PPV are 93.4 ± 2.82%, 84 ± 5.39%, and 99.9 ± 0.06% for VF, Noise, 
and Others respectively 

5.2.2. Evaluation of the second classification stage 
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Table 10 illustrates the evaluation of the fivefold cross-validation of the second classification stage. It 
shows the, accuracy of the training, validation, and testing of the fivefold cross-validation for the second  

Table 8. The evaluation of the first stage of arrhythmia classification using the training, validation and testing results of 
the fivefold cross-validation. 

Cross validation Training Validation Testing 
CV_1 99.79% 97.84% 93.35% 
CV_2 99.60% 97.32% 96.10% 
CV_3 99.78% 97.58% 94.85% 
CV_4 99.74% 97.49% 96.59% 
CV_5 99.68% 97.91% 95.68% 

Mean ± SD 99.7 ± 0.08% 97.6 ± 0.25% 95.3 ± 1.27% 

classification stage using the optimum number of epochs obtained earlier in the training and testing process 
Foe AlexNet model. The first columns represent the cross-validations number and the rest of the column 
represents the accuracies for training, validation, and testing respectively. The last row gives the mean and 
standard deviation for the accuracy of the training, validation, and testing with 99.61 ± 0.09%, 98.75 ± 0.41%, 
and 98.41 ± 0.11% respectively. 

Table 9. Shows the evaluation of the performance of the first stage using the PPV and the sensitivity for the fivefold cross-
validation. 

Labels CV_1 CV_2 CV_3 CV_4 CV_5 Mean ± SD 
Sensitivity 

VF 90.70% 95.85% 94.68% 95.18% 93.36% 94 ± 2.04% 
Noise 95.77% 86.38% 92.25% 92.25% 94.60% 92.3 ± 3.62% 
Others 96.63% 98.20% 98.44% 97.90% 96.59% 97.6 ± 0.88% 

PPV 
VF 95.35% 88.50% 94.06% 93.78% 95.25% 93.4 ± 2.82% 

Noise 77.13% 90.00% 87.14% 86.00% 79.64% 84 ± 5.39% 
Others 99.95% 99.80% 99.90% 99.85% 99.90% 99.9 ± 0.06% 

Table 10. Illustrates the evaluation of the fivefold cross-validation of the second classification stage. 
Cross 

validation Training Validation Testing 

CV_1 99.77% 99.44% 98.53% 
CV_2 99.53% 98.72% 98.53% 
CV_3 99.61% 98.63% 98.32% 
CV_4 99.58% 98.38% 98.32% 
CV_5 99.56% 98.58% 98.36% 

Mean±SD 99.61 ± 0.09% 98.75 ± 0.41% 98.41 ± 0.11% 

Table 11 gives the evaluation results of the fivefold cross-validation for the second classification stage 
using the sensitivity and the PPV method. The evaluation includes results of cross-validation for each of the 
four labels and the mean and standard deviation for the sensitivity and PPV of the fivefold cross-validation 
respectively. The mean and standard deviation for the sensitivity of the fivefold cross-validation of the second 
classification stage is 97.81 ± 0.01%, 99.44 ± 0.00%, 96.28 ± 0.02%, and 97.99 ± 0.01% for AF, Normal, PAC and 
PVC respectively. The mean and standard deviation of for the PPV of fivefold cross-validation gives a 98.75 
± 0.00%, 99.19 ± 0.00%, 96.98 ± 0.01% and 95.53 ± 0.01% for AF, Normal, PAC and PVC respectively.  

5.3. Evaluation of the approach in preparation for real-life application 
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The classification method is used to prepare for real-life application by evaluating the performance of the 
two-classification stage on new data. 2800 ECG data segments from the six labels are used, two in the first 
stage and four from the second stage. 400 ECG data segments per label are applied, which includes Normal,  

Table 11. Sensitivity and PPV for the second stage cross-validation. 
Labels CV_1 CV_2 CV_3 CV_4 CV_5 Mean ± SD 

Sensitivity 
AF 97.09% 97.71% 98.23% 97.82% 98.23% 97.8 1± 0.00% 

Normal 99.33% 99.44% 99.33% 99.78% 99.33% 99.44 ± 0.00% 
PAC 97.55% 97.55% 94.61% 94.61% 97.06% 96.28 ± 0.02% 
PVC 97.80% 99.06% 98.11% 98.11% 96.86% 97.99 ± 0.01% 

