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Abstract

Computerized detection of colonic polyps remains an unsolved issue because of

the wide variation in the appearance, texture, color, size, and presence of the

multiple polyp-like imitators during colonoscopy. In this paper, we propose a

deep convolutional neural network based model for the computerized detection

of polyps within colonoscopy images. The proposed model comprises 16 con-

volutional layers with 2 fully connected layers, and a Softmax layer, where we

implement a unique approach using different convolutional kernels within the

same hidden layer for deeper feature extraction. We applied two different acti-

vation functions, MISH and rectified linear unit activation functions for deeper

propagation of information and self regularized smooth non-monotonicity. Fur-

thermore, we used a generalized intersection of union, thus overcoming issues

such as scale invariance, rotation, and shape. Data augmentation techniques

such as photometric and geometric distortions are adapted to overcome the ob-

stacles faced in polyp detection. Detailed benchmarked results are provided,

showing better performance in terms of precision, sensitivity, F1- score, F2-

score, and dice-coefficient, thus proving the efficacy of the proposed model.
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detection, precision, rectified linear unit, sensitivity.

1. Introduction

Diagnosing of distinct diseases within the small intestine is a time-consuming

and hectic process for physicians. This has led to the introduction of technolo-

gies such as colonoscopy and wireless capsule endoscopy [1]. Colorectal cancer

(CRC) is the second-highest cause of death by cancer worldwide with 880,792

deaths and a mortality rate of 47.60% in 2018 reported by American Cancer

Society [2] 95% of CRC cases start with the appearance of a growth on the

inner lining of the rectum or colon, called a polyp. Various types of polyps exist

including, adenoma polyps, which can worsen into CRC. CRC is curable in 90%

of cased assuming early detection [3]. Colonoscopy has emerged as minimally

invasive and additional tool for investigating polyps by examining the gastroin-

testinal tract [3]. Colonoscopy relies on highly skillful endoscopists, and recent

clinical investigations have shown colonoscopy misses 22% 28% of polyps. This

false negatives can lead to late diagnosis of colon cancer, resulting in a survival

rate as low 10% [4].

Deep learning (DL) is a subtype of machine learning concerned with the

structure and function of brain-like systems known as artificial neural networks

[5]. DL plays an important role in many areas, including text recognition tasks,

self-driving cars, image recognition, and healthcare. Computer vision and ma-

chine learning-based methods have revolved over several decades to automati-

cally detect polyps [6, 7, 8]. Such systems have generally examined, hand-crafted

features, such as texture, histograms of oriented gradients , color wavelets, Haar,

and local binary patterns [9, 10]. More advanced algorithms have been suggested

to evaluate poyp appearance based on factors such as context information [11]

and edge shape [12]. However, the decrease in detection performance is mainly

due to the similar appearance of polyp-like and polyp structures.

Convolutional neural networks (CNNs) present promising outcomes in polyp

detection and segmentation. CNN features outperformed hand-crafted features
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in the MICCAI 2015 polyp detection challenge [6]. The Region-based CNN

approaches, such as R-CNN [13], Fast R-CNN [14], and Faster R-CNN [15]

have shown promising results for object detection in natural images. Work

has also been done on regression-based object detection models such as You

Only Look Once (YOLO) [16] and single shot multibox detector (SSD) [17].

However, recent investigations have shown that deep neural networks (DNNs),

including CNNs, are extremely vulnerable to noise and perturbations [18]. Even

one single-pixel addition increases the miss detection vulnerability of current

DNNs including CNNs [19]. Even though computer-aided detection techniques

can effectively classify frames from a colonoscopy, detection of polyps remains

challenging due to significant size, appearance, and intensity variations between

frames. This is a serious issue, because polyps and polyp-like objects have

similar appearances in consecutive frames, leading to miss-detection even when

implementing powerful models such as CNNs. Furthermore, the performance

of DL approaches is highly correlated with the amount of data available for

training. The lack of availability of labeled polyp images for training makes the

detection and segmentation of the polyp a difficult task [20].

This work presents a new-CNN based detection model of polyp in colonoscopy

images. The proposed CNN model employs fewer hidden layers, making the

model lighter and less time-consuming during training. The proposed CNN

model employs MISH as an activation function in some of the hidden layers

for better deep propagation of information within the CNN [21]. Data aug-

mentation such as photometric and geometric distortions is performed due to

the scarcity of annotated polyp images generated from the colonoscopy process.

