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Abstract—Magnetic resonance imaging is a powerful imaging 

modality that can provide versatile information but it has a 

bottleneck problem “slow imaging speed”. Reducing the scanned 

measurements can accelerate MR imaging with the aid of powerful 

reconstruction methods, which have evolved from linear analytic 

models to nonlinear iterative ones. The emerging trend in this area 

is replacing human-defined signal models with that learned from 

data. Specifically, from 2016, deep learning has been incorporated 

into the fast MR imaging task, which draws valuable prior 

knowledge from big datasets to facilitate accurate MR image 

reconstruction from limited measurements. This survey aims to 

review deep learning based MR image reconstruction works from 

2016- June 2020 and will discuss merits, limitations and challenges 

associated with such methods. Last but not least, this paper will 

provide a starting point for researchers interested in contributing 

to this field by pointing out good tutorial resources, state-of-the-

art open-source codes and meaningful data sources. 

Index Terms—Deep learning, MRI, undersampled image 

reconstruction 

I. Introduction

AGNETIC resonance imaging (MRI) is a non-invasive

imaging technique that can provide rich anatomical and 

functional information. Nevertheless, MRI has a bottleneck 

problem “slow imaging speed” a.k.a “long imaging time”, 

which consists of two parts, i.e. acquisition and reconstruction. 

To accelerate MR scan, three mainstream methods have been 

developed, namely, physics based fast imaging sequences, 

hardware based parallel imaging with multiple coils and signal 

processing based MR image reconstruction from incomplete k-

space data. These techniques along with their combinations 

have either reduced the acquisition or reconstruction time. Our 

specific focus here is the signal processing based methods, 

which explore prior knowledge to regularize the image 

reconstructions from reduced measurements. 

During the past several decades, MR image reconstructions 

have evolved from linear analytic methods to nonlinear iterative 

ones. Typical examples in analytic reconstruction consist of 

partial Fourier, sensitivity encoding (SENSE) [1], SMASH [2], 

and GRAPPA [3], which explore the prior knowledge of K-

space correlations and the sampling properties of the imaging 
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system. These methods have been extensively used in 

commercialized scanners based on their high efficiencies. On 

the other hand, the nonlinear methods focus on iteratively 

solving a model that considers both the physics of the imaging 

system and the prior knowledge of the object being imaged. 

Popular prior includes sparsity [4], low-rank [5]–[8], statistics 

distribution regularization [9], generalized series (GS) model 

[10], manifold fitting [11]–[13] and so on so forth [14], [15]. 

These prior knowledges have been mostly developed via model 

or hand designs, such as dictionary learning [16] and total 

variation [17], [18]. These methods have achieved great 

successes in their episodes, with commercialized available MR 

scanners. However, there are still limitations with these two 

mainstream methods. For the first phase methods, normally no 

object prior is considered and it suffered from relatively long 

scanning time. For the second phase methods, mainly 

compressed sensing (CS) techniques, the prior model capacity 

is limited. The weighting parameter of the CS models are hard 

to tune. Furthermore, the image prior model capacity is still 

limited. The emerging trend in this area is replacing human-

defined signal models with that learned from data. 

Deep learning, a technique which is driving today’s artificial 

intelligence (AI) explosion, uses neural networks with many 

layers of processing units to learn complex patterns in large 

amount of data [19]. It has attracted unprecedented public 

attention, showing great potential for diverse medical imaging 

tasks [20]–[25]. Its popularity is driven with the advances in 

computing power and improved training techniques. In 2016, 

deep learning has been incorporated into the fast MR imaging 

task for the first time, which draws valuable prior knowledge 

from big datasets to facilitate accurate MR image 

reconstruction from limited measurements [26]. Meanwhile 

and thereafter, there have been different deep learning 

techniques developed for learning reconstruction from limited 

measurements. 

This survey aims to review the papers from 2016- June 2020 

in accelerating MR imaging with deep learning techniques for 

undersampled MR image reconstructions. And we will also 

discuss merits, limitations and challenges associated with such 

methods. Last but not least, this paper will provide a starting 
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point for researchers interested in contributing to this field by 

pointing out good tutorial resources, state-of-the-art open-

source codes and meaningful data sources. 

II. DEEP LEARNING BASICS 

Deep learning uses huge neural networks with many layers 

of processing units, taking advantage of advances in computing 

power and improved training techniques to learn complex 

patterns in large amounts of data. It is a branch of machine 

learning and artificial intelligence. The most popular deep 

learning examples include convolutional neural network (CNN), 

Multilayer perceptron (MLP), U-Net, ResNet, Generative 

adversial network (GAN), cycle GAN, Recurrent neural 

network (RNN) and so on so forth. The deep learning 

techniques should use feedforward neural networks. There are 

different connections and components needed for designing the 

network. 

A. Convolutional layer 

Instead of using general matrix multiplication, deep learning 

networks especially CNN uses convolution operations to 

extract features. Specifically, convolution is a mathematical 

operation that is the integral of the product of the two inputs 

with one reversed and shifted. In the network, the activations 

are convolved with a set of small parameterized filters, 

collected in a tensor W. Each filter shares the same weights 

across the whole input domain. This weight-sharing strategy 

can help reduce the size of the needed parameters and is 

motivated by the fact that similar structures and features exist 

in the image. Appling all the convolutional filters at all 

locations of the input to a convolutional layer produces a tensor 

of feature maps. 

B. Activation layer 

The features extracted from the convolutional layer are fed 

through activation functions, known as activation layer in the 

network. Nonlinearity is an important characteristics of deep 

neural networks, which is generated using nonlinear activation 

function. Popular nonlinear functions include sigmoid or 

logistic, hyperbolic tangent (Tanh), rectified linear units (ReLU) 

and so on so forth. The activation function is to make the 

network more powerful and add ability to the network to learn 

complex functional mappings between inputs and outputs. 

Besides nolinearity, differentiability is another character of the 

activation function. 

C. Pooling 

This is a key technique in current deep learning technologies. 

Pooling divides the input map into a set of rectangles and outs 

a single value for each rectangle. The operation is normally 

computed by average or max functions or sum functions. Since 

small variances in images result in small changes in the 

activation maps, the pooling layers give the neural network 

certain degree of translational invariance capability. Pooling 

has the downsampling effect. An alternative way to achieve this 

downsampling effect is the convolution with increased stride. 