PPV 
AF 98.84% 99.26% 98.34% 98.85% 98.44% 98.75 ± 0.00% 

Normal 99.21% 99.10% 99.10% 99.00% 99.55% 99.19 ± 0.00% 
PAC 94.31% 98.03% 97.97% 98.47% 96.12% 96.98 ± 0.02% 
PVC 95.11% 95.17% 96.30% 94.83% 96.25% 95.53 ± 0.01% 

 
AF_AFDB, and AF_MITDB, PAC, PVC, Noise, and VF.  Since there are no enough ECG segments to cover 
the preferred amount of segments, part of the segments is included in the training process for other labels, 
which included PAC; it is decided to choose random subjects to cover the set number of segments. The ECG 
signals are applied to the first stage algorithm. The first stage algorithm discriminates the ECG signal into 
two-second segments, converts them to recurrence plot, and tests them using the best model of the first stage 
cross-validation. The first stage model discriminates the ECG segments into one of the first stage labels. If the 
segments were predicted as noise or VF, the algorithm takes the next ECG segment into the first stage, 
whereas if the segment is predicted as others, the algorithm sends the segment to the second stage. In the 
second stage, the algorithm detects the R-peak and takes one-second data before and after the R-peak and 
converts it to recurrence plot to classify it between Normal, AF, PAC or PVC. After classifying the segment 
into one of the labels in the second stage, the algorithm goes back to take as an input the next two-second 
segment of the ECG. If there are no segments left, the algorithm terminates the process.  

To improve the PPV for noise, the voting method is used to test the results of the first stage and the best 
model for the second stage. The voting method in testing the first stage allows the application of the five 
models of the cross-validation to vote for the best likely to be a classified label in the first stage. After advice 
from the Food and Drug Administration [48], the PPV for noise and VF are improved by merging the results 
from VF and Noise since they are both discriminated in the first stage. Results of AF_MITDB and AF_AFDB 
are merged to have one AF label. Table 12 gives the evaluation of the three approaches in a real-life scenario. 
The evaluation includes the results of the sensitivity and PPV for the best models of the first stage and the 
second stage. It also gives the evaluation of the results after applying the voting method in the first stage and 
the best model in the second stage. Lastly, it gives the results of the evaluating of the two stages after merging 
the labels including merging VF and Noise in the first stage. The results give the testing accuracy of 85.29 % 
for the best model. The results of the sensitivity are 96.50%, 90.38%, 75%, 99.50%, and 72.63% for Normal, AF, 
PAC, PVC, and VF/Noise respectively. The results of the PPV are 92.79%, 87.53%, 95.24%, 94.31%, and 71.05% 
for Normal, AF, PAC, PVC, and VF/Noise respectively. The testing accuracy after applying the voting method 
in the first stage was improved to 88.28% and sensitivities are 96.50%, 87.75%, 91.25%, 96.50%, 99.25%, and 
73.25% respectively. The PPV gives 93.92%, 98.08%, 96.74%, 94.98%, and 69.15% respectively. The 
classification metrics after merging the noise with VF from the first stage gives an improved testing accuracy 
of 92.96%. The sensitivities become 97.25%, 85%, 96.5%, 98.75%, and 94.13% for Normal, AF, PAC, PVC, and 
VF/Noise respectively. The PPV become 93.51%, 97.7%, 96.26% 94.72%, and 86.55% for Normal, AF, PAC, 
PVC, and VF/Noise respectively. 
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The MITDB data was annotated by a slope sensitive QRS detector for normal beats, and further 
annotated by two cardiologists for other additional labels like those that could not be identified by the detector 
and included rhythms, comments, and signal quality. The MITDB contains more labels than were involved 
in the study including Aberrated atrial premature beat (a), Nodal (junctional) premature beat (J), 
Supraventricular premature beat (S), Nodal (junctional) escape beat (j), Left bundle branch block (L) and Right  

Table 12. Evaluation of the second stage model using the best model, voting method between the models of the fivefold 
cross-validation and merging the VF and noise label. The evaluation gives sensitivity and PPV. 