The rest of the paper is categorized as follows: Section 2 presents recent related

work done on polyp detection in colonoscopy images using DL. In Section 3, the

proposed CNN model for polyp detection in colonoscopy images is explained

in detail. in Section 4, the experimental results are described in detail, along

with the dataset acquisition and augmentation process. Finally, in Section 5

the paper is reviewed and concluded and future work is presented.
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2. Related Work

As CNN techniques for single and multiple object detection advance, they

increasingly outperform previous conventional image processing techniques [22].

For multiple object detection, a region-based CNN combined with a deformable

part-based model has been proposed to handle feature extraction and occlusion

[23]. Recently, with the progress of DL in multiple image processing applica-

tions, a CNN- based method has been introduced for polyp detection [24, 25].

Due to this and related progress, CNN features outperformed hand-crafted fea-

tures in the MICCAI 2015 polyp detection challenge [6]. A regression-based

CNN model using ResYOLO combined with efficient convolution operators has

been shown to successfully track and detect polyps in colonoscopy videos [7]. To

avoid miss-detection of polyp between neighboring frames, a two-stage detector

including a CNN-based object detector and a false-positive reduction unit can be

applied [18]. Automatic detection of hyperplastic and adenomatous colorectal

polyps in colonoscopy images has been performed using sequentially connected

encoder-decoder based CNN [26]. Furthermore, automatic polyp detection in

colonoscopy videos can be conducted via ensemble CNN, which learns a variety

of polyp features such as texture, color, shape, and temporal information [27].

To overcome the lack of sufficient training samples for the use of pre-trained

CNN on large-scale natural images, transfer learning systems have been pro-

posed. This has been successfully implemented in various medical applications,

such as automatic interleaving between radiology reports and diagnostic CT

[28], MRI imaging, and ultrasound imaging [29]. Furthermore, the performance

of various CNN architectures based on transfer learning, such as AlexNet and

GoogLeNet has been evaluated for classification of interstitial lung disease and

detection of thoracic-abnormal lymph nodes [30]. Similarly, a transfer learning-

based method using the deep-CNN model Inception Resnet has been used to

detect polyps in colonoscopy images [31]. Questions of whether a CNN with

adequate fine-tuning can overcome the full training of the model from scratch

have been answered in detail by examination of four different medical imag-
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ing applications in three different specialties: gastroenterology, radiology, and

cardiology for the purpose of classification, detection, and segmentation [32].

CNN has been used for decades in the field of computer vision for various

applications. However, training a deep CNN model from scratch a complicated

task [32]. Deep CNN models require a large amount of labeled training data.

This becomes a difficult requirement when large-scale annotated medical data

set are unavailable. Training the models is tedious and computationally time-

consuming, and becomes even more so when facing complications such as over-

fitting and convergence. To overcome these issues, this work presents a form

of CNN-based detection of polyps in colonoscopy images. The proposed model

employs fewer hidden layers, making the model lighter and less time-consuming

during training. The model uses MISH as an activation function in some of

the hidden layers for better deep propagation of information within the CNN

[21]. Data augmentation methods such as photometric and geometric distortions

are used due to the scarcity of annotated polyp images generated from the

colonoscopy process.

3. Proposed Deep Convolutional Neural Network (CNN) Architec-

ture

Initially, the input image is divided into a grid during the training phase.

Then the image is labeled using the RectLabel tool, generating a bounding

box “B” consisting of five features. The horizontal and vertical components

are labeled “x, and “y, respectively. Height and width are labeled “h” and

“w, respectively. Finally, a confidence score “Cs” is defined for each defined

grid cell. The objective function of bounding box “B” is a bag of freebies using

mean square error (MSE) to perform regression on the center coordinate points,

height, and width of the box “B”. The intersection over union (IoU) is a vital

indicator for estimating the distance between the predicted truth and the ground

truth “B” and is given as generalized form as
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Figure 1: Flow of the proposed deep CNN model for polyp detection.

Figure 2: Architecture of the proposed deep CNN for polyp detection.

IoU =
|E ∩ F |
|E ∪ F |

=
|I|
|U |

(1)

where “E” and “F” represent the predicted truth and ground truth, respectively.

Here, the IoU distance LIoU = 1−IoU fulfills all properties of a metric, including

the identity of indiscernibles, non-negativity, triangle inequality, and symmetry,

but has a scale-invariant issue. The cost or loss function for object detection

use l1 norm and l2 norm for x, y, w, h, but due to the scale-invariant property

of IoU, there is an increase in loss with respect to scaling. In the proposed deep

CNN approach to polyp detection, we have implemented generalized (GIoU)

[33] as a new loss to optimize the non-overlapping “B” in consideration of the

shape and orientation of the object in “B”. The GIoU finds the smallest convex

shape C ⊆ S ∈ Rn for two arbitrary convex shapes E,F ⊆ S ∈ Rn followed

by the calculation of the ratio between the area occupied by C minus “E” and

“F”, divided by the total area occupied by “C”. Details for the algorithm
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Figure 3: Mish activation function

and formulation can be found in [33], where a GIoU is expressed in simple

mathematical form as, GIoU = IoU − |C\(E∪F )|
|C| . Furthermore, we have applied

a non-maximum suppression algorithm involving “Cs” to avoid multiple and

overlapping GIoUs.