D. Fully-connected layer 

Fully connected layer is the most popular connection for 

traditional multilayer perceptron and have also been frequently 

used in the current deep learning techniques. It means that the 

neuron of each layer is connected to every neuron in the 

previous layer. Adding a fully-connected layer is also a cheap 

way of adding nonlinearity to the deep learning architectures. 

E. Batch normalization 

Batch Normalization (BN) can adjust and scale the 

activations of the network layers. It has quite a few encouraging 

properties. First, it normalizes the distribution of input data and 

can accelerate the model learning speed. Second, it can reduce 

the sensitivity to weight initialization and scale, and therefore 

simplifies the tuning process and makes network learning more 

stable. Third, BN can reduce overfitting with its regularization 

effect.  

F. Dropout regularization 

Randomly removing neurons during training is known as 

dropout regularization. It is often regarded as an averaging 

technique from the view of stochastic sampling of neural 

networks. With the dropout employed, slightly different 

networks are obtained for each batch of training data. 

G. Capacity, overfitting and under-fitting 

Capacity, overfitting and under-fitting are basic concepts 

often encountered in artificial intelligence. Capacity generally 

refers to the capability of a network or a model in representing 

a relationship. It is normally proportional to its network size. 

The deeper and the wider, the model capacity will be larger. 

Overfitting means that the networks have overfit the training 

data where the gap between training error and test error is too 

large. Overfitting tends to extract some of the residual 

variations as the model structures. Under-fitting means that the 

model cannot obtain a sufficiently low error on the training set, 

which cannot capture the underlying structure of the data. When 

we configure our models, we need to consider about the 

correlation between model capacity, the problem complexity, 

and data size and heterogeneity. The data size is not the larger 

the better. The model capacity isn’t the lager the better either. 

When the data size is complex and model capacity is small, 

underfittng may happen. On the other hand, if the model 

capacity is large and data size is small, overfitting will happen. 

So we need to properly adjust the model capacity and training 

data size for achieving an appropriate performance for the 

image reconstruction problem. 

H. Backward propagation 

It is a method to update the weights of the network by 

calculating the gradient of each layer with respect to the loss 

function. Backpropagation is shorthand for the “backward 

propagation of errors” since the error is computed at the output 

and distributed backwards through the network layer. 

III. MR IMAGE RECONSTRUCTION BASICS 
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Fig. 1 Image reconstruction from incomplete k-space data  

 

For MR imaging, the original data obtained by MR scanners 

can be modelled as follows 

y = Ex + n                                       (1) 

where y is the K-space measurements. x means the image to be 

reconstructed. E represents the encoding matrix for MR 

imaging; It could be E=MF for single channel imaging or MFS 

for the parallel imaging scenarios. M is the sampling mask; F 

represents Fourier transform and S is the sensitivity encoding; 

n is the noise, which was introduced as the disturbance in the 

measurement process. 

If the sampling data y satisfies the Nyquist sampling theorem, 

the image can be directly updated. For example, if the data is 

fully sampled in a Cartesian grid, direct inverse Fourier 

transform can be used. If the data is subsampled, different 

regularization like sparsity, low-rankness constraints should be 

employed to attack the under-determined property of the 

subsampling. Compressed sensing (CS) is one of the 

revolutionary approaches for solving the problem. The image 

reconstruction problem normally can be described as follows 

with the promotion of the optimized signal-to-noise ratio (SNR),  

 f(x) = argmin
𝑥

1

2
‖𝐸𝑥 − 𝑦‖2

2 + 𝜆𝑃𝑟(𝑥)                  (2) 

where the first term means data-fidelity and the second one 

𝑃𝑟(𝑥)  denotes prior regularization. λ  means a weighting 

parameter, which determines whether or not prior information 

is introduced and how much the prior information contributes 

to the final reconstruction. The prior information could be fixed 

transforms such as wavelet, total variation and sigular value 

decomposition ones, or adaptive ones such as dictionary 

learning, data-driven tight frames and so on so forth [27]–[36]. 

IV. DEEP LEARNING FOR MR RECONSTRUCTION 

  
Fig.2 The deep learning MR reconstruction framework [26] 

In 2016, [26] introduces deep learning into fast MR imaging 

which uses offline trained models to achieve accurate online 

MR reconstruction. During the offline training step, the model 

parameters are optimized through minimizing a loss function 

calculated between the reconstructed and the reference images. 

During the online reconstruction, the optimized model is 

adopted to generate a network prediction, which can be used for 

regularization or direct reconstruction 

In the meantime and thereafter there are more and more 

methods. Based on the reconstruction framework and its inputs 

and outputs, these methods can be roughly categorized into two 

types, data-driven end-to-end deep learning MR image 

reconstruction and physics/model-driven unrolling iterative 

deep learning methods. The former tries to learn a nonlinear 

mapping between the data pairs of aliased images/incomplete 

k-space to the artifact free/full k-space. The physics/model-

driven methods try to solve an inverse problem with the help of 

traditional iterative algorithms.  

A. Data driven end-to-end deep learning MR image 

reconstruction 

As shown in Fig. 3, based on the input and output data pairs, 

the data-driven end-to-end learning reconstruction methods can 

be further categorized into three subtypes. 1) the image domain 

learning between the aliased images and high quality MR 

images; 2) the k-space to image space hybrid learning between 

the k-space and high quality MR images; 3) k-space domain 

learning which explores the k-space correlations. Data-driven 

end-to-end learning reconstruction benefits a lot from the deep 

learning models developed for natural image processing. 

Different types of learning reconstructions have different kinds 

of properties. Generally, the image domain end-to-end learning 

are better at removing image noise and artifacts, which can 

directly use different network structures and transfer learning 

techniques. The k-space learning are better at keeping high 

frequency information namely details and fine structures, which 

has strong connections with classical K-space reconstruction 

methods.  The K-space to image space learning can get a better 

tradeoff between removing noise and artifacts, and keeping 

details. We present some main network architectures used for 

the data-driven end-to-end deep learning MR image 

reconstruction.  

 
Fig.3 End-to-end deep learning MR image reconstruction: 

directly learn a nonlinear mapping between the data pairs of 

aliased images/incomplete k-space to the artifact free/full k-

space. The figure presents three subtypes with their 

corresponding examples. 

