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Abstract— This paper focuses on step length estimation using 
inertial measurement sensors. Accurate step length estimation 
has a number of useful health applications, including its use in 
characterizing the postural instability of Parkinson’s disease 
patients. Three different sensor configurations are studied using 
sensors on the shank and/or thigh of a human subject.  The 
estimation problem has several challenges due to unknown 
measurement bias, misalignment of the sensors on the body and 
the desire to use a minimum number of sensors. A nonlinear 
estimation problem is formulated that aims to estimate shank 
angle, thigh angle, bias parameters of the inertial sensors and 
step lengths. A nonlinear observer is designed using Lyapunov 
analysis and requires solving an LMI to find a stabilizing 
observer gain. It turns out that global stability over the entire 
operating region can only be obtained by using switched gains, 
one gain for each piecewise monotonic region of the nonlinear 
output function. Experimental results are presented on the 
performance of the nonlinear observer and compared with gold 
standard reference measurements from an infrared camera 
capture system. An innovative technique that utilizes three 
sensors is shown to provide a step length accuracy nearly equal 
to that of the four-sensor configuration. 
 

I. INTRODUCTION 

Inertial measurement unit (IMU) sensors are widely used 
in navigation and stabilization systems. However, they suffer 
from measurement bias and drift that highly degrade the 
accuracy of integration-based position estimation algorithms 
in a short period of time after initialization. The unreliability 
of integration based position estimation from IMUs has been 
widely known for many years  [1]. Therefore, IMUs are 
usually used in combination with other sensors like GPS, 
magnetometers or cameras. For example, Sukkarieh, et al. 
studied a combination of IMU and GPS signals through a 
Kalman Filter for a navigation application [2]. Wang and 
Rajamani estimated altitude by finding the direction cosine 
matrix using a combination of accelerometer and 
magnetometer measurements [3]. Since GPS satellite systems 
are not accurate enough for centimeter-level accuracy, IMUs 
have often been used with a combination of radar or camera 
systems in autonomous vehicle applications. For example, an 
IMU with Camera [4], an IMU-Lidar combination [5] and an 
IMU-GPS-Camera system [6] have been described in the 
literature. In addition, there are multiple papers that develop 
different stochastic filters to increase the accuracy and 
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optimize the performance of these sensor combinations [7]–
[9]. 

For the purpose of everyday human body motion tracking 
and step length estimation, GPS is not accurate enough and 
does not work well indoors. Camera systems are expensive, 
impractical to widely implement and raise many privacy 
concerns. Therefore, researchers have tried to find model-
based methods to estimate body motions from IMUs. For 
instance, Matthews tried to solve a simplified three degree of 
freedom kinetic model of human gait using a Newton-Euler 
approach and simplifying assumptions on the internal body 
forces [10]. In another research study, Ketema and Gebre-
Egziabher used a kinematic model of gait and presumed 
constraints on the gait pattern by assuming certain relations 
between the motions of the limbs to one another [11]. The 
problem with these approaches is they make several 
assumptions on the initial and boundary conditions and utilize 
gait constraints, which are not uniformly correct for different 
persons and situations. Weinberg used an empirical relation to 
calculate step lengths from accelerometers [12], Jahn, et al. 
compared some of these empirical and geometrical models 
with each other [13]. Davidson and Takala introduced a 
Kalman filter for estimation of velocity and step lengths from 
IMU acceleration measurements and compared its 
performance to empirical relations [14].  

For estimation of the tilt angle and the measurement bias 
of IMUs we need nonlinear models and algorithms [15]. There 
are two major types of approaches in nonlinear observer 
design - high gain observers for triangular structure systems 
[16], [17] and linear matrix inequality based observers [18]. 
High gain observers are popular but have to address issues 
regarding noise sensitivity, high frequency model uncertainty 
and requirements on model structure [19]–[21]. On the other 
hand, LMI-based observers have been studied and developed 
for specific classes of nonlinear systems in the literature. For 
example, Wang developed LMI-based observers to handle 
nonlinear systems that have bounded Jacobians [22], Jeon 
introduced a gridded LMI-based observer for a nonlinear 
system with a wide range of operating conditions [23]. 
Rajamani et al. showed some important drawbacks of LMI-
based observers for non-monotonic nonlinear systems and 
presented a solution by introducing a hybrid switched-gain 
observer [24].  
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This research develops a hybrid switched-gain nonlinear 
observer for the step length estimation problem and presents a 
design based on solving a linear matrix inequality for each 
monotonic region in a nonlinear output function. The objective 
of this nonlinear observer is to estimate the real-time vertical 
in-plane angle of the IMU relative to the gravity vector as well 
as to estimate the real-time bias values of the accelerometer 
and gyroscope. The estimated real-time angle is used in 
finding the orientation of the body limb segment and also for 
transforming the accelerations to the inertial frame. This 
information is utilized in three different approaches for 
estimation of human step length:  

i) The first method integrates the linear acceleration 
components of the shank sensors and provides the 
velocity and displacement of the sensors in space 
and hence the step lengths by assuming zero initial 
conditions at the start moment of each step. Only two 
sensors are needed. 

ii) The second method estimates the orientations of 
multiple sensors and takes advantage of the 
geometry of the body to estimate step lengths. Four 
sensors (one on each shank and thigh) are needed. 

iii) The third method utilizes only three sensors (one 
sensor on a thigh and two sensors on the two shanks) 
and assumes that each leg has a stance and swing 
phase during walking, with the thigh angular 
trajectory being symmetric between the two legs. 

A preliminary version of these results was published in a 
conference paper [25]. This journal submission of the 
manuscript has the following additional contributions 
compared to the conference version: 

a) This manuscript utilizes switched gains to ensure global 
stability of the observer over a large range of operating 
conditions for thigh and shank angles.  The conference 
version had a constant observer gain, ensured only local 
stability, and only allowed limited operation over 0 to 30 
degrees. 

b) The conference version only had the two-sensor and four-
sensor configurations while this manuscript proposes an 
innovative three-sensor configuration which is shown to 
provide almost the same level of accuracy as the 4-sensor 
configuration. 

c) Complete proofs of all theoretical results are provided. 

d) Significant additional experimental results are included 
here compared to the conference version of the paper. 