Method Normal AF PAC PVC VF/Noise Normal AF PAC PVC VF/Noise Accuracy 
Sensitivity PPV  

Best model 96.50% 90.38% 75.00% 99.50% 72.63% 92.79% 87.53% 95.24% 94.31% 71.05% 85.29% 
Voting 96.50% 89.50% 96.50% 99.25% 73.25% 93.92% 98.08% 96.74% 94.98% 69.15% 88.28% 

Merging 
VF& Noise 

97.25% 85.00% 96.50% 98.75% 94.13% 93.51% 97.70% 96.26% 94.72% 86.55% 92.96% 

bundle branch block (R) and Fusion of paced and normal beat (f) to mention just a few. The same performance 
evaluation procedures were carried out to the second stage analysis of arrhythmia to validate the algorithm 
before real-life application in electronic devices. This time the second classification stage is tested using the 
MITDB database without labels and cross-checked the results of the classification with the annotation types 
provided in Physio-Net. Since the MITDB contains a number of labels for the ECG, some of which are not 
among the labels included in the study, data with labels that were not part of the study are ignored. Upon 
evaluating the performance of the second classification stage by testing the second stage model on the MITDB 
database, the model performed poorly on the segments that had Left bundle branch block (L) and Right 
bundle branch block (R) as part of the Normal label. There are four subjects in MITDB that have L labels which 
include mitdb109, mitdb111, mitdb207, and mitdb214 and there are six that contain R labels with mitdb118, 
mitdb124, mitdb207, mitdb212, mitdb231, and mitdb232 among them. 

To improve the performance, the Left Bundle Branch Block and the Right Bundle Branch Block are 
included as independent labels in the training sets to have six labels. The classification evaluation for the 
second stage after having tested the model using the MITDB database with six labels gives a gross, which is 
used to calculate the sensitivity, PPV and the accuracy of the classification. Calculating the gross involves 
summing up the predicated results of all the labels separately and finding the sensitivity, PPV and the testing 
accuracy of the labels. The confusion matrix for the gross is given in Table 13. Table 14 gives the sensitivity 
and the PPV of the gross. The sensitivities are 79.83%, 98.97%, 96.35%, 95.81%, 95.10%, and 99.24% for AF, L, 
Normal, PAC, PVC, and R respectively. The PPVs are 94.98%, 91.06%, 98.88%, 64.84%, 91.37%, and 87.81% 
for, AF, L, Normal, PAC, PVC, and R respectively. The testing accuracy of the classification is 95.10%.  

Table 15 compares the results of the evaluation of the classification before and after introducing the Left 
and the Right bundle branch blocks in the training set. The table gives the results of the testing using the 
confusion matrix used to calculate the gross. For comparison purposes, the results for L and R labels are 
merged with Normal labels to have the same number of labels in the second stage. The evaluation of the 
before including the L and R labels are 86.79%, 87.83%, 97.68%, and 97.31% for AF, Normal, PAC, and PVC 
respectively, whiles the sensitivity after including the L and R labels as part of the normal label were found 
second stage using the whole MITDB database includes the calculation of the Gross from the confusion 
matrix. Table 16 gives the comparison of the sensitivity and PPV for the evaluation of the second classification 
stage using the MITDB before and after including the L and B label as part of the Normal label. The sensitivity  

Table 13. The gross to evaluate the performance of the second stage using the six labels after including L and R labels in 
the training set. 

Actual 
Predicted AF L Normal PAC PVC R 
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AF 7500 1 288 21 82 4 
L 374 7975 270 5 126 8 

Normal 622 0 62151 31 52 2 
PAC 439 0 863 2449 19 7 
PVC 347 1 223 13 6546 34 

R 113 81 709 37 58 7188 

Table 14. Performance of the second stage using sensitivity and PPV of the six labels of the MITDB data 
Evaluation AF L Normal PAC PVC R Accuracy 

Sensitivity 79.83% 98.97% 96.35% 95.81% 95.10% 99.24% 
95.10% 

PPV 94.98% 91.06% 98.88% 64.84% 91.37% 87.81% 

Table 15. Confusion matrix for the gross of the testing data from the whole MITDB database before and after including l 
and r in the training data 

Actual 
Predicted AF Normal PAC PVC 

Training without L and R 
AF 8304 2786 99 92 

Normal 557 68316 62 74 
PAC 374 5355 2481 28 
PVC 333 3093 7 6698 

Training with L and R 
AF 7921 1988 54 95 

Normal 916 76552 83 271 
PAC 385 826 2441 18 
PVC 346 242 8 6512 

 
Table 16. Comparing the performances of stage 2 using sensitivity and PPV of the four labels of the MITDB data 

