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Abstract  

Background: Spasticity is a common complication of stroke. Effective spasticity management can improve 

patients' recovery efficiency and reduce patients' pain. The present clinical spasticity rating scale exhibits 

subjectivity and a ceiling effect, which makes it difficult to evaluate spasm objectively and to clinically analyze 

the pathological mechanism of spasticity. The sensor-based quantitative evaluation method is an effective 

substitute for the clinical spasm rating scale, but currently, it mainly focuses on the spasm evaluation of passive 

motion. The study of spasmodic state under active exercise can provide a basis for treatment and rehabilitation 

training, but the evaluation method of spasmodic state under active exercise has not yet been established. 

Therefore, we combine inertial measurement unit (IMU) and surface electromyography (sEMG) to test the 

feasibility of assessing spasticity patterns in stroke patients during voluntary movement. 

Methods: Nine stroke patients with varying degrees of spasticity and four healthy subjects performed isometric 

elbow exercises. sEMG and kinematics signals were recorded for all participants. The Empirical Mode 

Decomposition (EMD) algorithm and double threshold algorithms were used to separate sEMG of involuntary 

muscle activation from voluntary activation. Then, feature extraction and feature fusion were performed. Four 

common machine learning algorithms are used to monitor and evaluate spasticity patterns. The validity of the 

proposed method is verified by comparing the classification accuracy of four machine learning models. 

Results: Cross-validation yielded high classification accuracies (F1-score>0.88) for all four machine learning 

classifiers in assessing spasticity patterns. The highest detection performance was obtained using the Random 

Forest algorithm (average accuracy = 0.979; macro-F1 = 0.976). 

Conclusions: We present a novel method for assessing post-stroke spasticity based on voluntary movement and 

machine learning. Good classification performance verifies the feasibility of evaluating spasticity patterns by our 

method. Reliable classification accuracy achieved by the machine learning algorithms indicated the potential to 

evaluate spasticity patterns using IMU and sEMG when stroke survivors perform voluntary movements. 

Keywords: Spasticity, Data Fusion, Machine Learning, Classification 
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Background 

Spasticity is an abnormal muscle tone caused by injury 

of the pyramidal and parapyramidal tract, which is the 

most common complication of stroke. Spasticity 

describes involuntary muscle hyperactivity in the 

presence of central paresis [1],[2]. According to the 

Brunnstrom Approach[3], hemiplegic patients begin 

to experience spasticity in phase II; spasticity is the 

most severe in phase III and disappears in phase IV 

[4]. The development of poststroke spasticity is 

related to neuronal plastic changes within the central 

nervous system after the initial injury [5],[6]. 

Therefore, in the process of hemiplegia rehabilitation, 

the degree of spasticity is an important factor of the 

therapist's clinical intervention and rehabilitation 

training. 

The Modified Ashworth Scale (MAS) is the most 

widely used convulsion scale in clinics [7]. However, 

studies have shown that the semi-quantitative 

descriptions of MAS lead to ambiguous results 

[8],[9],[10]. MAS give a fuzzy boundary of spasticity 

degree. The intervals between each degree may not 

equal. Those semi-quantitative descriptions cause the 

therapist made subjective judgment. At present, 

subjective problems existed in all of the spasticity 

clinical scales [11],[12], which make it difficult to 

evaluate spasticity objectively and quantitatively. 

Quantitative assessment of spasticity is helpful to the 

study of spastic pathology and plays a pivotal role in 

formulating rehabilitation plans or adjusting doses of 

antispasmodic drugs. However, due to the complexity 

and multifactorial nature of spasticity, how to quantify 

spasticity remains a challenge and unresolved 

problem [13]. 

To improve the objectivity and reliability of the 

assessment of spasticity, numerous methods have 

been developed. These different evaluation methods 

can be divided into passive motion evaluation 

methods and voluntary motion evaluation methods. 

The evaluation method based on passive motion is the 

mainstream quantitative evaluation method at present. 

By collecting the biological signals of patients, 

researchers extracted features and analyzed the 

correlation between the features and the traditional 

clinical scales, such as MAS. For example, the inertial 

sensor or the exoskeleton machine can be used to 

provide biomechanical information, such as the 

counter torque and the angle of joint motion in the 

process of passive stretching [14],[15],[16]. In 

addition, H-reflex and H/M ratio [17] are determined 

based on electromyography signals and using Shear 

Wave Elastography [18],[19] to directly measure 

muscle stiffness. Although the mechanical signal-

based approach has good interpretability, the absence 

of muscle activation analysis makes it difficult to 

identify the disturbance caused by contractures. In 

current studies, it is generally believed that TSRT 

[20],[21],[22] based on inertial measurement unit 

(IMU) and surface electromyography (sEMG) fusion 

exhibits reliable clinical validity. [23] shows that the 

neural component is the domination factor of 

spasticity assessment for most patients in the passive 

stretch test. Combining IMU and sEMG can achieve 

information complementarity, thus improving the 

assessment accuracy of stroke patients [24]. Spasticity 

assessment of passive movement can be achieved by 

combining kinematic data and sEMG.  