 

1) U-Net 

U-Net was originally proposed to be used for biomedical 

image segmentation, and achieved excellent segmentation 

results. It contains the encoder structure on the left and the 

decoder structure on the right. A total of four downsampling 
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and four upsamplings form a U-shaped structure. U-Net uses a 

skip-connection connection. This step merges the location 

information of low-level features with the semantic information 

of deep-level features, which promotes the network to get better 

results. The difference between U-Net and autoencoder is that 

U-Net has a skip-connection structure. At present, many studies 

have used U-Net structure or as a sub-structure, and have 

achieved effective results. In the study [37]–[40], the author 

designed a multi-resolution deep convolutional framelets based 

on U-Net to recover high-resolution MR images from 

undersampled K-space data, and combined residual learning to 

further improve the reconstruction performance of the network. 

The author in Study [41] proposed a fast and accurate deep 

learning reconstruction method for human lung gas MRI, which 

consists of coarse-to-fine nets (C-net and F-net). The loss 

functions used in C-net and F-net training are L2 loss and united 

L2 loss with proton prior knowledge, and the core networks of 

C-net and F-net use U-Net. Compared with traditional CS-MRI, 

the proposed deep learning method can better reconstruct the 

human lung gas MR images acquired from high-undersampling 

k-space. The author in Study [42] proposed a deep learning 

undersampling MRI reconstruction method using U-Net and k-

space correction. This method shows remarkable performance, 

and only 29% of k-space data can effectively generate high-

quality MR images. In research [43], iterative learning based on 

U-Net is used for compressed sensing MRI reconstruction. 

Compared with the original end-to-end U-Net, the iterative 

learning strategy adopted has further improved the 

reconstruction performance. In addition, there is a series of 

works using U-Net or improved networks based on U-Net for 

fast MRI reconstruction studies [37], [44]–[48]. 

 

2) Generative adversarial network (GAN) 

Ian Goodfellow et al. first proposed GAN for the generation 

of natural images [49]. GAN consists of two networks, one is a 

generator and the other is a discriminator. Inspired by the zero-

sum game, these two networks confront each other to achieve 

the best generation effect. The role of the generator is to 

generate images that are close to the real image after training. 

The role of the discriminator is to accurately identify whether 

the image is generated or real. The two networks are 

continuously trained, and finally the discriminator cannot 

distinguish the generated Image and real image. After 

continuous development of GAN, different types of versions 

have been derived [50], such as Vanilla GAN, CGAN, DCGAN, 

GRAN, LAPGAN, WGAN, etc. Research [51] used GAN for 

the reconstruction of MRI images.  

Research [52] also applied GAN in the field of rapid MRI, 

using the adversarial neural network to estimate unsampled data. 

For 1.5T MRI using only 52% of the original data, promising 

image reconstruction results were obtained. DAGAN was 

proposed in the study [53] for fast compressed sensing MRI 

reconstruction. In order to stabilize the U-Net-based generator, 

they designed a refinement learning method. The author 

combines adversarial loss with innovative content loss to better 

preserve texture and edge information during image 

reconstruction, taking into account frequency information. 

Compared with the traditional CS-MRI reconstruction method 

and the latest deep learning method, the reconstruction result of 

DAGAN is better. The author in study [54] proposed a new 

deep learning based confrontation model RefineGAN for fast 

and accurate CS-MRI reconstruction. RefineGAN is an 

improved model based on fully residual convolutional 

autoencoder and GANs, employing deeper generator and 

discriminator with cyclic data consistency loss, so as to achieve 

the purpose of faithful interpolation for a given under-sampled 

k-space. RefineGAN is superior to the state-of-the-art CS-MRI 

method in terms of efficiency and image quality. In addition to 

the above methods, there is a series of work that uses GAN for 

fast magnetic resonance image reconstruction [55]–[63]. 

3) ResNet 

Residual network (ResNet) has made outstanding 

achievements in natural image classification since it was 

proposed. ResNet or its residual structure has been widely used 

in detection, segmentation, recognition and other application 

directions. Similarly, in the field of medical image 

reconstruction, ResNet or residual structure are also widely 

used. The author in study [64] proposed a deep learning MR 

image super-resolution reconstruction network based on 

residual learning. The network uses both global residual 

learning (GRL) and local residual learning (LRL) to improve 

image reconstruction performance. Research [65] directly used 

ResNet to reconstruct T2 mapping from overlapping-echo 

detachment (OLED) sequence. An effective reconstruction 

effect has been achieved on simulated MR images with single-

shot OLED sequence. Research [66] proposed a deep ResNet 

using variable density spiral trajectory for faster and better 

fMRI reconstruction. The deep residual network consists of 

various residual blocks. An enhanced recursive residual 

network (ERRN) based on recursive residual network was 

proposed in the study [67] for under-sampling MR image 

reconstruction and improving the image reconstruction quality. 

The authors in study [68] proposed a residual CNN for super-

resolution reconstruction of single anisotropic 3D MR images 

based on residual learning. The proposed residual CNN with 

long and short skip connections can effectively restore the high-

frequency details of MR images. In addition, residual networks 

or residual learning are also used in studies [69], [70] and the 

aforementioned studies [37]–[40]. 

4) Complex-valued neural network 

Initially, deep learning MRI mostly used only the amplitude 

information of MR images. However, considering the complex 

nature of MR images, the phase also contains important 

information that cannot be ignored in MR reconstruction [71]. 

Many subsequent studies not only use amplitude information 

but also phase information, or divide MR complex data into real 

and imaginary parts for training. Complex-valued neural nets 

with 1-channel complex MRI signals for MRI fingerprinting 

have proved to be better than real-valued networks of complex 

MRI signals represented with 2-channel real/imaginary input 

[72]. The study in [73] proposed the Complex Dense Fully 

Convolutional Network (CDFNet), which uses densely 

connected fully convolutional blocks to support deep learning 

operations on complex-valued data. The author in [74] 

proposed Deepcomplex MRI, a deep residual convolutional 

neural network that considers the correlation between the real 

and imaginary parts of MR complex images, and includes the 

k-space data consistency. Deepcomplex MRI has achieved 

better results than real-value networks, traditional CS-MRI, and 

the most advanced deep learning reconstruction algorithms. In 
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addition, the research [37] mentioned in the previous U-Net 

chapter and the KIKI-net [75] and DIMENSION [76] in the 

subsequent Dual-Domain Neural Network chapter divide the 

input data into real and imaginary parts for training. The author 

in [39] divided the complex-valued data into magnitude and 

phase and used two networks for training. The research in [71], 

[77] also directly uses complex convolutional neural networks 

to reconstruct MR images. 