Fig. 1 shows the general flow of the proposed approach for polyp detection in

colonoscopy images. As shown in Fig. 2, the proposed deep CNN consists of 16

convolutional layers, two fully connected layers, and a softmax layer. To lessen

computational complexity and improve hierarchical image features, maxpooling

is used for the first 15 convolutional layers. For better image feature extraction,

different sizes of convolution kernels are employed, with a stride of 2. In the

proposed model, we have implemented Mish [21], which is a self-regularized

smooth non-monotonic activation function, in the first 15 convolutional layers.

This implementation was done after extensive trials to find the best matching

position of the activation function. As observed in Fig. 3, Mish is an unbounded

above result in avoiding saturation due to capping. This may normally lead

to slow training, i.e., near-zero gradients. A better gradient flow and smooth

propagation of information across deeper layers are achieved by the infinite

order of continuity and a small allowance of negative values, in comparison to a

strictly bounded rectified linear unit (ReLU) as an activation function. MISH
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can be expressed mathematically as:

f(x) = x · tanh(ζ(x)) (2)

where, ζ(x) = ln (1 + ex) is softplus activation [21].

In the last layers, ReLU is used as an activation function to reduce the

likelihood of gradient vanishing and achieve the sparsity. Flattening is done by

two fully connected layers to yield a single continuous linear vector followed by

softmax or the regression layer to generate the required output. The approach

of using Mish and ReLU as an activation function results in smooth propagation

of information across deeper layers. MISH helps to avoid capping, and ReLU

prevents the gradient from vanishing.

The proposed deep CNN is trained with a similar concept of multi-layer

perceptions i.e., a back-propagation algorithm which minimizes the cost function

concerning the unknown weights “W”:

L = − 1

|L|

|L|∑
i

ln
(
p
(
mi|Li

))
(3)

where |L| represents the number of training images, p
(
mi|Li

)
represents the

probability that Li is accurately classified, and Li represents the ith training

image with the associated label mi. We have applied stochastic gradient de-

scent (SGD) as an optimizer, which minimizes the cost function over the whole

training data set along with the cost over mini-batches of data. If W t
j represents

the weights in the jth convolutional layer at t iteration, and L̂ represents the

cost over a mini-batch of size M , then in the next iteration the updated weights

are calculated as given below:

γt = γbtM/|X|c

V t+1
j = µV t

j − γtηj
∂L̂
∂Wj

W t+1
j = W t

j + V t+1
j

(4)

where ηj is the learning rate of the jth, µ is the momentum indicating the

previously updated weight contribution in the current iteration, and γ represent
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the scheduling rate which after each epoch decreases the learning rate η. The

simulation parameters used for the proposed deep CNN are given in Table. 1.

Table 1: Simulation parameters used for deep CNN model

Network parameters Configuration values
Input image dimension 448 X 448

Learning rate 0.0001

Optimizer
Stochastic gradient

descent (SGD)
Momentum 0.9
Bath size 32

Iterations (t) 10,000

4. Experimental Results and Discussion

This section detail the data set specifications and experimental results gen-

erated by implementing the proposed deep CNN for the detection of polyps in

colonoscopy images.

4.1. Dataset Specifications and Augmentation

The study used a publicly available dataset of polyp-frames obtained from

the ETIS-Larib database [34], containing 196 polyp images. These images were

obtained from 34 different colonoscopy videos of 44 different polyps with various

appearances and sizes, having a resolution of 1225×966 pixels. The ground truth

of polyp areas for polyp datasets is determined by expert video endoscopists. A

CNN model trained with such a small amount of data is likely to be meaningless

and unstable, so data augmentation was performed on the polyp dataset. Data

augmentation had to be performed on the colonoscopy images by considering

vivid variations. Otherwise over-fitting would have occurred. In a colonoscopy

imagery, polyps exhibits large variations in location, color, and scale. Moreover,

variations in brightness and definition also occur due varrying the view-point

of the camera. Therefore, in addition to photometric distortions and geometric

9



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Image from the dataset with photometric and geometric augmentation. (a) original

frame of polyp, (b) noisy polyp frame with σ = 1.1, (c) rotated polyp frame with 90◦, (d)

polyp frame with 15.00% zoom in, (e) polyp frame with 15.00% zoom out, (f) dark polyp

frame, (g) bright polyp frame, (h) sheared polyp frame by y-axis, (i) sheared polyp frame by

x-axis.

distortions, we also have considered zooming, shearing, and altering brightness

as strategies for data augmentation.