Although passive stretch is fundamental in clinical 

measurements of spasticity, it cannot assess the effect 

of spasticity on motion. Spasticity may be of some 

benefit in the maintenance of muscle tone [25], but 

intervention is necessary if spasms affect movement. It 

is difficult to observe the effect of spasticity on motor 

function. The study of spasticity under active 

movement is helpful to explore the pathological 

mechanism of spasticity [11]. Spasmodic assessment 

under active exercise can improve the efficiency of 

rehabilitation training. On one hand, therapists can 

develop more effective rehabilitation plans or 

therapeutic interventions for patients [26]. On the other 

hand, to make telemedicine possible, evaluation 

scenarios are not limited to hospitals. Moreover, the 

evaluation of spasm under active motion provides 

sensory feedback for the rehabilitation robot, which is 

conducive to improving the safety of the rehabilitation 

robot. 

However，few studies focus on the spasticity assess 

based on patients' voluntary movements. The main 

reason for the lack of research is that the Lance’s 
definition of spasticity [27] is based on passive 

movements. However, the Lance definition is narrow in 

pure motor disorders. It does not account for the 

measurement/description of spasticity under both 

active and passive conditions [2]. [28],[29] studied the 

relationship between active hypokinesis and abnormal 

coordination. It has been proved demonstrated that 

abnormal coordinated intervention can reduce the 

spasticity of active movement. [30] shows that 

voluntary contraction has a significantly correlates with 

passive stretch. Temporal features of movement can be 

potential targets for rehabilitation in individuals with 

upper limb spasticity after stroke [31]. Although the 

above studies have confirmed the feasibility of 

evaluating spasticity under active motion, none of these 

studies have established an evaluation model for spasm. 

To our knowledge, no studies have established the 

spasticity status recognition model of isotonic exercise.  

Therefore, the purpose of this study was to 

investigate the feasibility of spasticity assessment 



 

 

 3 

based on isotonic exercise. The main contributions of 

this paper are as follows: 

1. An algorithm to extract useful features of 

sEMG and kinematics data under active 

movement was proposed.                                                           

2. A spasmodic evaluation model under active 

motion was proposed with satisfactory 

accuracy (F1-score > 0.9). 

3. A practical approach can be used to evaluate 

spasticity and refine the assessment of 

rehabilitation training, which can be applied to 

clinical assessment and potential applications 

in rehabilitation robotics and telemedicine. 

Extensive experiments were conducted to validate 

the performance of the proposed methods. The level 

of spasticity was assessed by measuring the 

patient's elbow flexion and extension movements. 

A spasticity evaluation model of patients’ isotonic 

contraction of elbow flexion and extension is 

investigated in this work. Specifically, the 

Empirical Mode Decomposition (EMD) algorithm 

was used to extract the characteristics of sEMG in 

the isotonic contraction process of stroke patients 

with spasticity, and a spasticity grading evaluation 

model was established based on random forest. 

Model performance was validated using isotonic 

exercise data of stroke patients. 

Methods 
Participants  

Thirteen subjects (four health subjects and nine 

stroke patients with spasticity) were recruited to 

participate in the experiments. Patient information is 

shown in Table 1. Consent to participate (i.e., 

informed consent) was obtained from all the 

participants to follow the protocol approved by the 

Guangzhou First People’s Hospital Department of 
Ethics Committee. All research was performed in 

accordance with the Declaration of Helsinki. The 

stroke participants met the following criteria. 

Inclusion criteria were as follows:  

1) no therapeutic intervention was performed 

within 2 weeks; 

2) stroke survivor either in the subacute (between 1 

to 6 months post stroke) or chronic (over 6 months 

post stroke) stage of recovery;  

3) a fair to good cognitive level (Mini Mental State 

Examination (MMSE) score ≥ 24);  

4) Ability to perform the required motions. 

Exclusion criteria were as follows:  

1) upper limb pain > 4/10 on a Visual Analogue 

Scale (VAS) [32];  

2) upper limb spasticity ≥ 3 on the MAS [33]. 