5) Dual-domain neural network 

MR scanned data is collected in the Fourier domain (called 

k-space), and the acquisition time is proportional to the amount 

of k-space data collected. So fast MR imaging research can be 

based on k-space or image domain. At present, the end-to-end 

deep learning magnetic resonance imaging research mostly 

starts from the image domain, such as the aforementioned GAN, 

U-Net, etc, and a small part starts from k-space, such as 

Automated Transform by Manifold Approximation 

(AUTOMAP) [78]. However, there are still some studies that 

use the frequency domain and the image domain at the same 

time, which we call the dual-domain neural network. The author 

in [75] proposed KIKI-net, which is a cross-domain CNN. 

KIKI-net uses a deep CNN to process k-space data (KCNN) and 

another network to process image domain data (ICNN), and 

embeds data consistency operations. These components are 

alternately applied. KIKI-net can effectively restore the MR 

image tissue structures and remove aliasing artifacts. The 

author in [76] proposed a multi-supervised network training 

method for dynamic MR imaging that integrates a priori 

knowledge in the k-space and spatial domain, called 

DIMENSION. DIMENSION consists of two parts, one is the 

frequency domain network used to update the K-space 

information (FDN), and the other is the spatial domain network 

used to extract the high-level features (SDN) of MR images. In 

dynamic MR imaging, DIMENSION achieves better 

reconstruction results in a shorter time, compared with current 

state-of-the-art methods. MD-Recon-Net and DD-DLN were 

proposed in [79], [80] for compressed sensing MRI. Both of 

these networks take into account both the frequency domain and 

image domain information, and achieve a good visual effect. In 

addition, there are other similar deep network MRI 

reconstruction studies that use prior knowledge in both the 

frequency domain and the image domain [81]–[83]. 

6) Recurrent neural networks (RNNs) 

RNNs are a type of neural network that uses sequence 

information to process a series of inputs. The difference 

between RNNs and other neural networks is that the nodes 

between hidden layers are connected. The input at each moment 

not only has the input at the current moment, but also the output 

value of the hidden layer at the previous moment. This allows 

RNNs to learn more historical information and use it in current 

predictions. This kind of structure makes this type of network 

have a memory function, so it is widely used in data related to 

time series. In the field of rapid magnetic resonance imaging 

research, there are studies using RNNs for magnetic resonance 

image reconstruction. The author in [84] proposes a novel end-

to-end method for MR image reconstruction based on RNN. 

The RNN in this paper extracts features for image 

reconstruction and simultaneously sweeps the k-space both 

horizontally and vertically. The author in [85] uses self-

supervised RNN for 4D Abdominal and In-utero MR Imaging. 

It firstly uses self-supervised RNN for respiratory motion 

estimation, and then use a 3D deconvolution network for super-

resolution reconstruction. Research [86] jointly explores the 

dependencies of temporal sequences and the iterative 

characteristics of traditional algorithms. It uses the bidirectional 

RNN across time sequences to learn the spatio-temporal 

dependencies. In addition, the author in [87] proposed sRAKI-

RNN based on RAKI to accelerate MR imaging. 

7) Hybrid architecture models 

There are also hybrid network architecture models, which 

usually integrates different structures. Reference [88] proposes 

a multi-modal fusion deep learning fast magnetic resonance 

reconstruction method. The deep learning method proposed in 

this paper combines dense block and U-Net. Reference [89] 

proposed a SANTIS method for accelerating magnetic 

resonance image reconstruction. SANTIS combines data cycle–

consistent adversarial network, end-to-end convolutional neural 

network mapping, data fidelity enforcement, and sampling-

augmented training strategy. The deep learning network used 

combines U-Net and residual structure and GAN. Reference [90] 

proposes a self-attention convolutional neural network, which 

contains self-attention module, U-Net, residual module and 

dense connection. The self-attention CNN proposed in the 

article can improve the quality of the reconstructed image. In 

addition, in the studies [37]–[40], [45], [61], [91]–[93], a hybrid 

architecture containing several different network structures 

(such as GAN, Automap, U-Net, attention, dense block, 

residual learning, etc.) were used for fast magnetic resonance 

imaging research. The hybrid architecture models used in these 

references have achieved encouraging performances. 

8) Other CNN variants reconstruction models 

In addition to the above methods, we have further searched 

and sorted out additional related works using pure network 

methods. AUTOMAP provides a data-driven supervised 

learning reconstruction method with manifold learning [78], 

where the input of the network is sensor-domain-sampled data, 

and the output is the reconstructed image. And the fully 

connected layer is interspersed in the model structure, which 

can effectively reconstruct the MR image. In addition, 

AUTOMAP can not only reconstruct sensor data sampled by 

Cartesian, but also directly reconstruct the non-Cartesian 

samples, which promote the development of new data 

acquisition strategies across imaging modalities [78]. There are 

studies using CNN to perform real-time MR reconstruction on 

a single patient [94]–[96]. Deep attention networks have been 

used to study super-resolution magnetic resonance imaging 

reconstruction [97]. There is a robust artificial neural-networks 

for k-space interpolation (RAKI) method that directly uses deep 

learning algorithms for k-space interpolation to complete k-

space data reconstruction [98]. This is a deep learning extension 

of the traditional GRAPPA algorithm. GRAPPA uses the fully 

sampled center of k-space and interpolation to estimate 

unsampled k-space lines [20]. RAKI uses CNNs trained from 

the fully sampled k-space center as interpolation functions to 

fill the unsampled k-space. Besides, deep convolutional neural 

networks based reference-driven compressed sensing MR 

image reconstruction was studied in [99]. Deep multistream 

CNN for parallel imaging in TOF magnetic resonance 

angiography was studied in [100]. [24] investigates the 

influence of network structure and loss functions on MR image 
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reconstruction based on U-Net and Resnet. There are also 

studies on the impact of undersampling pattern optimization 

[101]. The authors in [102], [103] used deconvolution deep 

neural networks or multi-scale information fusion CNN for 

medical image super-resolution reconstruction. And the authors 

in [104] used Bayesian deep learning to accelerate magnetic 

resonance image reconstruction. In addition, there are some 

other studies on the use of convolutional neural networks for 

magnetic resonance image reconstruction [27], [105]–[130]. 