For photometric distortions, we controlled brightness and contrast as an

enhancement, while blurring by adding noise with a standard deviation (σ)

of 1.0. Similarly, for geometric distortions, clock-wise rotation of the polyp

images with angles of 90◦, 180◦, and 270◦ were performed. Zoom-in and zoom-

out with zooming parameters such as 30.00% and 10.00% were performed to

obtain different scales of polyp images. Lastly, shearing for both the x-axis

and the y-axis was performed to shear the images from left to right and top

to bottom, respectively. Fig. 4 shows photometric and geometric forms of

image augmentation. In this way, we augmented the data set of the ETIS-Larib
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database from 196 polyp images to 2,156 images, which is more suitable for

training the proposed deep CNN model.

4.2. Performance Metrics for Evaluations

The metrics used to evaluate the detection of polyps within colonoscopy

frames in this work are the same as those used in the MICCAI 2015 challenge

[6]. The output obtained using the proposed model has rectangular shaped

coordinates (x, y, w, h). The following parameters are defined as follows:

True Positive (TP): True output detection if the detected centroid falls

within the polyp ground truth. For multiple true output detection within the

same frame and of the same polyp, TP is counted as one.

True Negative (TN): True detection, i.e., negative frames (frames without

polyps) yielding no detection output.

False Positive (FP): False detection output where the detected centroid

falls outside the polyp ground truth.

False Negative (FN): False detection output, i.e, polyp is missed in a

frame having a polyp.

Employing the above parameters, we can compute the following performance

metrics to efficiently evaluate the performance of the proposed deep CNN model.

Precision: This metric computes how precisely the model is detecting a

polyp within an image

Precision (Pre) =
TP

TP + FP
× 100 (5)

Sensitivity: This metric is also called recall or True Positive Rate and

computes the proportion of the actual polyps that were detected correctly

Sensitivity (Sen) =
TP

TP + FN
× 100 (6)

F1- score and F2- score: F1 and F2- score is simply the harmonic mean

between precision and sensitivity , in a range of [0, 1]. Both scores are recognized

to balance the precision and sensitivity. The F1- score is given as:

F1− score =
2× Sen × Pre

Sen + Pre
× 100 (7)
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Figure 5: Training phase of the proposed deep CNN model.

while the F2- score can be calculated as:

F2− score =
5× Pre× Sen

4× Pre + Sen
(8)

Dice Coefficient: This metric is used for pixel-wise result comparison be-

tween ground truth and predicted detection that ranges [0, 1], and is given

as:

Dice coefficient (E,F ) =
2× |E ∩ F |
|E|+ |F |

=
2× TP

2× TP + FP + FN
(9)

4.3. Polyp Frames Evaluation

This section reports the polyp detection performance of the proposed CNN

model. For implementation of the model, 80.00% and 20.00% of the 2,156 aug-

mented polyp frames were used for training and testing, respectively. Fig. 5

shows the real-time training phase of the proposed model, where 10,000 itera-

tions were run to achieve the best weights. The model was trained using the
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simulation parameters as given in Table. 1, both for the non-augmented ETIS-

Larib database [34] containing 196 poly images, and the augmented data set, for

fair performance comparison. A high mean average precision of 97.70% with an

MSE of 0.900 was obtained in the early iterations, resulting in the best weights

for testing purposes.

The results listed in Table. 2 using the proposed deep CNN model, show

better performance, with high values for precision, the F1-score, the F2-score,

and the dice coefficients. Note that the low sensitivity or recall values is an

indication of better polyp detection performance in the proposed model. As

observed in Table. 2, the proposed model is compared to other works [31] that

showed better performance for both the non-augmented and augmented case.

For the non-augmented data set of ETIS-Larib, the generated TP, FP, and FN

values were 90, 35, and 51, respectively. Similarly, 20.00% of the augmented

data set was employed for testing purposes, generating TP, FP, and FN values

of 340, 20, and 70, respectively.

Table 2: Detection performance comparison of the proposed deep CNN model on ETIS-Larib

database without(w/0) and with augmentation strategies.