 Data acquisition  

Briefly, sEMG data were acquired using a commercial 

EMG acquisition system (Ultium™ Biomechanics 

System, Noraxon Ltd, USA) with a frequency of 2000 

Hz. With an amplitude range of 100-5000 uV and a 

frequency component of 0-500 Hz [35], sEMG data 

were amplified 1000 times. sEMG data collection was 

performed strictly in accordance with the recommended 

standards [34],[35]. sEMG data from three superficial 

muscles that are responsible for the main movements in 

the isotonic exercise task used in this article were 

recorded. As shown in figure 1(a), these muscles 

included the brachioradialis (BR), biceps brachialis 

(BB), triceps brachialis (TB). The surface electrode 

material was AgCl, and the distance between the 

electrodes was 2 cm. The direction of the electrodes 

was parallel to the muscle fibers. Prior to placing the 

surface electrodes, we wiped the skin surface with 

alcohol to reduce skin impedance. Then, the 3 sensor-

units of the sEMG acquisition instrument were used to 

collect original sEMG of BM, BB and TB. Moreover, 

the sensor-unit of EMG acquisition system is capable 

of collecting not only sEMG but also IMU data. 

Therefore, the 3 sensor-units simultaneously collected 

IMU data and sEMG at a frequency of 200 Hz. 

Table 1 Demographic and clinical characteristics (N = 9) 

 
Ag
e 

Sex 
Affected 

Side 
Brunn
-strom 

Month 
post 

stroke 

Spasti-
city 

degree 

P1 36 M Right II 9 1+ 

P2 66 M Left III 6 1+ 

P3 40 M Right III 4 2 

P4 31 M Right IV 4 2 

P5 55 F Left II 4 2 

P6 52 M Right II 4 1+ 

P7 58 M Right III 8 1 

P8 65 M Right III 9 1+ 

P9 64 M Left I 2 1 

Experimental protocols 

As shown in Figure 1(b), a guide-assisted motion 

device consisting of a guide-track and a slider was used 

to assist patients to achieve the maximum range of 

motion. To reduce the influence of gravity on the 

flexion and extension range of the elbow, subjects flex 

and extend their elbows around a vertical axis on a 

horizontal plane. Subjects naturally sat at the table and 

adjusted the height of the table such that their forearms 

were parallel to the table. The slide track is placed on 

the table and adjusted such that the subject can naturally 

and comfortably hold the handle of the slide block and 

maintain maximum elbow flexion. Subjects hold or 

clamped the handle (patients with poor grasp) of the 

slider. During the isotonic exercise task, as shown in 

Figure 1(a), subjects first stay relaxed at the position of 

maximum elbow flexion for 2-3 s. Then, subjects 
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moved from the position of maximum elbow flexion to 

the position of maximum elbow flexion. Thereafter, 

subjects relaxed to the position of maximum elbow 

flexion for 2-3 s. Finally, subjects moved back to the 

position of maximum elbow flexion. To avoid extra 

shoulder abduction, the tester stretches the end of the 

motion to the elbow, i.e., the range of motion is 

approximately 80°-100° [16]. Prior to performance of 

the isotonic exercise task, subjects performed 3–5 

practice trials to ensure that they understood the task. 

Each subject performed the isotonic exercise task with 

his/her affected side. Each task was repeated 15 times 

at a self-selected speed. To avoid fatigue, the subjects 

were allowed 30-60 s of rest between two isotonic 

exercise tasks.  

Data processing  

Data processing was implemented with 

MATLAB 2018b (The MathWorks Inc., Natick, 

USA). Figure 2 shows the flow chart of data 

acquisition, preprocess and model training in this 

paper. The initial 1-second data of all task sessions 

were removed to prevent the noise caused because the 

subject was not relaxed. Then, the original data of 

upper limb sEMG and IMU data were processed 

separately. Using a hamming window, the data 

dimension of sEMG signal and IMU data were 

processed to obtain the feature values at time t window. 

The sEMG feature values of every muscle constituted 

the feature eigenvector𝑿𝒕 . IMU data were used to 

calculate the motion angles of elbow joint, and the 

kinematics feature of elbow joint constituted the 

vector 𝑳𝒕. Each training vector is calculated as: 𝑻𝒕= 

{𝑿𝒕, 𝑳𝒕}.

triceps 

brachialis

biceps 

brachialis

brachioradialis 

  

guide-track

slider

sEMG

sensor

 
(a)                                    (b) 

Fig. 1 Flowchart of the proposed methodology. (a) The position of the surface electrodes placed on the upper limb. (b) The experimental setup.  

Data preprocessing 

and segmentation

subjects 

DAQ
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 Raw 
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Time – frequency 
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Classification
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Analysis window

Performace 
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Fig. 2 Flowchart of the proposed methodology. 

As shown in Figure 2, sEMG processing consisted 

of three parts: involuntary signal reduction, action 

phase division and feature extraction.  

Involuntary signal reduction 

During task execution, the sEMG included not 

only the voluntary active part of the patient but also the 

involuntary motor activity caused by the spasticity. 