B. Physics/Model based unrolling iterative deep learning 

methods 

Different from the data-driven approaches, which typically 

need large datasets and re-training when acquisition parameters 

such as undersampling patterns are modified. The 

physics/model driven methods take utilizations of the MRI 

physics knowledges to solve an inversed problem with 

regularized prior knowledge. Here are some typical examples 

of physics/model driven learning MR reconstruction methods. 

 
Fig.4 The figure presents the general process of model-based 

unrolling iterative deep learning MR image reconstruction 

with corresponding examples (In the green box). 

 

1) Variational Network (VN) 

The variational network (VN) [131] is proposed for 

accelerated and high-quality reconstruction of multi-channel 

MRI images. It is composed of a variational model based on 

generalized compressed sensing reconstruction formulation and 

deep learning, and uses an unrolled gradient descent scheme to 

learn all the parameters in the formulation. In variational 

network, the solution to (2) is  

𝑥𝑛+1 = 𝑥𝑛 − ∑ (𝐾𝑖
𝑛)𝑇Φ𝑖

𝑛′(𝐾𝑖
𝑛𝑥𝑛) − 𝜆𝑛𝐴∗(𝐴𝑥𝑛 − 𝑓)  

𝑁𝑘
𝑖=1   (3) 

where 𝐾𝑖
𝑛  can be modeled as a convolution, Φ𝑖

𝑛′  is the non-

linear activation function, 𝜆𝑛 is the data term weights, 𝐴∗ is the 

adjoint operator,  the sensitivity maps are used in the operators 

𝐴, 𝐴∗, and 0 ≤ 𝑛 ≤ 𝑇 − 1. 

The network structure of VN is obtained by unfolding the 

iterations of Equation (3). The input of the network includes: 

the undersampled k-space data, coil sensitivity maps and the 

zero filling solution. In the training process of VN, the filter 

kernels 𝐾𝑖
𝑛, activation functions Φ𝑖

𝑛′ and data term weights 𝜆𝑛 

are learned. And the complex-value images are divided into the 

real and the imaginary filters to learn separately, and 

Φ𝑖
𝑛′combines the filter responses of these two feature planes. 

The learning-based VN reconstruction method is superior to 

traditional reconstruction methods in a wide range of 

pathologies and provides a faster reconstruction speed, which is 

of great significance for integration into clinical workflow. In 

addition, studies [132], [133] carried out further research on 

accelerated MR image reconstruction based on VN. 

2) ADMM-Net 

The alternating direction method of multipliers network 

(ADMM-Net) was first proposed in research [134] for 

compressed sensing MRI, which uses the unrolling ADMM 

algorithm to learn the regularization parameters in CS-MRI. In 

ADMM-Net, the optimization problem of Formulation (1) can 

be solved efficiently based on ADMM algorithm. By 

introducing auxiliary variables z = {𝑧1, 𝑧1, … , 𝑧𝐿}  and a 

transform matrix 𝐷𝑙  for a filtering operation, the ADMM 

iterations can be written as the following three subproblems: 

{
 
 
 

 
 
 𝑥𝑛+1 =  arg min

𝑥

1

2
‖𝐴𝑥 − 𝑦‖2

2 − ∑ 〈𝛼𝑙
𝑛, 𝑧𝑙

𝑛 − 𝐷𝑙𝑥〉
𝐿
𝑙=1

+∑
𝑝𝑙

2
‖𝑧𝑙

𝑛 − 𝐷𝑙𝑥‖2
2,𝐿

𝑙=1

𝑧𝑛+1 =  arg min
𝑧

∑ 𝜆𝑙𝑔(𝑧𝑙)
𝐿
𝑙=1 −∑ 〈𝛼𝑙

𝑛, 𝑧𝑙
𝑛 − 𝐷𝑙𝑥

𝑛+1〉𝐿
𝑙=1

+∑
𝑝𝑙

2
‖𝑧𝑙

𝑛 − 𝐷𝑙𝑥
𝑛+1‖2

2,𝐿
𝑙=1

𝛼𝑛+1 =  arg min
𝛼

∑ 〈𝛼𝑙
𝑛, 𝐷𝑙𝑥

𝑛+1 − 𝑧𝑙
𝑛+1〉,𝐿

𝑙=1

   (4) 

where n ∈ [1,2, … , 𝑁𝑠] means n-th iteration, 𝑔(∙) is a general 

regularization function, and 𝑧𝑙 = 𝐷𝑙𝑥 . The purpose of the 

transform matrix 𝐷𝑙  is to make the 𝑧𝐿  sparse through sparse 

images.  

Then the solution of these subproblems is: 

{
 
 

 
 𝑋

𝑛: 𝑥𝑛 = 𝐹𝑇[𝑃𝑇𝑃 + ∑ 𝜌𝑙𝐹𝐷𝑙
𝑇𝐷𝑙𝐹

𝑇𝐿
𝑙=1 ]−1

[𝑃𝑇𝑦 + ∑ 𝜌𝑙𝐹𝐷𝑙
𝑇(𝑧𝑙

𝑛−1 − 𝛽𝑙
𝑛−1)𝐿

𝑙=1 ],

𝑍𝑛: 𝑧𝑙
𝑛 = 𝑆(𝐷𝑙𝑥

𝑛 + 𝛽𝑙
𝑛−1; 𝜆𝑙 𝜌𝑙⁄ ),

𝑀𝑛: 𝛽𝑙
𝑛 = 𝛽𝑙

𝑛−1 + 𝜂𝑙(𝐷𝑙𝑥
𝑛 − 𝑧𝑙

𝑛),

         (5) 

where 𝑥𝑛 can be computed by fast Fourier transform, 𝑆(∙) is a 

nonlinear shrinkage function for 𝑔(∙), and the parameter 𝜂𝑙 is 

an update rate. 

The author is the first to map the ADMM algorithm to a 

learnable deep learning architecture, achieving high 

reconstruction accuracy in MR images. The author then 

conducted an extended study based on ADMM-Net, and 

proposed Generic-ADMM-CSNet [108] for CS imaging tasks 

by re-designing and unrolling the ADMM algorithm, which 

further improved the reconstruction performance of this type of 

method. In addition, there are some other work using ADMM-

Net for CS-MRI reconstruction [135]. 