In previous literature, there are three typical alternative 
methods for step length estimation: 

1. Integration of accelerometer signals, but without calculation 
of tilt angles and without transformation of sensor-axes 
signals to inertial-axes signals. Fig 10 and 11 in this paper 
show the insufficiency of this method. 

2. Estimation of the gravity vector using SO(3) attitude 
estimation methods. This type of approach is well 
established in the aerospace UAV community, e.g. [26], 
[27]. Some challenges in using this type of approach for 

wearable applications include the significant influence of 
local magnetic field disturbances due to ferromagnetic 
objects in the surroundings, and the conversion of a linear 
estimation problem into a nonlinear estimation problem 
when bias parameters are included in the plant model. While 
good estimation results with this type of estimation 
approach have been shown for UAV and other aerospace 
applications, there are less demonstrations of real-world 
performance in wearable medical applications.  

3. Estimation with the same dynamic model presented in this 
paper but using stochastic approaches like the extended 
Kalman Filter (EKF), instead of using a nonlinear observer 
[11]. The disadvantages of the EKF for this application are 
the presence of non-monotonic nonlinear functions in the 
measurement equations which leads to poor robustness 
when there are model errors in the output nonlinear 
functions, as has been demonstrated by other publications in 
literature [28].  

The remainder of this paper is organized as follows. In 
Section II, the nonlinear observer design algorithm is 
formulated. In Section III, three different step length 
estimation methods are described. In Section IV, experimental 
results for validating the accuracy of the nonlinear observer 
and the step length estimation methods are presented. Finally, 
section V presents the conclusions.  

II. NONLINEAR OBSERVER 
This paper assumes the use of either an IMU sensor on the 

shank (lower leg) or two IMU sensors, one each on the shank 
and thigh (upper leg), as shown in Fig.1. The axes of the IMU 
sensor and the attachment of it to a body limb segment are 
shown in Fig. 2. 𝜃𝜃 is the real-time absolute (inertial) angle of 
the limb segment and 𝜓𝜓 is the unknown orientation angle of 
the sensor on the limb (due to small misalignments). Although 
𝜓𝜓 is unknown, it does not change with time, while the segment 
angle 𝜃𝜃 may continuously change with time. The sensor fixed 
axes are defined as (𝑥𝑥,𝑦𝑦) and the inertial frame fixed axes are 
(𝑋𝑋,𝑌𝑌) as shown in Fig. 2. The variables 𝑎𝑎𝑥𝑥, 𝑎𝑎𝑦𝑦, 𝑎𝑎𝑋𝑋 and 𝑎𝑎𝑌𝑌 are 
the true accelerations along these axes respectively. 

 
Fig. 1. The mounting of the sensors on shank and thigh of the left leg. 
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Fig. 2. The mounting and assumed axes of the sensor on a segment limb. 

The sensor is shown in red. Sensor-fixed axes are defined as (𝑥𝑥, 𝑦𝑦) and the 
inertial frame axes are (𝑋𝑋,𝑌𝑌) . 𝜃𝜃 is the real-time absolute (inertial) angle of 
the limb segment and 𝜓𝜓 is the unknown mounting orientation angle of the 

sensor on the limb 

A. Mathematical model 
The orientation of each sensor is 𝜃𝜃 + 𝜓𝜓 , where 𝜃𝜃  is the 

real-time angle of the shank and 𝜓𝜓 is the additional unknown 
mounting angle of the sensor on the shank.  

Let  
𝜙𝜙 = 𝜃𝜃 + 𝜓𝜓. (1) 

 
Then the measurements of the accelerometers can be 

described by outputs 𝑦𝑦1 and 𝑦𝑦2: 
𝑦𝑦2 = 𝑎𝑎𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑦𝑦 − 𝑔𝑔 cos(𝜙𝜙) + 𝑏𝑏𝑎𝑎𝑦𝑦 (2) 

𝑦𝑦1 = 𝑎𝑎𝑥𝑥𝑦𝑦 = 𝑎𝑎𝑥𝑥 − 𝑔𝑔 sin(𝜙𝜙) + 𝑏𝑏𝑎𝑎𝑥𝑥 (3) 
 
The gyroscope signal measured by the sensor is described by 
the known input: 

𝑢𝑢 = 𝜔𝜔𝑔𝑔𝑔𝑔 = ��̇�𝜃 + �̇�𝜓�
𝑦𝑦𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

= �̇�𝜃 + 𝑏𝑏𝑔𝑔𝑔𝑔 (4) 
 
Here 𝑏𝑏𝑎𝑎𝑥𝑥 , 𝑏𝑏𝑎𝑎𝑦𝑦  and 𝑏𝑏𝑔𝑔𝑔𝑔  are the unknown bias values of the 
accelerometer and the gyroscope measurements and are 
assumed to be constant. 

The relationships of the inertial accelerations to the sensor 
measured accelerations are given by: 

𝑎𝑎𝑋𝑋 = 𝑎𝑎𝑥𝑥 cos(𝜃𝜃 + 𝜓𝜓) + 𝑎𝑎𝑦𝑦 sin(𝜃𝜃 + 𝜓𝜓) (5) 

𝑎𝑎𝑌𝑌 = 𝑎𝑎𝑦𝑦 cos(𝜃𝜃 + 𝜓𝜓) − 𝑎𝑎𝑥𝑥 sin(𝜃𝜃 + 𝜓𝜓) (6) 
 
Then the overall dynamics of the sensor system on each lower 
leg can be described by the following equations: 

�̇�𝜙 = 𝜔𝜔𝑔𝑔𝑔𝑔 + 𝑏𝑏𝑔𝑔𝑔𝑔 (7) 
�̇�𝑏𝑎𝑎𝑥𝑥 = 0  
�̇�𝑏𝑎𝑎𝑦𝑦 = 0  
�̇�𝑏𝑔𝑔𝑔𝑔 = 0  

In matrix form, the system dynamics are: 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

=
𝑑𝑑
𝑑𝑑𝑑𝑑
⎩
⎨

⎧
𝜙𝜙
𝑏𝑏𝑎𝑎𝑥𝑥
𝑏𝑏𝑎𝑎𝑦𝑦
𝑏𝑏𝑔𝑔𝑔𝑔⎭

⎬

⎫
= �

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

�

⎩
⎨

⎧
𝜙𝜙
𝑏𝑏𝑎𝑎𝑥𝑥
𝑏𝑏𝑎𝑎𝑦𝑦
𝑏𝑏𝑔𝑔𝑔𝑔⎭

⎬

⎫
+ �

1
0
0
0

�𝜔𝜔𝑔𝑔𝑔𝑔 

(8) 