Involuntary muscle movement increases the signal-to-

noise ratio of the signal, which makes it difficult to 

distinguish the start and end time of voluntary 

movement. Thus, involuntary motor activity should be 

removed because it makes it more difficult to analyze 

the state of muscle activation under active operation in 

combination with kinematics characteristics. During 

the involuntary signal separation, EMD was performed 

to remove the baseline noise. Details of Empirical 

Mode Decomposition are presented in [36]. In this 

paper, sEMG data are decomposed into several IMF 

components, and empirical mode decomposition is 

stopped when the average frequency of IMF is less than 

20 Hz. Then, soft threshold is processed for each IMF, 

and its calculation formula is as follows: 
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𝜂(IMFij) = {|IMFij| − 𝜆𝑖      |IMFij| ≥ 𝜆𝑖                0                |IMFij| ≤ 𝜆𝑖         (1) 

where IMFij is the jth sample point in the ith IMF 

component, and 𝜆𝑖  is the threshold, which is set as 

twice the standard deviation of the first 1000 sample 

points of the signal. 

Finally, the IMF decomposition after soft 

threshold is added linearly to obtain the reconstructed 

signal. Figure 3 is an example of the reconstructed 

signal. The noise interference of involuntary activity 

was effectively eliminated using the EMD algorithm.  

Algorithm 1  

Input: raw sEMG data 𝒙 = {𝑥𝑡}𝑡=1𝑝
; 

Output: training vector 𝒙𝒂𝒄𝒕𝒊𝒗𝒆 = {𝑥𝑡}𝑇𝑜𝑛𝑠𝑒𝑡𝑇𝑜𝑓𝑓𝑠𝑒𝑡
 

Initialize: Minimum number of Windows in action 

section 𝑊𝑐 = 0  and Hamming window was 

selected as window function, window length 

 𝑊𝑙 = 128 and overlap is 50% 

1. sEMG action phase division 

2. for t =1, 2, …, p do 

  Switch  

   Case value: statement=0 

   If 𝑥𝑡 ≥ 𝑇ℎ1, then 𝑊𝑐 = 𝑊𝑐+1 

   If 𝑊𝑐 ≥ 𝑇ℎ2, then 𝑀𝑜𝑛𝑠𝑒𝑡 = 𝑡 statement=1 

Case value: statement=1 

      If 𝑥𝑡 ≤ 𝑇ℎ1 , then 𝑊𝑠 = 𝑊𝑠+1 

If 𝑊𝑠 ≥ 𝑇ℎ2, then 𝑇𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑡 
Default: statement=0 

end 

End do 

3. Output active phase 𝒙𝒂𝒄𝒕𝒊𝒗𝒆 = {𝑥𝑡}𝑇𝑜𝑛𝑠𝑒𝑡𝑇𝑜𝑓𝑓𝑠𝑒𝑡
 

Action phase division and feature extraction 

Different window lengths have been verified and 

recommended due to different classification problems 

and delay requirements [37]. Different window 

lengths (32, 64, 128, 256 and 512 ms) were 

investigated. The window length of this paper is 128 

ms. The degree of window overlap is independent of 

the classification error [37]. Therefore, in this paper, 

the window overlap is 50% as reported in [37] and 

[38]. 

The three muscles were segmented into active 

segments, and the motor process of each muscle was 

extracted. The muscle action phase division algorithm 

flow of sEMG is shown in Algorithm 1. When the 

signal exceeds the threshold value of 𝑇ℎ1 , it is 

believed that the muscle may start to enter the active 

activation state. In this paper, 𝑇ℎ1 is set as the mean 

value of the whole signal after filtering. 𝑇ℎ1 = 1𝑃∑ 𝑥𝑡𝑃𝑡=0          (2) 

To ensure the accuracy of active activation and 

prevent the involuntary activation of the muscle from 

causing wrong division, double threshold values are 

adopted in this paper. The threshold 𝑇ℎ2 is used to 

eliminate the interference of noise to the action 

activation segment. The movement range of the 

experiment was approximately 80°. According to the 

experiment with healthy subjects, the slow movement 

speed of elbow joint of healthy subjects was 

concentrated at 60°/s. Therefore, to prevent noise 

interference, the minimum duration of the activation 

section is set to be no less than 1 s, i.e., 𝑇ℎ2 = 8. 

After that, the IMU signal is smoothed with the sliding 

average algorithm. In addition, the activation segment 

signals of each muscle are extracted. During the IMU 

motion activation segment, sEMG data of each muscle 

were also extracted. The threshold method was used 

to judge the duration of active motion of IMU signals. 

The onset threshold is considered to enter active 

motion if it exceeds 10% of the maximum motion 

angle. The first derivative difference method is used 

to calculate the end time of active motion, i.e., the first 

derivative of three consecutive Windows is less than 

0.01. Figure 3 presents the signal diagram calculated 

by the action phase division algorithm. sEMG and 

IMU signals in the region of the action phase division 

algorithm were used for feature extraction and fusion. 