3) Cascaded convolutional neural network 

In the study [136], [137], the author proposed a deep network 

structure that cascades convolutional neural networks to 

accelerate the acquisition speed of MR image data, and the 

study uses the cardiac MR dataset. The cascaded CNN consists 

of CNN and the data consistency (DC) layer and the data 

sharing (DS) layer, where DS layer is used in the reconstruction 

of dynamic sequences. The principle of the cascaded CNN 

proposed by the author is that the output of the previous CNN 

is connected to a new CNN, thereby establishing a deep 

network that iterates between intermediate de-aliasing and DC 

layer reconstruction [136]. The authors show that when 

reconstructing each 2D image frame independently, the 

reconstruction performance of the cascaded CNN is 
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significantly better than the state-of-the-art 2-D compressed 

sensing method. When reconstructing dynamic image sequence 

frames, the authors prove that combining 3D convolution and 

DS layer can effectively learn the spatio-temporal correlation 

of the input image and promote network reconstruction 

performance. Cascaded Dilated Dense Network (CDDN) was 

proposed for MRI reconstruction. The CDDN is composed of 

multiple sub-network iterations [138]. Each sub-network 

contains a normal convolution layer, dense blocks with residual 

connection, dilated convolution, and De-Aliase Module. After 

each sub-network, a two-step Data Consistency (TDC) 

operation is performed on the k-space. CDDN has achieved 

effective test results on both the cardiac dataset and the 

FastMRI [139] dataset. In addition, the research [82], [140] also 

adopted the cascade network structure. 

4) MoDL 

Model-based reconstruction using Deep Learning prior 

(MoDL) architecture is proposed to solve general inverse 

problems. The author [141] uses a variational framework 

containing data consistency items and learned CNN to capture 

the redundant information of the image, and unrolls it into a 

deep network based on the alternating recursive algorithm. The 

author uses the following MRI image reconstruction constraint 

formula that is the same as formula (2). 

𝑥𝑟𝑒𝑐 = argmin
𝑥
‖𝒜(x) − 𝑏‖2

2 +  𝜆‖𝒩𝑤(𝑥)‖
2             (6) 

where ‖𝒜(x) − 𝑏‖2
2 is a data consistency item, ‖𝒩𝑤(𝑥)‖

2 is a 

regularization prior that uses a learned CNN to estimate noise 

and alias patterns, 𝜆 is a trainable regularization parameter. 

After Taylor series and a series of approximations, the solution 

of equation (6) is 

𝑥𝑛+1 = (𝒜𝐻𝒜 + 𝜆𝐼)−1(𝒜𝐻(𝑏) + 𝜆 𝑧𝑛)                (7) 

𝑧𝑛 = 𝐷𝑤(𝑥𝑛)                                   (8) 

where 𝐷𝑤(𝑥) is the “denoised” version of 𝑥 that removes 

noise and alias artifacts. 

Compared to direct inversion approaches, MoDL explicitly 

considers the forward model, using a smaller network with 

fewer parameters to capture image information well. Therefore, 

the demand for network training data and training time is 

reduced. In addition, 𝐷𝑤  weight sharing strategy in each 

iteration improves the performance of the model compared to 

methods that rely on pretrained denoisers. After that, the author 

carried out further research on dynamic MRI based on MoDL 

[142]. 

5) ISTA-Net 

Inspired by the Iterative Shrinkage-Thresholding Algorithm 

(ISTA) used to optimize the regularization term of the CS 

reconstruction model, ISTA network (ISTA-Net) [143] was 

developed. The author proposes an effective strategy to use 

nonlinear transformation to solve the proximal mapping related 

to sparsity-inducing regularizer, thereby effectively 

transforming ISTA into a deep network form.  

In ISTA-Net, as an unrolling iterative version of traditional 

ISTA, through the use of a general form of image 

transformation Ϝ(x), the optimization problem of Equation (2) 

is written as: 

𝑟𝑛+1 = x𝑛 − 𝜌ΦΤ(Φx𝑛 − 𝑦)                         (9) 

x𝑛+1 = argmin
𝑥

1

2
‖Ϝ(x) − Ϝ(𝑟𝑛+1)‖2

2 +  𝜃‖Ϝ(x)‖1        (10) 

where 𝜌 is the step size, 𝑘 is the ISTA iteration index, 𝜃 is the 

merged parameter related to regularization parameter λ  of 

Equation (1) and the parameters of Ϝ(∙). The output image can 

be updated as: 

𝑥𝑛 = Ϝ̃𝑛(𝑠𝑜𝑓𝑡(Ϝ𝑛(𝛾𝑛), 𝜃𝑛))                        (11) 

where 𝑠𝑜𝑓𝑡(∙) is soft thresholding, Ϝ̃(∙) is the left inverse of  

Ϝ(∙).  
During ISTA-Net training, there are a total of 𝑁𝑝  phase 

iterations, and each phase iteration corresponds to one iteration 

in ISTA. The author also proposed an enhanced version of 

ISTA-Net, called ISTA-Net+, which can further improve the 

performance of CS reconstruction. In addition, studies [144] 

also unrolled the ISTA algorithm into a deep network structure 

and applied it to MRI reconstruction. 

6) PD-Net 

Research [145] uses primal-dual hybrid gradient (PDHG) 

algorithm and adopts an iterative scheme to solve ill-posed 

inverse problems. The form of the optimization problem is: 

min
𝑓∈𝑋

[Ϝ(𝒦(𝑓)) + 𝒢(𝑓)]                              (12) 

where 𝒦:𝑋 → 𝑈  is a (possibly non-linear) operator, 𝑈  is a 

Hilbert space, Ϝ: 𝑋 → ℝ and 𝒢: 𝑋 → ℝ are functionals on the 

dual/primal spaces. The solution of Equation (11) can be 

obtained by the PDHG algorithm.  

Further, a learnable primal-dual algorithm [146] is proposed 

for tomographic reconstruction, which is an algorithm 

combining deep neural network and model-based 

reconstruction by unrolling iterative a proximal primal-dual 

optimization problem. Currently, the PDHG algorithm has been 

widely applied to CT [123].  