𝑦𝑦 = �
𝑦𝑦1
𝑦𝑦2� = ℎ(𝐸𝐸𝑥𝑥) + 𝐶𝐶𝑥𝑥 + 𝐷𝐷𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 (9) 

where 

𝐸𝐸 = [1 0 0 0] (10) 

𝐶𝐶 = �0 1 0 0
0 0 1 0� 

 

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 = �
𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦� 

 

and 

ℎ(𝐸𝐸𝑥𝑥) = �ℎ1(𝐸𝐸𝑥𝑥)
ℎ2(𝐸𝐸𝑥𝑥)� = �−𝑔𝑔 sin𝜙𝜙 

−𝑔𝑔 cos𝜙𝜙� 

 

In general system notation form, the system model is 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑥𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝜔𝜔𝑔𝑔𝑔𝑔 

(11) 

𝑦𝑦 = 𝐶𝐶𝑥𝑥 + ℎ(𝐸𝐸𝑥𝑥) + 𝐷𝐷𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 (12) 

B. Development of LMI-based observer design algorithm: 
Let the observer be given as 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑥𝑥� = 𝐴𝐴𝑥𝑥� + 𝐵𝐵𝜔𝜔𝑔𝑔𝑔𝑔 + 𝐿𝐿{𝑦𝑦 −  𝐶𝐶𝑥𝑥� − ℎ(𝐸𝐸𝑥𝑥�)} 

(13) 

Let the estimation error be:  

𝑥𝑥� = 𝑥𝑥 − 𝑥𝑥� (14) 

Then the estimation error dynamics are given by: 

𝑥𝑥�̇ = �̇�𝑥 − 𝑥𝑥�̇ = 𝐴𝐴𝑥𝑥� − 𝐿𝐿𝐶𝐶𝑥𝑥� − 𝐿𝐿ℎ(𝐸𝐸𝑥𝑥) + 𝐿𝐿ℎ(𝐸𝐸𝑥𝑥�) − 𝐿𝐿𝐷𝐷𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 

or 

𝑥𝑥�̇ = (𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑥𝑥� − 𝐿𝐿ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�) − 𝐿𝐿𝐷𝐷𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 (15) 

where ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�) = ℎ(𝐸𝐸𝑥𝑥) − ℎ(𝐸𝐸𝑥𝑥�). 

Lemma 1: 

The nonlinear difference function ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�) satisfies the 
quadratic inequality 

𝑉𝑉1 = [𝑥𝑥�𝑇𝑇 ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)𝑇𝑇] Θ � 𝑥𝑥�
ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)� ≤ 0 (16) 

where  
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Θ =

⎣
⎢
⎢
⎢
⎡𝐸𝐸𝑇𝑇𝑀𝑀

𝑇𝑇𝑁𝑁𝐸𝐸 + 𝐸𝐸𝑇𝑇𝑁𝑁
𝑇𝑇
𝑀𝑀𝐸𝐸

2
−
𝐸𝐸𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑁𝑁𝑇𝑇

2

−
𝑀𝑀𝐸𝐸 + 𝑁𝑁𝐸𝐸

2
𝐼𝐼 ⎦

⎥
⎥
⎥
⎤
 

with 𝑀𝑀 = �𝑀𝑀1 0
0 𝑀𝑀2

�  and 𝑁𝑁 = �𝑁𝑁1 0
0 𝑁𝑁2

�  being diagonal 

matrices containing the lower and upper bounds on the partial 
derivates of ℎ1(𝐸𝐸𝑥𝑥) = −𝑔𝑔 sin𝜙𝜙  and ℎ2(𝐸𝐸𝑥𝑥) = −𝑔𝑔 cos𝜙𝜙 
respectively.   

Proof: 
From the differential mean value theorem, ∃ 𝑧𝑧 = 𝐸𝐸𝑥𝑥 such 

that [25] 

ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�) = �
⋮

ℎ𝑖𝑖(𝐸𝐸𝑥𝑥) − ℎ𝑖𝑖(𝐸𝐸𝑥𝑥�)
⋮

�

=      

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕ℎ1
𝜕𝜕(𝐸𝐸𝑥𝑥)�𝑔𝑔=𝑔𝑔1

0 0 0

⋮ ⋱ ⋱ 0
0 ⋱ 0

0 ⋯ 0
𝜕𝜕ℎ𝑦𝑦
𝜕𝜕(𝐸𝐸𝑥𝑥)�𝑔𝑔=𝑔𝑔𝑚𝑚⎦

⎥
⎥
⎥
⎥
⎥
⎤

(𝐸𝐸𝑥𝑥 − 𝐸𝐸𝑥𝑥�) 

 

  
(17) 

Then, using the lower and upper Jacobian bounds: 

ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�) −𝑀𝑀𝐸𝐸𝑥𝑥� =   

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕ℎ1
𝜕𝜕(𝐸𝐸𝑥𝑥)�𝑔𝑔=𝑔𝑔1

− 𝑀𝑀1 0 0 0

⋮ ⋱ ⋱ 0
0 ⋱ 0
0 ⋯ 0 𝜕𝜕ℎ𝑚𝑚

𝜕𝜕(𝐸𝐸𝑥𝑥)�𝑔𝑔=𝑔𝑔𝑚𝑚
− 𝑀𝑀𝑦𝑦⎦

⎥
⎥
⎥
⎥
⎤

𝐸𝐸𝑥𝑥� 

 

  
(18) 

and 

     ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�) − 𝑁𝑁𝐸𝐸𝑥𝑥� =  

diag �
𝜕𝜕ℎ1
𝜕𝜕(𝐶𝐶𝑥𝑥)�𝑔𝑔=𝑔𝑔1

− 𝑁𝑁1, … … … ,  
𝜕𝜕ℎ𝑦𝑦
𝜕𝜕(𝐶𝐶𝑥𝑥)�𝑔𝑔=𝑔𝑔𝑚𝑚

− 𝑁𝑁𝑦𝑦 � 𝐸𝐸𝑥𝑥� 

(19) 