For feature extraction of the motor activation 

segment, this paper extracted 4 common sEMG time 

domain (TD) features, 2 sEMG frequency domain (FD) 

features and 3 motion signal features. These features 

were the root mean square (RMS), variance (VAR), 

mean absolute value (MAV), waveform length (WL), 

median frequency (MNF), median frequency (MDF), 

movement angle (MA), angular velocity (AV) and 

angular acceleration (AA). RMS is the square root of 

the average power of the sEMG. MAV is the absolute 

value of the sEMG. VAR is a measure of the sEMG 

power. WL can reflect the complexity of the sEMG 

signal. MDF is an average frequency, which is 

calculated as the sum of products of the EMG power 

spectrum, and MDF is the frequency at which the 

spectrum is divided into two regions with equal 

amplitude [39]. The complementary filtering 

approaches [40] was used to calculate MA, AV is 

obtained by a gyroscope and the first-order difference 

equations of MA were calculated to obtain AA. The 

six sEMG features are described below: RMS𝑖(𝑡) = √1𝑀∑ 𝑥𝑖𝑡(𝑘)2𝑀𝑘=1                  (3) VAR𝑖(𝑡) = 1𝑀−1∑ (𝑥𝑖𝑡(𝑘) − 1𝑀∑ 𝑥𝑖𝑡(𝑘)𝑀𝑘=1 )2𝑀𝑘=1   (4) MAV𝑖(𝑡) = 1𝑀∑ |𝑥𝑖𝑡(𝑘)|𝑀𝑘=1                   (5) 

{𝑥𝑖𝑡(𝑘) = ∑ 𝑎𝑗𝑥𝑖𝑡(𝑘 − 𝑗) + 𝑤𝑖𝑡(𝑘)𝑝𝑗=1WL𝑖(𝑡) = ∑ |𝑥𝑖𝑡(𝑘 + 1) − 𝑥𝑖𝑡(𝑘)|𝑀𝑘=1     (6) 
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𝑀𝑁𝐹𝑖(𝑡) = ∑ 𝑓𝑗𝑃𝑗𝑀𝑘=1 /∑ 𝑃𝑗𝑀𝑘=1        (7) 𝑀𝑁𝐹𝑖(𝑡) = ∑ 𝑃𝑗𝑀𝑘=1                         (8)  AV(t) = 1𝑀∑ √𝐼𝑥𝑡(𝑘)2 + 𝐼𝑦𝑡 (𝑘)2 + 𝐼𝑧𝑡(𝑘)2𝑀𝑘=1    (9) 

{𝑔𝑦𝑜(𝑘) = 𝐼(𝑘)/𝑓𝑠                                      𝑀𝐴(𝑘) = 𝛼 ∗ 𝑔𝑦𝑜(𝑘) + (1 − 𝛼)𝑎𝑐𝑐(𝑘)𝑀𝐴(𝑡) = 1𝑀∑ 𝑀𝐴(𝑘)𝑀𝑘=1                               (10) 

where 𝑥𝑖𝑡(𝑘) represents the 𝑘th sEMG sample 

in the 𝑡 th overlapping analysis window in the 𝑖 th 

channel, 𝑎𝑗  is the 𝑗 th order autoregression (AR) 

coefficient, 𝑝  is the order of AR model (𝑝 = 4 ), 𝑤𝑖𝑡(𝑘) is the white noise residual, 𝑓𝑗 is frequency of 

the spectrum at frequency bin j, and 𝑃𝑗 is the EMG 

power spectrum at frequency bin 

j.  𝐼𝑥𝑡(𝑘)2, 𝐼𝑦𝑡(𝑘)2 𝑎𝑛𝑑 𝐼𝑧𝑡(𝑘)2  is the kth gyroscope 

sample of x axis, y axis and z axis respectively. 𝛼 is 

the filter coefficient, which set as 0.96 in this 

paper. 𝑎𝑐𝑐(𝑘) is the angle count by kth accelerometer 

data.
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(a)                                           (b) 

Fig. 3 Sample of a subject after the data processing algorithm. (a) ROM and three muscle sEMGs of stroke subject. (b) ROM and three 

muscle sEMGs of a healthy subject. The blue signal is the original sEMG, the orange signal is the signal after processing, and the blue curve 

is the motion angle. The pink dashed line is the starting point of the motion angle, and the black dash line indicates the end of the motion 

angle. The blue solid line represents the starting point of muscle activation, and red represents the end point of muscle activation.

Classification scheme 

The k-nearest neighbor (k-NN) classifier [41], support 

vector machine (SVM)[42], random forest (RF) [43] 

and multilayer perceptron (MLP) were used to classify 

the spasticity of the participants. 

The RF classifier analysis is a supervised method of 

the multiple decision trees. Given its good 

generalization and robustness to outliers and noise, it 

is widely used in the analysis of biological signals[44]. 