Similarly, if Ϝ(𝒦(𝑓)) =
1

2
‖𝐴𝑥 − 𝑦‖2

2 , we can regard 

equation (2) as a special form of equation (12). Therefore, an 

unrolled iterative version of the PDHG algorithm was proposed 

for accelerated MR imaging, named PD-Net [147]. In PD-Net, 

parameterized operators are used instead of the proximal 

operators, and the parameters inside are automatically learned 

through offline training. Use the following formula to unrolled 

iterations for primal updating 𝑥𝑛+1 and dual updating 𝑧𝑛+1: 

{
𝑥𝑛+1 = ℒ(𝑥𝑛 , 𝐴𝑥𝑛, 𝑓)
𝑧𝑛+1 = 𝒯(𝑧𝑛 , 𝐴

∗𝑥𝑛+1)
                             (13) 

Compared with the traditional CS reconstruction method 

and other unfolding iterative methods, PD-Net has achieved 

better reconstruction results. 

7) Other unrolling optimization models 

In addition to the several typical unrolling iterative methods 

introduced above, there are also some other unrolling iterative 

MRI reconstruction methods. Convolutional recurrent neural 

networks (CRNN) [86] are inspired by variable splitting and 

alternate minimization strategies, and are proposed for cardiac 

MR image reconstruction by jointly exploring the dependencies 

of spatial sequences and the iterative characteristics of 

traditional optimization algorithms. The author in the study 

[148] proposed a model based convolutional de-aliasing 

network to accelerate parallel MR imaging with adaptive 

parameter learning exploring both spatial redundancy and 

multi-coil correlations. Unlike most existing parallel 

reconstruction algorithms, the de-aliasing reconstruction model 

can perform fast MRI reconstruction from highly undersampled 

k-space data without explicit sensitivity calculation. 
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Subsequently, the author further proposed the learn analysis 

transform network for dynamic MR imaging (LANTERN) 

[149]. LANTERN integrates CS-MRI iterative optimization 

model and deep learning, using adaptively trained CNN sparse 

constrained spatial and temporal domains information, and 

using small data sets can achieve excellent reconstruction 

performance. Variable splitting network (VS-Net) [150] was 

proposed to accelerate parallel MR image reconstruction by 

unrolling the resulting iterative process of a variable splitting 

optimization. Each iterative reconstruction process of VS-Net 

contains three modules: denoiser block (DB), data consistency 

block (DCB), and weighted average block (WAB), which 

achieve better results than the state-of-the-art method under the 

same conditions. In addition, there are some other fast MRI 

research work that also uses unrolling iterative reconstruction 

methods, such as related work in [151]–[154]. 

V. OPEN SCIENCE AND REPRODUCIBLE WORKS 

Deep learning for MR imaging is a very dynamic research 

area. Luckily, there are some researchers posting their codes on 

the GitHub platform https://github.com or their own website. 

The datasets used are normally available through various 

repositories. If a researcher is interested in this topic, one could 

find an implementation uploaded to Github and a method 

described in a paper. This forms a good starting point for the 

beginners. We have surveyed the datasets, code website and 

summarized them in the table 1.  

VI. CHALLENGES, LIMITATIONS AND FUTURE PERSPECTIVES 

It is clear that deep learning has introduced new opportunities. 

As a first discussion, we summarize the pros and cons of 

different learning reconstruction. Generally, the image domain 

end-to-end learning are better at removing image noise and 

artifacts, which can directly use different network structures 

and transfer learning techniques. But the image may tend to a 

little blurry due to strong denoising effect of the network. The 

k-space learning are better at keeping high frequency 

information namely details and fine structures, which has strong 

connections with classical K-space reconstruction methods. 

However, noise or artifacts sometimes tend to appear. The K-

space to image space learning can get a better tradeoff between 

removing noise and artifacts, and keeping details. Comparing 

the data-driven approaches with the physics/model based 

approaches. The data-driven ones normally need more training 

data and the networks used are more complicated. In terms of 

speed, end-to-end learning requires a long training time, and the 

training time for the unrolling iterative method is relatively 

short. In terms of robustness, when there is an adversarial 

sample or an adversarial attack, the unrolling iterative method 

shows relatively more robust reconstruction performance. In 

terms of interpretability, physics based unrolling method are 

more explainable. The end-to-end method learns the mapping 

relationship between data, whose intermediate process is a 

relatively black box and has poor interpretability. The unrolling 

iteration method is based on the traditional CS model and has a 

series of mathematical derivation processes, which is more 

interpretable. 

Secondly, we discuss if the techniques depend on the fully 

sampled dataset. At present, most end-to-end deep learning 

MRI methods are supervised learning, such as AUTOMAP, 

KIKI-Net, DIMENSION, DeepcomplexMRI, etc. These 

networks require training labels. Semi-supervised learning 

generally refers to the form of training that contains only part 

of the label data. These works are mainly based on GAN. Weak-

supervised learning uses weak labels [155] generated by other 

methods. There are also some unsupervised learning methods, 

such as CycleGAN or self-supervised learning. At present, 

some studies have adopted self-supervision [85], [156], [157]. 

The self-supervised learning method still has great potentials 

since it does not require training labels and can complete the 

corresponding task only from the data itself. It is one of the 

important future research directions. 

Finally, we rethink about the MRI workflow. The current 

MRI workflow is generally from data acquisition to image 

reconstruction and then to image analysis and diagnosis. The 

workflow may change with the development of artificial 

intelligence techniques. For example, the SegNetMRI proposed 

in the study [158] can achieve simultaneous image 

reconstruction and segmentation. The Joint-FR-Net proposed in 

the research [159] obtains the image segmentation results 

directly from the k-space data. These methods are all directly 

from the original k-space data. We believe that more research 

works will appear in the future, not only from k-space to 

segmentation, but also from k-space to classification, detection 

and even diagnosis. The task-driven MR reconstruction works 

may become more and more popular.  

Opportunity always lies in Challenges. We may need to 

devote endeavors to answer many questions, e.g. how many 

data are necessary; what’s the optimal network architecture; 

how many layers are in need; what’s the configurations for 

different applications and theoretical supports are in need as 

well. As an outlook, we think mathematicians, physicians and 

imaging scientists will work more closely. New trends in 

machine learning in MR reconstruction, may include training 

with small data sets, more weakly supervised or unsupervised 

learning works, network development to address high-

dimensional imaging and multitasking, etc.  

VII. CONCLUSIONS 

This article surveyed the papers in deep learning for MR image 

reconstructions from incomplete k-space data, which has shown 

big potential for the next generation of fast MR imaging 

technique with promising performances achieved. The data-

driven method directly learns the mapping relationship between 

under-sampled data and fully-sampled data, so as to achieve 

high quality reconstruction. The unrolling iterative method 

combines the traditional physics models with deep learning. In 

general, these approaches can get better reconstruction results 

and higher acceleration factors with strong prior knowledge 

learning capabilities. While most of the methods show 

encouraging performances and point out interesting directions, 

there are also some misconceptions happening from time to 

time and ignorance of the data bias and domain shift issues, 

which care must be given to, so as to fight for a brighter future. 