 
From (18) and (19), it follows that 

�ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�) −𝑀𝑀𝐸𝐸𝑥𝑥��𝑇𝑇�ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�) −𝑁𝑁𝐸𝐸𝑥𝑥�� 

= 𝑥𝑥�𝑇𝑇𝐸𝐸𝑇𝑇   𝑑𝑑𝑑𝑑𝑎𝑎𝑔𝑔 �… ,�
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕(𝐶𝐶𝑥𝑥)�𝑔𝑔=𝑔𝑔𝑖𝑖

− 𝑀𝑀𝑖𝑖�
𝑇𝑇

�
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕(𝐶𝐶𝑥𝑥)�𝑔𝑔=𝑔𝑔𝑖𝑖

− 𝑁𝑁𝑖𝑖� , … . � 𝐸𝐸𝑥𝑥�   
(20) 

 
Since each of the terms in the diagonal matrix is non-

positive, the following negative definite inequality follows 

 �ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�) −𝑀𝑀𝐸𝐸𝑥𝑥��𝑇𝑇�ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�) −𝑁𝑁𝐸𝐸𝑥𝑥�� ≤ 0      (21) 

Equation (21) can be rewritten as 

[𝑥𝑥�𝑇𝑇 ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)𝑇𝑇] �𝐸𝐸
𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝐸𝐸 −𝐸𝐸𝑇𝑇𝑀𝑀𝑇𝑇

−𝑁𝑁𝐸𝐸 𝐼𝐼
�
𝑇𝑇
� 𝑥𝑥�
ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)� ≤ 0 (22) 

Since 𝑀𝑀 and 𝑁𝑁 can also be switched in (22), a symmetric 
form of (22) is  

𝑉𝑉1 = [𝑥𝑥�𝑇𝑇 ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)𝑇𝑇]  

�
𝐸𝐸𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝐸𝐸+𝐸𝐸𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝐸𝐸

2
− 𝐸𝐸𝑇𝑇𝑀𝑀𝑇𝑇+𝐸𝐸𝑇𝑇𝑁𝑁𝑇𝑇

2

−𝑀𝑀𝐸𝐸+𝑁𝑁𝐸𝐸
2

𝐼𝐼
� � 𝑥𝑥�
ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)� ≤ 0 

 
(23) 

QED. 
 
Theorem 1: 

If the acceleration input 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 is zero, then the errors in 
the estimates of the angle and the bias parameters will 
converge globally exponentially to zero, if the observer gain  
is selected so that the following LMI-equivalent inequality 

𝑆𝑆 < 0 (24) 

yields a positive definite solution 𝑃𝑃 > 0 and an observer gain 
solution 𝐿𝐿, with the elements of the matrix 𝑆𝑆 defined as 

𝑠𝑠11 = (𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝐶𝐶) −
𝐸𝐸𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝐸𝐸 + 𝐸𝐸𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝐸𝐸

2 + 𝜎𝜎𝑃𝑃 

𝑠𝑠12 = −𝑃𝑃𝐿𝐿 +  
𝐸𝐸𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑁𝑁𝑇𝑇

2
 

𝑠𝑠21 = −𝐿𝐿𝑇𝑇𝑃𝑃 +
𝑀𝑀𝐸𝐸 + 𝑁𝑁𝐸𝐸

2
 

𝑠𝑠22 = −𝐼𝐼. 

Proof: 

Consider the Lyapunov function candidate 

𝑉𝑉 = 𝑥𝑥�𝑇𝑇𝑃𝑃𝑥𝑥� (25) 

with 𝑃𝑃 > 0 being a positive definite matrix.  Then 

�̇�𝑉 = 𝑥𝑥�̇𝑇𝑇𝑃𝑃𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝑃𝑃𝑥𝑥�̇ 
=  𝑥𝑥�𝑇𝑇[(𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝐶𝐶)]𝑥𝑥� 
                     −𝑥𝑥�𝑇𝑇𝑃𝑃𝐿𝐿ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�) − ℎ�𝑇𝑇(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)𝐿𝐿𝑇𝑇𝑃𝑃𝑥𝑥� 
                     −𝑥𝑥�𝑇𝑇𝑃𝑃𝐿𝐿𝐷𝐷𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 − 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑇𝑇 𝐷𝐷𝑇𝑇𝐿𝐿𝑇𝑇𝑃𝑃𝑥𝑥𝑃 

(26) 

If 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 = 0, then  

�̇�𝑉 = 𝑥𝑥�𝑇𝑇[(𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝐶𝐶)]𝑥𝑥� − 
                    𝑥𝑥�𝑇𝑇𝑃𝑃𝐿𝐿ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�) − ℎ�𝑇𝑇(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)𝐿𝐿𝑇𝑇𝑃𝑃𝑥𝑥� 

(27) 

or �̇�𝑉 =  
[𝑥𝑥�𝑇𝑇 ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)𝑇𝑇] �(𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝐶𝐶) −𝑃𝑃𝐿𝐿

−𝐿𝐿𝑇𝑇𝑃𝑃 0
� � 𝑥𝑥�
ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)� 

Using the S-Procedure Lemma [29], 

�̇�𝑉 < 0 if and only if there exists 𝜖𝜖 > 0 such that �̇�𝑉 ≤ 𝜖𝜖𝑉𝑉1. 
Hence, �̇�𝑉 < 0 if and only if 

[𝑥𝑥�𝑇𝑇 ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)𝑇𝑇] �(𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝐶𝐶) −𝑃𝑃𝐿𝐿
−𝐿𝐿𝑇𝑇𝑃𝑃 0

� � 𝑥𝑥�
ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)�

≤ 
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𝜖𝜖[𝑥𝑥�𝑇𝑇 ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)𝑇𝑇] �

𝐸𝐸𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝐸𝐸 + 𝐸𝐸𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝐸𝐸
2

−
𝐸𝐸𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑁𝑁𝑇𝑇

2

−
𝑀𝑀𝐸𝐸 + 𝑁𝑁𝐸𝐸

2
𝐼𝐼

� � 𝑥𝑥�
ℎ�(𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥�)� 

or 

𝑆𝑆 < 0 (28) 

where 

𝑠𝑠11 =
(𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑇𝑇𝑃𝑃

𝜖𝜖 +
𝑃𝑃
𝜖𝜖

(𝐴𝐴 − 𝐿𝐿𝐶𝐶) −
𝐸𝐸𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝐸𝐸 + 𝐸𝐸𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝐸𝐸

2  

𝑠𝑠12 = −𝑃𝑃𝐿𝐿/𝜖𝜖 +  
𝐸𝐸𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑁𝑁𝑇𝑇

2
 

𝑠𝑠21 = −
𝐿𝐿𝑇𝑇𝑃𝑃
𝜖𝜖

+
𝑀𝑀𝐸𝐸 + 𝑁𝑁𝐸𝐸

2
 

𝑠𝑠22 = −𝐼𝐼 

Replacing 𝑃𝑃 by a new positive definite matrix 𝑃𝑃1 = 𝑃𝑃/𝜖𝜖, 
and adding a 𝜎𝜎𝑃𝑃  term to the (1,1) entry for a guaranteed 
exponential convergence rate of 𝜎𝜎/2 , the result follows. 

Remark: 

Low-pass filtered versions of 𝑦𝑦1 and 𝑦𝑦2 can be used in the 
observer so that the dynamic components are removed and 
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 can indeed be negligible. In other words, 

𝑦𝑦2 = 𝑎𝑎𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑦𝑦 − 𝑔𝑔 cos(𝜃𝜃 + 𝜓𝜓) + 𝑏𝑏𝑦𝑦  
𝑦𝑦1 = 𝑎𝑎𝑥𝑥𝑦𝑦 = 𝑎𝑎𝑥𝑥 − 𝑔𝑔 sin(𝜃𝜃 + 𝜓𝜓) + 𝑏𝑏𝑥𝑥 

while  
𝑦𝑦2_𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑎𝑎𝑚𝑚𝑚𝑚 = −𝑔𝑔 cos(𝜃𝜃 + 𝜓𝜓) + 𝑏𝑏𝑦𝑦  
𝑦𝑦1_𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑎𝑎𝑚𝑚𝑚𝑚 = −𝑔𝑔 sin(𝜃𝜃 + 𝜓𝜓) + 𝑏𝑏𝑥𝑥 

Hence, �
𝑦𝑦1_𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑎𝑎𝑚𝑚𝑚𝑚
𝑦𝑦2_𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑎𝑎𝑚𝑚𝑚𝑚

� = 𝐶𝐶𝑥𝑥 + ℎ(𝐸𝐸𝑥𝑥), instead of �
𝑦𝑦1
𝑦𝑦2� = 𝐶𝐶𝑥𝑥 +

ℎ(𝐸𝐸𝑥𝑥) + 𝐷𝐷𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖, and thus 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 = �
𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦� = 0.  

C. Hybrid observer using switched gains 

It turns out that due to the output function for 𝑦𝑦2 , i.e. 
ℎ2(𝐸𝐸𝑥𝑥), being non-monotonic as shown in Fig. 3, the LMI 
(24) does not have a common feasible solution over the entire 
operating range of 𝜙𝜙.  Instead it is found to be feasible only in 
each of the monotonic regions R1, R2 and R3 shown in Fig. 3.  
This can be understood as follows: 

The matrix 𝐴𝐴 by itself is not stable for the given value of 𝐴𝐴 
in equations (8) – (10).  When the nonlinear function ℎ(𝐸𝐸𝑥𝑥) is 
non-monotonic, then the matrices 𝑀𝑀  and 𝑁𝑁  are diagonal 
matrices with 𝑁𝑁 > 0 and 𝑀𝑀 < 0.  Hence the 𝑠𝑠11 element 

𝑠𝑠11 = (𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝐶𝐶) −
𝐸𝐸𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝐸𝐸 + 𝐸𝐸𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝐸𝐸

2 + 𝜎𝜎𝑃𝑃 

cannot be negative definite which rules out a feasible solution 
to the LMI (24). On the other hand, in each monotonic region 
𝑀𝑀 and 𝑁𝑁 are both positive or negative definite (have the same 
sign).  This enables a feasible solution to the LMI (24) in each 
monotonic region. 

It is proved in [24] that a hybrid nonlinear observer which 
uses multiple constant-gain stable regions and switches 
between these stable gains with adequate dwell time after each 
switching is globally asymptotically stable. Thus, a single gain 
observer does not exist for the entire operating region and 
instead we need to solve equation (24) for each monotonic 
region of the nonlinear function ℎ  and find three different 
values of the observer gain. Then we switch between these 3 
observer gains. Fig. 3 shows that in region 1 and region 3, both 
outputs are monotonic but in region 2 only the first output is 
monotonic. Therefore, the observers in region 1 and region 3 
are designed based on both outputs and the observers in region 
2 uses only the first output. Finally, a hybrid switching-gain 
observer with three constant gains is designed for the system. 
By solving the LMI of equation (24) using YALMIP in 
MATLAB, the three constant observer gains are obtained. 

 
Fig. 3. Assumed constant-gain regions of the observer. In regions R1 and R3 

both outputs are used but in region R2 only the first output is used. 

III. STEP LENGTH ESTIMATION 

In this part three different methods are considered for 
estimating step lengths using configurations of two, three and 
four sensors respectively on the two legs of the subject.  

 
I) In the first method, it is assumed that there are only 

two sensors (one attached to each shank) and an 
integrator-based method is used to estimate step 
length.  

II) In the second method, we assume four sensors in all 
- one sensor on the shank and one on the thigh of each 
leg, and the estimated angles of both the shank and 
the thigh are used to find the step length.  

III) In the third method, we assume there is one sensor 
attached to each shank and a third sensor is attached 
to one of the thighs.  