Data set
Performance metrics

[31] (%)
Propose deep

CNN model (%)

Non-augmented

ETIS LARIB

database (196)

Pre 48.00 Pre 72.00

Sen 39.40 Sen 63.82

F1- score 43.30 F1- score 67.66

F2- score 40.90 F2- score 65.30

Dice-coefficient NA Dice-coefficient 0.676

Augmented ETIS

LARIB database

(2,156)

Pre 91.40 Pre 94.44

Sen 71.20 Sen 82.92

F1- score 80.00 F1- score 88.30

F2- score 74.50 F2- score 85.00

Dice-coefficient NA Dice-coefficient 0.88

The results shown in Fig. 6 are generated using the proposed deep CNN

model on the augmented data set. It can be observed that the proposed model
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Figure 6: Example of accurate detection along with the correct ground truth using deep CNN

model. The first row shows the detection results for different polyp from data augmentation

process. The second shows the ground truth images of test images.

shows better polyp detection performance. As illustrated in Fig. 6, polyps

within a frame can be identified at multiple positions, and as noted above in this

case, the TP for detection is considered to be 1. The proposed deep CNN model

performed better than other benchmark results in terms of the performance

metrics listed above, as shown in Table. 2 and Fig. 6.

For single and deep layer of the proposed model, we have shown channel

activation representing the convolutional kernels accurately detected the polyp.

Fig. 7 shows different bright and dark parts corresponding to the spatial prop-

erty of the object within the test images for single and deep layers. The top

left is the test polyp image followed by top right detection output generated by

proposed deep CNN model. The bottom left shows the single layer activation

channel whole bottom right shows the deep layer for deeper feature analysis rep-

resented by green rectangular boxes. It can be observed in Fig. 7, that both

single and deep layers are extracting polyp features with a high score, resulting

in high polyp detection.
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Figure 7: Test polyp channel activation visualization of CNN after training of the proposed

deep CNN model. Top left: test polyp images, Top right: detection output of the test image,

Bottom left: activation channel for single layer, Bottom right: activation channel for deep

layer (both shown by green rectangular box).

4.4. Benchmark Performance with Other Approaches

The performance of the proposed deep CNN model was benchmarked against

the 2015 MICCAI challenge [6], as the dataset used was the same. The top three

experimental results from each team in the challenge UNS-UCLAN, OUS, and

CUMED were selected for benchmarking. These results were selected because

CNN has been used for learning end-to-end detection of the polyp. The UNS-

UCLAN team [6] used three CNNs for the extraction of features on multiple

spatial scales, followed by a classification approach with a multi-layer perception

network. AlexNet, a CNN-based model was adopted with a conventional sliding

window to perform patch-based classification [31]. The CUMED team used a
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Table 3: Performance comparison of the proposed deep CNN model on ETIS-Larib database

with other methods.

Implemented

methods

Performance metrics

Pre (%) Sen (%) F1- score (%) F2- score (%) Dice-coefficient

UNS-ULCAN 32.70 52.80 40.40 47.10 NA

OUS 69.70 63.00 66.10 64.20 NA

CUMED 72.30 69.20 70.70 69.80 NA

Proposed deep

CNN model
94.44 82.92 88.30 85.00 0.88

segmentation approach based on CNN [34], where classification was conducted

pixel-wise along with a ground truth mask.

As shown in Table. 3, the generated results from the proposed model using

the augmented dataset outperform the other team’s methods on several metrics,

including precision, sensitivity, F1- score, F2- score, and dice-coefficient. As

DL-based methods employ different computers with different specifications, it

is hard to benchmark detection processing directly. In our work, the dataset

was trained and tested on NVIDIA Titan RTX GPUs to reduce processing time.

Compared to the other studies listed in Table. 3 the mean detection processing

time 0.6 sec per frame. This is slightly greater than that in competing models,

but the increased processing time comes with better performance.

Conclusion

In this paper, we presented a computerized DL-based detection model for

colonic polyps. A deep CNN model consisting of 16 convolutional layers with

two full-connected layers, and a Softmax layer, was implemented with different

kernel sizes in the same hidden layer being employed. Moreover, two different

activation functions MISH and ReLU were implemented for the first time to

provide deeper propagation of information, better self-regularization, and bet-

ter capping avoidance. The scale invariance issue related to IoU was addressed

by adopting a GIoU that is robust under rotation and shape variation. Further-

more, photometric and geometric strategies were used for data augmentation,
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thus overcoming the image scarcity issue. We provided a detailed benchmark

performance comparison of our detection output, which outperforms the other

approaches in performance metrics such as precision, sensitivity, F1- score, F2-

score, and dice-coefficient.
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