Limitations include the requirement of large amount of training 

data; the prior knowledge exploited may be constrained to the 

data/artfiacts seen during training; the theoretical explanations 

are still underdeveloped. Opportunity always lies in Challenges. 
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As an outlook, we believe mathematicians, physicians and 

imaging scientists will work more closely in the future. New 

trends in machine learning in MR reconstruction, may include 

training with small data sets, weakly supervised/unsupervised 

learning, network development to address high-dimensional 

imaging and multitasking. It can be expected that more robust 

methods with strong theoretical explanations will be available 

if we continue to devote efforts in this direction.

 

Table 1. The surveyed deep learning fast magnetic resonance imaging research work with open source code or open source data 
Category Reference Year Method Networ

k 

Data Code 

Data Driven 

End-to-end 

Deep Learning 

MR Image 
Reconstruction 

Zhu et al. 

[78] 
2018 AUTOMAP CNN 

ImageNet database (http://www.image-net.org/), 

MGH-USC HCP public database 

(https://db.humanconnectome.org/) 

https://github.com/chongduan/

MRI-AUTOMAP 

Han et al. 

[37] 
2020 — U-Net 

Knee k-space dataset (http:// mridata.org/), MGH-USC 

HCP public database 

(https://db.humanconnectome.org/) 

https://github.com/hanyoseob/k

-space-deep-learning 

Quan et 
al. [54] 

2018 RefineGAN GAN 
the IXI database [184] (the brain dataset) and the Data 
Science Bowl challenge [185] (the chest dataset) 

http://hvcl.unist.ac.kr/RefineG
AN/ 

Yang et 

al. 

[53] 

2018 DAGAN GAN 

MICCAI 2013 grand challenge dataset,  

pathological MRI images 
https://github.com/nebulaV/DA

GAN 

Mardani 

et al. [51] 
2018 GANCS GAN 

Abdominal Dataset; 

Knee Dataset 

https://github.com/gongenhao/

GANCS 

Cole et al. 

[77] 
2020 

Complex-

valued CNN 
U-Net 

Knee images;  

body scans data;  

cine images 

https://github.com/MRSRL/co

mplex-networks-release 

EI-

Rewaidy 

et al. [71] 

2020 ℂNet U-Net 

Cardiac MR dataset 
https://github.com/hossam-

elrewaidy/urus-mri-recon 

Wang et 
al. [74] 

2020 
Deepcomple

xMRI 
ResNet 

Brain dataset;  

Knee dataset (https://github.com/VLOGroup/mri-
variationalnetwork) 

https://github.com/CedricChing
/DeepMRI 

Souza et 

al. [82] 
2019 

Hybrid 

Cascade 

model. 

CNN 

Calgary-Campinas brain MR raw data 

((https://sites.google. 

com/view/calgary-campinas-dataset/home) 

https://github.com/rmsouza01/

CD-Deep-Cascade-MR-

Reconstruction 

Zheng et 

al. [138] 
2019 

CDDNwith

TDC 
CNN 

Cardiac real-valued MR images https://github.com/tinyRattar/C

SMRI_0325 

Souza et 

al. [83] 
2019 

Hybrid-CS-

Model-MRI 
U-Net 

Brain MR dataset 

(https://sites.google.com/view/calgary-campinas-

dataset) 

https://github.com/rmsouza01/

Hybrid-CS-Model-MRI 

Wang et 

al. [76] 
2019 

DIMENSIO

N 
CNN 

Cardiac MR data https://github.com/Keziwen/DI

MENSION 

Ran et al. 

[79] 
2020 

MD-Recon-

Net 
CNN 

the Calgary-Campinas dataset 

(ttps://sites.google.com/view/calgary-campinas-

dataset/home/mr-reconstruction-challenge) 

https://github.com/Deep-

Imaging-Group/MD-Recon-

Net 

Huang et 
al. [92] 

2019 MICCAN CNN 
Cardiac MRI dataset https://github.com/charwing10/

isbi2019miccan 

Akçakaya 
et al. [98] 

2018 RAKI CNN 
Phantom imaging; 
In vivo imaging 

https://people.ece.umn.edu/~ak
cakaya/RAKI.html 

Physics/Model 

based 
Unrolling 

Iterative Deep 

Learning 

Methods 

Yang et 

al. [134] 
2016 ADMM-Net CNN 

Brain MR images from clinic and chest MR images 

(https://masi.vuse.vanderbilt.edu/workshop2013/index.

php) 

https://github.com/yangyan92/

Deep-ADMM-Net 

Hammern

ik et al. 

[131] 

2018 
Variational 

network 
CNN 

Clinical knee dataset 

(https://github.com/VLOGroup/mri-

variationalnetwork) 

https://github.com/VLOGroup/

mri-variationalnetwork 

Schlempe

r et al. 

[136] 

2018 DCCNN CNN 

Cardiac MR dataset 
https://github.com/js3611/ 

Deep-MRI-Reconstruction 

Zhang et 

al. 
[143] 

2018 ISTA-Net CNN 

Brain MR images 
http://jianzhang.tech/projects/I

STA-Net. 

Aggarwal 
et al. 

[141] 

2019 MoDL CNN 
Brain MR dataset 

https://github.com/hkaggarwal/

modl 

Yang et 

al. [108] 
2020 

ADMM-

CSNet 
CNN 

Brain MR images from clinic and chest MR images 

(https://masi.vuse.vanderbilt.edu/workshop2013/index.

php) 

https://github.com/yangyan92/

ADMM-CSNet 

Chen et al 

[148] 
2019 

Convolution

al de-

aliasing 

network 

CNN 

MR brain dataset 

https://github.com/yanxiachen/

ConvDe-AliasingNet. 

Duan et 
al. [150] 

2019 VS-Net CNN 

Clinical knee dataset 

(https://github.com/VLOGroup/mri-
variationalnetwork) 

https://github.com/j-duan/VS-
Net 

Qin et al. 

[86] 
2019 CRNN RNN 

Cardiac cine MR images https://github.com/js3611/ 

Deep-MRI-Reconstruction 

 

http://www.image-net.org/
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