 
A. Integrator-based estimation (two sensors configuration) 

If there is only one sensor on each shank, we can find the 
step lengths based on the double-integration of the linear 
acceleration of the foot in the inertial frame. For this, we need 
to find the real-time orientation of the sensor relative to the 
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inertial frame and then transfer the corrected/unbiased 
accelerations (found from the nonlinear observer) using the 
following direction cosine matrix (DCM) to the inertial frame. 
Subsequently, the gravity component from the transformed 
accelerations need to be removed. Then the resulting dynamic 
accelerations are double integrated from the end of one step to 
the end of the next step. The DCM is given by: 

𝑅𝑅(𝜙𝜙) = �cos (𝜙𝜙) −sin (𝜙𝜙)
sin (𝜙𝜙) cos (𝜙𝜙) � 

 (29) 

The relationship between inertial and sensor accelerations is 
given by 

�
𝑎𝑎𝑋𝑋
𝑎𝑎𝑌𝑌� = 𝑅𝑅(𝜙𝜙) �

𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦� 

(30) 

The end of each is step is found based on the high peaks 
experienced in the RMS signal of each accelerometer. Fig. 4 
shows that the end of each step has a clear local maximum in 
the RMS signal which is because of heel-strikes [10]. The start 
of integration is found based on the assumption of step-by-step 
walking. This means that the beginning of each step coincides 
with the end of the previous step. Experimental data has shown 
that starting integration earlier than the real lift off does not 
degrade accuracy because the foot is stationary. On the other 
hand, the accuracy degrades very fast if the integration is 
started late. In practice, therefore, we have seen good accuracy 
when we assume foot lift off happens at the end of the previous 
step. 

 
Fig. 4. An example of the RMS signal of the right shank acceleration and its 

local maximums that are used to identify the heel-strikes of each step 

 

B. Angle-based estimation (four sensors configuration) 
Another method is to estimate the step lengths from the 

geometry of the body during in-plane walking. Fig. 5 shows a 
schematic model of the body and the angles of each limb. In 
this method we need to use four sensors, one sensor on each 
shank and thigh to be able to estimate the angles of both shank 
and thigh in real-time. Based on Fig. 5 we can calculate the 
real-time relative position of the feet using the following 

simple trigonometric equations and so find the step lengths at 
the end of each step. For example, assume that the right foot is 
on the ground and the left leg is swinging then we have the 
position of right foot relative to the left foot as:  

𝑋𝑋𝑚𝑚/𝑙𝑙 = 𝐿𝐿𝑚𝑚𝑚𝑚 sin(𝜃𝜃𝑚𝑚𝑚𝑚(𝑑𝑑)) + 𝐿𝐿𝑖𝑖𝑚𝑚 sin(𝜃𝜃𝑖𝑖𝑚𝑚(𝑑𝑑)) 
+𝐿𝐿𝑚𝑚𝑙𝑙 sin(𝜃𝜃𝑚𝑚𝑙𝑙(𝑑𝑑)) + 𝐿𝐿𝑖𝑖𝑙𝑙 sin(𝜃𝜃𝑖𝑖𝑙𝑙(𝑑𝑑)) 

 (31) 

𝑌𝑌𝑚𝑚/𝑙𝑙 = 𝐿𝐿𝑚𝑚𝑙𝑙 cos(𝜃𝜃𝑚𝑚𝑙𝑙(𝑑𝑑)) + 𝐿𝐿𝑖𝑖𝑙𝑙 cos(𝜃𝜃𝑖𝑖𝑙𝑙(𝑑𝑑)) 
−𝐿𝐿𝑚𝑚𝑚𝑚 cos(𝜃𝜃𝑚𝑚𝑚𝑚(𝑑𝑑)) − 𝐿𝐿𝑖𝑖𝑚𝑚 cos(𝜃𝜃𝑖𝑖𝑚𝑚(𝑑𝑑)) 

(32) 

 

 

𝜃𝜃𝑚𝑚𝑚𝑚

𝜃𝜃𝑚𝑚𝑙𝑙

𝜃𝜃𝑖𝑖𝑙𝑙
𝜃𝜃𝑖𝑖𝑚𝑚

𝐿𝐿𝑚𝑚𝑚𝑚

𝐿𝐿𝑖𝑖𝑚𝑚𝐿𝐿𝑖𝑖𝑙𝑙

𝐿𝐿𝑚𝑚𝑙𝑙

𝑋𝑋𝑚𝑚/𝑙𝑙

𝑌𝑌𝑚𝑚/𝑙𝑙

 
Fig. 5. Schematic of body during in-plane walking. The angles of right shank, 
right thigh, left shank, and left thigh with vertical axis are shown as 𝜃𝜃𝑚𝑚𝑚𝑚, 𝜃𝜃𝑖𝑖𝑚𝑚, 
𝜃𝜃𝑚𝑚𝑙𝑙 , and 𝜃𝜃𝑖𝑖𝑙𝑙  respectively. Also the length of right shank, right thigh, left 
shank, and left thigh are 𝐿𝐿𝑚𝑚𝑚𝑚, 𝐿𝐿𝑖𝑖𝑚𝑚, 𝐿𝐿𝑚𝑚𝑙𝑙, and 𝐿𝐿𝑖𝑖𝑙𝑙 respectively. 

 

The time of end of each step is found from the high peaks 
experienced in the RMS signal of each accelerometer as 
discussed in the previous section and shown in Fig 4. If we 
assume that we detect an end of step in the left foot, the step 
length is therefore computed as below: 

𝑆𝑆𝑑𝑑𝑆𝑆𝑆𝑆 𝑙𝑙𝑆𝑆𝑙𝑙𝑔𝑔𝑑𝑑ℎ = 𝐿𝐿𝑚𝑚𝑚𝑚 sin(𝜃𝜃𝑚𝑚𝑚𝑚(𝑑𝑑𝑚𝑚𝑙𝑙)) + 𝐿𝐿𝑖𝑖𝑚𝑚 sin(𝜃𝜃𝑖𝑖𝑚𝑚(𝑑𝑑𝑚𝑚𝑙𝑙)) 
+𝐿𝐿𝑚𝑚𝑙𝑙 sin(𝜃𝜃𝑚𝑚𝑙𝑙(𝑑𝑑𝑚𝑚𝑙𝑙)) + 𝐿𝐿𝑖𝑖𝑙𝑙 sin(𝜃𝜃𝑖𝑖𝑙𝑙(𝑑𝑑𝑚𝑚𝑙𝑙)) 

 (33) 

  
in which 𝑑𝑑𝑚𝑚𝑙𝑙 is the time at the end of left foot step. 

C. Polynomial angle-based estimation (three sensors 
configuration) 

In this method, we utilize only one of the thigh sensors and 
estimate the angle of the other thigh by a polynomial function 
of time, based on the first leg’s thigh angle and then use Eq. 
(33) again to estimate the step lengths from the geometry of 
in-plane walking.  