As shown in Figure 4, the main procedure of RF 

algorithm includes the following: (1) A random 

sample of the put back from the original data set is 

used to generate the subsets of which sizes are equal 

to that of the original set; (2) A subset of features was 

randomly selected from the reconstructed training set 

to construct decision trees; (3) Final results are 

obtained by fusing the prediction or classification 

results of all the decision trees. Thus, the output of 

each tree is considered a vote, with the majority vote 

determining the output of the random forest.  

According to the characteristics of RF, the parameters 

to be optimized for this model include the number of 

RF neutron trees, the maximum depth of the decision 

tree, the minimum number of samples required for 

repartition of internal nodes, the minimum number of 

samples required for leaf nodes, and the maximum 

number of RF features allowed to be used by a single 

decision tree. In this paper, the gridsearchcv method is 

used to optimize the above parameters. 

To test the performance of random forest, this paper 

selected another three common machine learning 



 

 

 7 

methods, including k-NN, SVM and MLP, for 

performance comparison. To make a fair comparison, 

parameter optimization is performed for the above 

three models. All models were modeled and optimized 

using PYTHON (version 3.6, Python Software 

Foundation, Hampton, NH). 

Performance evaluation of models 

To eliminate the influence of feature magnitude on the 

model, the feature is normalized. The following 

formula is used to normalize each feature: 𝑦𝑛𝑜𝑟𝑚 = 𝑥−𝑥𝑚𝑖𝑛𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛          (11) 

Each dataset consisting of a recombined feature 

matrix and a label vector was still divided into a 

training set and test set at a ratio of 80:20. The 5-fold 

cross-validation method was performed to verify the 

performance of the different classifiers. We calculated 

the accuracy, recall and F1 score as the evaluation 

metrics. To use the F1 score for the evaluation of the 

multiclassification model, these metrics are calculated 

as follows[45],[46]: 

{  
  Accuracy = TP+TNTP+TN+FP+FN𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = TPTP+FP           𝑅𝑒𝑐𝑎𝑙𝑙 = TPTP+FN                  F1𝑚𝑎𝑐𝑟𝑜 = 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

                

(12) 

where TP, TN, FN, and FP are true positives, true 

Negative, false negatives, and false positives, 

respectively. 

step1

step2

Training subset 1 Training subset 2 Training subset N ...

output 1 output 2 output N ...step3

result 

Training set

 
Fig. 4 Flow chart of random forest model training. 

Statistical analysis 

Statistical analysis was performed using IBM SPSS 

statistics software (ver. 24.0, IBM Corp., Armonk, 

NY, USA)). Differences in the F1-scores of the 

classification model were tested for statistical 

significance using a paired t-test. A significance level 

of P < 0.05 was used for all the analyses. 

Results 
Model performance 

As shown in Table 2, the mean F1 score of all 

models was greater than 0.88. The random forest 

model obtained the highest F1 score (0.976±0.028), 

which was significantly higher than the other three 

models.  

As shown in Table 3, the classification accuracy of 

each type of the four convulsion degrees of the four 

models is shown. RF obtained the highest 

classification accuracy in the four degrees of spasticity 

(0.986, 0.956, 0.981 and 0.972 respectively) among 

the four models. For the spasm degree of grade 0 

(healthy), grade 1, and grade 1+, the classification 

accuracy of the four models was greater than 0.882, 

and the classification accuracy of grade 0 spasm 

degree was greater than 0.95. The minimum accuracy 

is 1+ classification accuracy of k-NN (0.882). 

However, for the classification of grade 2 spasticity, 

the classification accuracy of grade 2 spasticity in the 

three models was significantly reduced. The lowest 

accuracy is 0.735 in k-NN. Comparison of RF with the 

other three models is realized using a one-way 

analysis of variance (ANOVA) followed by the  

post hoc Tukey test with a significance level of 0.05. 

there is statistically significant difference among RF 

to the other three models in four spasticity grades 

(p<0.001). 

Table 2 Average classification performance of 

Classification models  

Model Accuracy Recall F1-score 

k-NN 0.880 0.880 0.880 

SVM 0.911 0.890 0.896 

RF 0.979 0.974 0.976 

MLP 0.930 0.931 0.929 

Table 3 Average accuracy performance of spasticity degree 

in Classification models  

model 0 1 
 

1+ 2 

k-NN 0.926 0.923 0.882 0.735 

SVM 0.950 0.893 0.939 0.780 

RF 0.986 0.956 0.981 0.972 

MLP 0.967 0.930 0.939 0.887 

To show the classification error in more detail, 

the confusion matrix of the four models is shown in 

Figure 5. The confusion matrix of the models shows 

that the max misclassification of grade 2 is grade 1+. 
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The k-NN model has 0.147 grade 2 that is 

misclassified into grade 1+, 0.177 in RF, and 0.085 in 

MLP. Although there is some confusion between 

grade 1+ and grade 2, the RF average sorting accuracy 

is 0.956, demonstrating a good ability to distinguish 

grade 1+ from grade 2. 