Label Sensitivity PPV Sensitivity PPV 
Training without L and R Training with L and R 

AF 86.79% 73.61% 82.79% 78.75% 
Normal 85.88% 99.00% 96.16% 98.37% 

PAC 93.66% 30.12% 94.39% 66.51% 
PVC 97.19% 66.11% 94.43% 91.62% 

Accuracy 86.97% 94.70% 

to be 82.79%, 98.22%, 96.10%, and 94.61% respectively. The PPVs before including L and R labels are 87.08%, 
99.06%, 29.72%,and 88.65% for AF, Normal, PAC and PVC respectively, whiles the PPVs for the classification 
after including the L and R labels are 95.28%, 98.41%, 65.69%, and 91.45% for AF, Normal, PAC, and PVC 
respectively. The testing accuracy for the second classification stage before and after introducing the L and R 
labels as part of the Normal label are 88.65% and 96.41% respectively. 

6. Discussion 

This paper introduces an approach for ECG arrhythmia classification that can be used in electronic 
devices with no prior feature extraction on the ECG signal. Although RP is one form of feature extraction, 
it only shows the image not the details and mathematical calculation of the features. This extensive 
approach utilizes data from four databases accessible from the Physio-Net Physio-Bank archive, which 
includes the AFDB, CUDB, MITBD, and VFDB [41, 46]. It is believed that making use of different databases 
and making sure that almost every subject in the databases takes part in the work will strengthen the ability 
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of the classifier to function properly in real-life scenarios. The other reason is this; more than one database 
is used due to the fact that the MITDB does not include all the arrhythmia under this study. 

Past research in this field applied short and long duration ECG signal segments successfully, ranging 
between 0.33s to 10s ECG signal segments [55,67,69,70]. To our knowledge, there is no prior research in the 
study that focuses on the analysis of 2-second ECG segments. We chose the short duration ECG signal that 
focuses on the same segment length (2s) throughout the classification. The reason for the 2-ssecond segment 
was in consideration to some of the features in the types of arrhythmia found in the structures of ECGs [65]. 
We aimed at applying the duration of a segment short enough to expose most of the features that are 
required to discriminate the different types of arrhythmia under study. AF and VF [71], which form an 
essential part of the arrhythmia under study, are annotated using rhythms and require a few more beats to 
be identify from the ECG signals, whiles others (Normal, PAC and PVC) are annotated using beats and can 
be discriminated in one beat. As mentioned in section 1, the normal heart rate for a healthy person is 
between 60-100 beats per minutes. The 2-second segment is enough to expose about three R-peaks in each 
segment, which is enough to classify between the types of arrhythmia that have rhythms of AF and VF on 
ECG signals. 

This work approach is based on two-stage classification, which uses a segment-by-segment 
classification in the first stage and a beat-by-beat classification with an overlapping segment in the second 
stage. The reason for not using a direct classification approach in this work was the necessity to apply the 
R-peak detection algorithm to strengthen the ability for the model to effectively discriminate between 
different types of arrhythmias. However, since VF and Noise ECG signals does not always have R-peak, 
we designed the segment-by-segment classification in the first stage to discriminate the two arrhythmia 
from the rest before we applied the R-peak detection algorithm in the second stage. Another reason was 
that we wanted to design a model that will be able to be applied to patients without prior knowledge of 
the type of arrhythmia they are experiencing. On the other hand, direct approaches of one stage are mostly 
designed for specific arrhythmias. 

As mentioned in the previous section, the proposed approach uses RP to represent the ECG segments 
in the classification [32]. The first stage uses segment-by-segment approach to convert the ECG signal to 
RP while the second stage used beat-by-beat approach. Since there are not enough segments for balanced 
data set for all the labels of arrhythmia under study. We took overlapping windows for the ECG segments 
of the second stage to have near-balanced data sets. Occasionally, some record of ECG signals includes 
other arrhythmia in the same segment as seen in Figure 6. This is because the 2-second segments are big 
enough to allow a number of beats in one segment depending on the nature of the signal in the subject. In 
many cases, we could not avoid that due to insufficient data in other arrhythmia. As much as having 
overlapping windows seems like a challenge on the selection of the window size, it also presents some 
positive aspects. It allows the model to give predictions to every beat in the second classification stage of 
arrhythmia. Another positive thing about having an overlapping window that contains more than one type 
of arrhythmia in one segment is that it strengthens the ability of the model to classify similar case if present 
in the subject’s ECG signal.  The approach takes 2-second ECG segments, converts it to RP, and classifies it 
in two stages. The fact that the approach takes two-second segments and that this is no time lag between 
each data segment shows that there is less classification time needed compared to other methods [49].  