We divide walking into the two main parts of swing and 
stance phases based on the angles of the thigh and shank as 
shown in Fig. 6. During the stance phase, the foot is on the 
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ground and the angle of the shank and thigh are almost equal 
(shank and thigh are aligned). However, during the swing 
phase, the leg is swinging in the air and the angle of thigh 
diverges from that of the shank.  

For the swing phase we estimate the thigh angle from a 
polynomial fitted to the swing phase angle of the other leg as 
described below: 

1) Estimate left thigh angle 𝜃𝜃�𝑑𝑑𝑙𝑙  using the nonlinear 
observer described in equation (13) since we have IMU on the 
left thigh. 

2) Fit a 4th order polynomial to the estimated left thigh 
angle 𝜃𝜃�𝑖𝑖𝑙𝑙 using least squares: 

𝜃𝜃�𝑑𝑑𝑙𝑙(𝑑𝑑) = 𝑆𝑆4𝑑𝑑
4 + 𝑆𝑆3𝑑𝑑

3 + 𝑆𝑆2𝑑𝑑
2 + 𝑆𝑆1𝑑𝑑 + 𝑆𝑆0 (34) 

in which t shows time, 𝑆𝑆𝑖𝑖  are the polynomial coefficients 
found from a least squares solution, and 𝜃𝜃𝑖𝑖𝑙𝑙 is the estimated 
left thigh angle. 

3) Estimate the right thigh angle using the calculated 
polynomial by shifting the time relative to the start of the right 
footstep. 

𝜃𝜃�𝑑𝑑𝑡𝑡(𝑑𝑑) = 𝑆𝑆4(𝑑𝑑 − 𝑑𝑑𝑠𝑠𝑡𝑡)4 + 𝑆𝑆3(𝑑𝑑 − 𝑑𝑑𝑠𝑠𝑡𝑡)3  
                      +𝑆𝑆2(𝑑𝑑 − 𝑑𝑑𝑚𝑚𝑚𝑚)2 + 𝑆𝑆1(𝑑𝑑 − 𝑑𝑑𝑚𝑚𝑚𝑚) + 𝑆𝑆0  

(35) 

in which 𝑑𝑑𝑚𝑚𝑚𝑚 shows the start time of the right footstep. 

Fig. 7 shows the angles of shank and thigh of both legs 
during stance and swing phase. The shank angles of both left 
and right legs, and the thigh angle of the left leg are estimated 
from the nonlinear observer. The thigh angle of the right leg is 
assumed to be equal to the shank angle during stance phase, 
however during swing phase it is estimated by a polynomial 
fitted using least squares to the left leg thigh angle estimates. 
This figure shows that we can estimate the right thigh angle 
successfully by this method.  

IV. EXPERIMENTAL RESULTS 
Inexpensive commercial Inertial Measurement Units 

(IMUs) made by MbientLab Inc. are used as the measurement 
sensors. Each device has a 32-Bit ARM Cortex M4F processor 
powered by a high capacity CR2450 Lithium Coin Cell. The 
internal measurement sensor is a Bosch BMI160 consisting of 
a three-axis accelerometer and a three-axis gyroscope [30]. 
The data from the IMU is sampled at a 100Hz frequency and 

swing

stance

 
Fig. 7. Angles of shank and thigh of both legs during stance and swing phase. Both angles of left leg and shank angle of right leg are from nonlinear 

observer. The thigh angle of the right leg is assumed to be equal to the shank angle during stance phase, however during swing phase it is estimated by a 
polynomial fitted using least squares to the left leg estimates. 

Stance leg

Swing leg

Fig. 6. Schematic of swing and stance phases of walking. During stance phase, the foot is on the ground and the thigh angle of the swing leg is almost 
equal to the shank angle. During swing phase, foot is swinging in the air and the thigh angle diverges from shank angle. 
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stored on a flash memory and also could be streamed through 
Bluetooth connectivity to a smartphone or computer. The IMU 
and its sensor-fixed frame are shown in Fig. 8. 

𝑥𝑥

𝑦𝑦

𝑧𝑧
 

Fig. 8. Inertial measurement unit board, case and its sensor-fixed frame. 

The experiments were performed on one healthy subject 
with IRB approval. The sensors were mounted on the subject 
as shown in Fig. 1. Since the experiment is not designed to 
study a medical hypothesis, multiple subjects were not 
recruited. There was no special effort made to align the 
sensors. The alignment of the sensor is automatically 
compensated for by the estimation algorithms. The 
experiments are designed to demonstrate the performance of 
the estimation algorithm in comparison to a gold standard 
infrared camera measurement system. 

An IR motion tracking camera is used as an accurate 
reference sensor with which the estimated step lengths and 
angles from the nonlinear observer are compared. The IR 
camera setup is an OptiTrack V120:Trio model which is a self-
contained and factory calibrated camera and uses three 
cameras and built-in software to track passive markers 
attached to the body with sub-millimeter accuracy. The sample 
rate of the camera system is 120 Hz [31]. The experiments 
were performed on one healthy subject with IRB approval.  

Tests were conducted consisting of walking and stumbling 
in both forward and backward directions to observe the 
accuracy of the estimations in both low and high acceleration 
motions. The term “stumbling” means simulation of near-fall 
activities. Stumbling was included in addition to walking in 
order to show that our algorithm works in the presence of 

disturbances and to prepare for other future studies. The first 
30 seconds of the test is walking, and the rest of the test data 
consists of walking and stumbling. 

An optimum value of 𝜎𝜎 = 0.45  for the convergence rate 
was found numerically to yield the minimum estimation error. 
We can compare the overall accuracy of the shank angle 
estimation of the nonlinear observer with the IR camera 
measurements in Fig. 9. It can be seen that the shank angle 
estimates track the IR camera angle estimates very closely.  

To show the effect and the importance of the nonlinear 
observer on estimation of the step lengths we plotted the direct 
double integration of the raw IMU acceleration measurement 
to find foot displacement in Fig.10.  

 

 
Fig. 10. Right leg horizontal displacement from IR camera and direct 

double integration of IMU acceleration measurements. 
 