Feature importance  

We analyzed the importance of muscles and 

features, separately. The importance of the muscle is 

the sum of the importance ratios of the 9 features of 

the muscle. The importance of the trait is the sum of 

the proportions of the three muscles in the trait. As 

shown in Figure 6 (a), during flexion and extension, 

the importance of brachioradialis muscle and 

brachioradialis triceps varies greatly, while the biceps 

muscle does not. During flexion, the ratio of 

importance of brachioradialis, biceps and triceps was 

0.421, 0.361 and 0.218, respectively. During the 

elbow stretching process, the values were 0.264, 0.370 

and 0.367, respectively. Therefore, in the process of 

elbow flexion and extension, the active muscle feature 

is the main factor muscle for evaluating spasm degree. 

However, whether the flexor extensor spasm is 

evaluated, the biceps feature is essential. As the shown 

in Figure 6 (b), the importance of features is not 

affected by the process of elbow motion; thus, the 

importance of features is not affected by the process 

of flexion and extension. The 4 TD sEMG features 

(0.46) dominate the feature importance. The 

proportion of kinematic features is 0.38, and FD 

features accounted for the lowest proportion at 0.16. 

The results show that FD features minimally influence 

the evaluation of spasmodic grade. 

                 
 (a)                                          (b) 

          
(c)                                          (d) 

Figure 5 Confusion matrix of Classification models. a) k-NN classifier with an accuracy of 0.880. b) SVM classifier with an accuracy 

of 0.896. c) MLP classifier with an accuracy of 0.929. d) RF classifier with an accuracy of 0.976. The confusion matrix element is expressed 

as a percentage, and the sum of the elements of each row is equal to 100. The diagonal of the matrix is the correct classification. 

(a) muscle importance
 

(b) feature importance

BR BB TB
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Figure 6 Variable importance of random forest model. (a) Importance of muscle features (BR: brachioradialis muscle, BB: biceps brachialis; 

TB: triceps brachialis). (b) Importance of the feature. The IMU is the feature importance sum of MA, AV and AA. 

Discussion 
In this paper, we introduced a novel method to 

evaluate spasmodic state under voluntary motion. 

First, the EMD algorithm is used to filter the sEMG 

data to remove the involuntary sEMG caused by 

spasticity. Then, a double threshold algorithm is used 

to extract the active motion segment. Feature 

extraction was performed on the active motion 

segment, and fusion analysis was performed on the 

motion feature and surface sEMG feature. Finally, 

four commonly used models are used to classify and 

verify the features extracted in this paper, and the 

results show that the four models can effectively 

classify the spasm degree into the four types. 

As shown in Figure 6, TD feature of sEMG 

dominate the feature importance. During elbow active 

action, different contributions of brachioradialis and 

triceps brachii indicate that the co-activation mode of 

active and antagonistic muscles is the main factor to 

evaluate the degree of spasticity under active motion. 

results show that co-activation mode is not only the 

main feature of spasm recognition in passive motion 

[32], but also dominates in active motion. That is to 

say, the degree of spasm under active motion is 

correlated with that of passive motion [29]. As shown 

in Fig. 3, healthy subjects can rest at the maximum 

elbow position, while the patient's signal is more 

disordered. Although the patient feels the muscles 

relax, they show greater activation. The reason for this 

is that at the maximum elbow position, active muscles 

need to generate the force that works against spastic 

muscles, resulting in more intense muscle activation. 

When the patient's active movement exceeds the 

threshold of the stretch reflex he/she can regulate [28], 

he/she shows abnormal muscle activation and thus 

produces an abnormal co-activation pattern. 

Therefore, our method can effectively capture the 

onset and offset time of abnormal muscle activation 

under active motion, which is the reason for the high 

classification accuracy of the model in this paper.  

As shown in Figure 5, all models show lower 

classification accuracy of spasticity grade 2 than other 

spasticity grades, which are easily misclassified into 

grade 1+. The reason may be that the patient was 

accompanied by grade 2 spasm and had compensatory 

exercise during the experiment. Abnormal 

coordination is one of the factors that cause dyskinesia 

of reaching movement [28]. In the process of 

maximum flexion and extension of the elbow, to 

achieve the maximum movement state as expected by 

himself, the patient uses trunk compensation for 

elbow joint displacement to generate a larger motion 

angle. The difference between its kinematics 

characteristics and the kinematics feature of 1+ grade 

spasticity is reduced, which leads to misclassification. 

Although the incomplete limitation of the elbow joint 

caused the classification error，both RF and MLP have 

good resolution accuracy in spasticity grade 2. Given 

that the classification of MLP reflected the black box 

effect, it was difficult to analyze the importance of 

features, making it difficult for researchers to further 

analyze the pathological characteristics of spasticity 

and extract more applicable clinical evaluation factors 

based on the current model. RFs allow us to examine 

the training procedure and quantify the importance of 

different features to the classification task [47]. 