This paper applies data reconstruction method (RP) to prepare the data for training, whiles also 
reducing the need for complex feature processing and calculations. We tried different CNN architectures 
to explore the reliability and effectiveness of this approach. Three CNN architectures were compared in 
this work with the usage of GPU environment, which help reduce the computation time. However, since 
this main focus was not on designing a new CNN architecture, we modified existing CNN model [28] [64] 
to adapt to the ECG arrhythmia classification in this work. The AlexNet model presents a better 
classification accuracy compared to the other two models applied earlier in the study (Tables 3 and 5). For 
that reason, we chose the AlexNet model for both the first stage and the second classification stage. Table 
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7 provides more evidence that AlexNet is a preferred architecture for the classification of arrhythmia in the 
study. It shows that AlexNet require less training time and less memory for the storage of the model which 
reduces the cost of acquiring costly devices. The results from the research also shows that CNN applied on 
RP based ECG segments provides an efficient approach in arrhythmia classification field, with a mean for 
the second stage cross validation accuracy of 98.41%± 0.11% (Table 10).  From the second stage evaluation 
in Table 15, it is worth mentioning that the classifier does well in a balanced number of data. The sensitivity 
and PPV for the balanced data in the training sets provide accuracies that are above 85% before and after 
including the L and R labels as part of the normal label except for the PAC.  PAC label provided lower PPV 
accuracies of 29.72% and 65.69% before and after introducing the L and R label respectively. The reason 
behind the low accuracies is due to the very low number of PAC labels available in the databases.  

7. Conclusions 

In this paper, an effective way of converting 1D ECG signals is proposed using RP, method to 2D 
segments to enhance arrhythmia classification using a convolutional neural network. Two-second ECG 
segments were converted into recurrence plot in the first classification stage. The second stage applies the 
R-peak detection algorithm on the two-second segments and converts the ECG to recurrence plot to 
improve the classification. 

To evaluate the classification, part of the data was set apart for discriminating the two types of 
arrhythmia in the first stage and the entire MITDB database was used to discriminate between the four 
types of arrhythmia in the second stage. The average testing accuracy for the fivefold cross-validation is 
95.3 ± 1.27% and 98.41 ± 0.11% for the first and second stage respectively. The classification results 
performed better compared to the authors' previous work and other works that use CNN to discriminate 
between ECG abnormalities using 1D ECG data [50-54]. This confirms that converting the 1D ECG signal 
to 2D segments provides deep learning models with better access to learn the important features of the 
ECG data. This work also had better performance than [67-69], and the same average performance as [55], 
which used 2D ECG segments to classify arrhythmia despite the fact that they used larger ECG segments 
and [55] used more classification stages than the current work. The results of this work provide evidence 
that converting ECG data to images using recurrence plot plays a vital role in improving the accuracy of 
arrhythmia classification.  

While the aim of developing an algorithm is expressed to provide a comprehensive arrhythmia 
discrimination approach for electronic devices, this approach encountered three limitations that influence 
the effectiveness of the pursuit. First, the data imbalance of the MITDB database is widely used in similar 
studies, and the number of arrhythmia types is not equally distributed in the database. PAC episodes for 
instance in Table 11, are relatively small in numbers compared to the rest in this study. Second, different 
forms of annotation of AF episodes are annotated using rhythm while the others are annotated using beat-
by-beat annotation. As shown in Table 11, the short duration classification for AF is not enough to 
discriminate AF effectively from the rest of the arrhythmia types. Third is the computational cost and 
memory requirement. In future work, we are interested in applying transfer learning [66], which can 
provide better classification accuracies using relatively small amount of data compared to training from 
scratch. This will help us in maintaining the balance between datasets in all the classes. We are also 
interested in adding the third classification stage that will introduce long duration ECG segments for a 
better discrimination between AF and PAC [67]. To address the concerns of high computational cost and 
memory requirement, which limits the deployment of effective wide and deep models in resource-
constrained environments, we are interested in applying different architecture designs like GoogleNet and 
ResNet that are capable of overcoming the shortcomings of the proposed. 
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