Also, the tilt angles from direct integration of gyro 
measurements are compared to IR camera measurements in 
Fig. 11. As the figures show, the direct integration of gyro has 
a linear growing drift while double integration of accelerations 
results in an exponential growing position drifts due to not 
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Fig. 9. Right shank tilt angle from IR camera and nonlinear observer. 
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having removed the bias and tilt angle errors in IMU 
measurements.  

 
Fig. 11. Right shank tilt angle from IR camera and direct integration of IMU 

gyro measurements. 
 

Fig. 12 shows a comparison of step length estimation of all 
three observer-based methods with the IR camera. Based on 
the shown results the average accuracy of the two-sensor 
integrator-based method is found to be 91.42%, for the three-
sensor angle-based method is 94.64% and for the four-sensor 
angle based is 95.67%. The reason for this difference is that 
the integrator-based method depends on the initial conditions 
and measurement biases with high sensitivity because of 
double integration while the angle-based method uses the real-
time estimation of the angles and is independent of initial 
conditions and much less influenced by the bias errors. Also 
the reason for the difference between four and three sensor 
methods is that the three sensor method relies on a polynomial 
for the estimation of right thigh angle while the four sensor 
method estimates it by the nonlinear observer from direct 
measurement of all 4 IMUs.   

The latter 30 second of the test includes the stumbling part 
of the test. In this part, we see more errors, especially in the 
integration mode. The average step length error in the second 
half of the test is 5.93% for the four-sensor angle-based 
method while it is 10.34% for the three sensor and 26.32% for 
the integrator-based method. Again, the integration mode 
shows more sensitivity to the initial conditions and errors due 
to the impulses during stumbling. Also, the polynomials 
become less accurate due to differences between walking and 
stumbling.  

The estimated bias from the nonlinear observer is shown 
for the horizontal axis accelerations in Fig. 13. This estimation 
shows that the bias changes as the foot accelerates and 
decelerates which makes sense since micro-electro-
mechanical sensors are known to have slow time-varying drift 
in the bias [1].  

Fig. 14 shows the tilt angle error obtained by taking the 
difference between the estimated angle of the nonlinear 
observer and the reference value from the IR camera. The IR 

camera data is exported to 100 Hz sample rate using OptiTrack 
built-in software and synchronized to the IMU data using 
MATALB cross correlation tools. The maximum angle error 
is about 2 degrees over the range of -40 to +30 degrees which 
is an acceptable error using inexpensive IMUs. Therefore, the 
maximum error rate is 2.86% in the walking part. The second 
part of the test (stumbling) shows higher peaks and maximum 
angle error is 3 degrees which shows about 4.29% max error 
in the stumbling part.  

The horizontal position estimation error of the right foot 
for the methods of two, three and four sensor estimation 
computed by comparing with the IR camera are shown in Fig. 
15. The angle mode obviously has superior accuracy relative 
to the integration mode in this figure. The maximum error is 
3.54 cm (7.63%) for the 4-sensor mode and 5.12 cm (12.81%) 
for the 3-sensor mode. On the other hand, the maximum error 
is 11.34 cm (28.35%) for the 2-sensor integration mode. The 
maximum error becomes smaller if we neglect the stumbling 
part of the test. Maximum error is 2.94 cm (6.67%) for the 4-
sensor angle mode and 3.97 cm (8.94%) for the 3-sensor mode, 
while the max error is 9.43 cm (19.52%) for the integration 
mode in just the first part of the test.  

V. CONCLUSIONS  
This paper has presented three step length estimation 

approaches using a nonlinear switched-gain observer based on 
measurements from IMUs worn on leg segments. The observer 
estimates the orientation and measurement bias of each IMU. 
A switched-gain strategy is used for the observer in which 
three piecewise working regions are utilized in each of which 
the output function is monotonic. The orientation of the sensor 
and measurement bias are estimated in real-time, the bias and 
gravity components are removed from it to find the true linear 
accelerations, and then the accelerations are transformed to the 
inertial frame. Using this observer, three different approaches 
are presented for the step length estimation. First, we assumed 
the use of sensors only on each shank and the step lengths are 
found by integration of the linear inertial-frame accelerations 
of each leg from the start to the end of each step. In the second 
approach, we assume there is one sensor attached to each 
shank and a third sensor is attached to one of the thighs. In the 
third method, we assume each leg has two sensors, one sensor 
on the shank and one on the thigh, and the step length is 
estimated using the estimated angles of the limb segments and 
the geometry of the body posture. The second method which 
utilizes a sensor in only one of the two thighs utilizes an 
innovative approach to estimate the orientation angle of the 
other thigh by assuming symmetric motion between thighs 
during the swing phase. 

The results of these estimators are compared to results 
from an expensive IR camera motion capture system by 
performing tests of walking and stumbling in the forward and 
backward directions. The results show that the angles of the 
limbs are estimated very accurately, as verified by the IR 
camera. The integrator-based method is a simpler strategy and 
needs less resources due to the low number (just 2) of sensors. 
However, the angle-based method shows better accuracy in 
terms of step length estimation since it is not sensitive to the 
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initial conditions and errors caused by double integration. The 
four-sensor method uses two sensors for the thighs and 
estimates both thigh angles from measurement of IMUs while 
the three-sensor configuration estimates the thigh angle of one 
foot by fitting a polynomial to the estimated angle of the other 
foot. The three-sensor method shows comparable accuracy to 
the four-sensor mode while it does fall a little behind during 
more disturbances in stumbling experiments. Further, the 
accuracy of the three-sensor method may also fall when the 
gait of the subject is non-symmetric. 

The developed nonlinear switched-gain observer can be a 
powerful tool in the estimation of the orientation angles and 
bias values of IMU sensors which have many problems in 
general with drifts and errors. This method has the potential to 
be applied wherever IMUs are employed including navigation 
and stabilization problems. Two step length estimators are 
introduced as successful applications of this observer. These 
step estimators could help us monitor activity and health of 
ordinary people, as well as of athletes and patients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 12. Right leg horizontal displacement from IR camera and nonlinear observer in integrate and angle modes. 

 
Fig. 13. Estimated right leg accelerometer horizontal bias using nonlinear observer. 
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Fig. 14. Right leg tilt angle error of nonlinear observer compared to the IR 

camera measurement. 

 

Fig. 15. Right leg horizontal displacement error in both integration and 
angle modes. First 30 seconds show normal walking and the second half 

shows stumbling. 
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