Therefore, we recommended using the Random Forest 

algorithm to model the classification of spasticity 

degree. The classification of the model is helpful to 

the retrograde pathological mechanism. 

The pathological mechanism of spasm remains to 

be studied. [12] suggested that spasticity should be 

replaced by hyper-resistance and that the spastic nerve 

parts not only exhibit hyperreflexia but also retain 

involuntary muscle activation. Involuntary muscle 

activation enhanced the background noise. [48] notes 

that normal people in active exercise will adjust the 

threshold of stretch reflex to inhibit hyper-reflexes in 

the active process. The spasmodic threshold, which is 

measured at rest in a spasmodic patient, is adjusted 

during active motion. Isolation of involuntary muscle 

activation during voluntary movement is helpful to 

study the abnormal muscle activity caused by stretch 

reflex during voluntary movement. Therefore, the 

study of spasticity under active motion is helpful to the 

study of the pathological mechanism of spasm. In this 

paper, the importance of frequency-domain features in 

the classification of spasm is low. Feature importance 

still remains at 0.84 if the FD feature is removed. This 

phenomenon may indicate that the involuntary muscle 

activation of spasticity is less related to the firing rate 

of muscle fibers in the process of active exercise and 

more related to the recruitment mode of motor units. 

Meanwhile, low importance of TD feature can reduce 

the computing required for wearables. If the 

computing performance of embedded devices is 

limited, the FD feature can be removed. 

Overall, this study had a number of strengths. 

First, the fusion of sEMG and kinematic signals 

verifies the feasibility of evaluating spasm under 

active motion. Second, the machine learning 

algorithm is used to detect and classify the degree of 

spasm. Finally, the influence of random forest features 

on the classification of spasm is analyzed based on the 

importance of random forest features. Results 

demonstrate that our method could be potentially 

applied to spasticity assessment during rehabilitation 

exercise training. 
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Future Work 

Wearable assessment devices can assist in 

assessing patients’ spasmodic states during 

rehabilitation training, thus reminding patients to 

adjust their movements and reducing therapist 

workload. In future work, we will study the real time 

algorithm for spasticity assessment and apply it to 

wearable devices. Moreover, the motion of the upper 

limbs of the human body is mainly a complex motion 

in 3 dimensions. The plane movement of the fixed 

track mainly occurs in rehabilitation training. As the 

patient's condition eases, the patient will be trained in 

daily life movements. In future work, we will study 

the methods of assessing upper limb spasm in patients 

with daily life movements to make the wearable 

assessment devices suitable for family scenes. 

Conclusion 
In summary, we propose a novel method for the 

separation of voluntary components and involuntary 

activation components of electromyographic signals 

in patients with spasticity under active motion and 

verified the feasibility of evaluating spasticity under 

active exercise. The RF algorithms exhibited excellent 

classification performance in detecting and 

categorizing four grades of spasticity for all nine 

participants in this study (F1-score=0.976). The 

assessment of spasticity based on active exercise 

provides the possibility for the assessment of 

rehabilitation training for stroke survivors and home 

training. The assessment of spasticity based on active 

exercise provides the possibility for the assessment of 

rehabilitation training for stroke survivors and home 

training, which can help therapists adjust 

rehabilitation strategies and achieve more targeted and 

personalized rehabilitation programs. Future work 

will focus on developing an effective wearable 

spasmodic assessment system for stroke survivors to 

assess spasmodic states in rehabilitation training. 
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Figures

Figure 1

Flowchart of the proposed methodology. (a) The position of the surface electrodes placed on the upper
limb. (b) The experimental setup.

Figure 2

Flowchart of the proposed methodology.



Figure 3

Sample of a subject after the data processing algorithm. (a) ROM and three muscle sEMGs of stroke
subject. (b) ROM and three muscle sEMGs of a healthy subject. The blue signal is the original sEMG, the
orange signal is the signal after processing, and the blue curve is the motion angle. The pink dashed line
is the starting point of the motion angle, and the black dash line indicates the end of the motion angle.
The blue solid line represents the starting point of muscle activation, and red represents the end point of
muscle activation.



Figure 4

Flow chart of random forest model training

Figure 5

Confusion matrix of Classi�cation models. a) k-NN classi�er with an accuracy of 0.880. b) SVM classi�er
with an accuracy of 0.896. c) MLP classi�er with an accuracy of 0.929. d) RF classi�er with an accuracy
of 0.976. The confusion matrix element is expressed as a percentage, and the sum of the elements of
each row is equal to 100. The diagonal of the matrix is the correct classi�cation.



Figure 6

Variable importance of random forest model. (a) Importance of muscle features (BR: brachioradialis
muscle, BB: biceps brachialis; TB: triceps brachialis). (b) Importance of the feature. The IMU is the feature
importance sum of MA, AV and AA.


