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Highlights 1 

ü Kinematic Theory has reliable test-retest parameters in all types of strokes 2 

ü The Sigma-Lognormal model reconstructs data similarly from day to day 3 

ü The Kinematic Theory offers clinical insights in the detection of fatigue  4 

ü Kinematic Theory and the Sigma-Lognormal model can be used to study shoulder 5 

fatigue 6 

ü The mode, median and time delay are effective parameters for fatigue detection  7 

 8 

 9 
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Abstract  47 

Background: The Kinematic Theory and its Sigma-Lognormal model have been used extensively 48 

in motor control analyses. It has recently shown promise in its ability to detect neuromuscular 49 

fatigue in the shoulder. The use of an ergonomic setup composed of a vertically oriented tablet 50 

offers a good demonstration for use in future clinical applications. However, parameters’ 51 

reliability of this theory needs to be evaluated. The aim of this study is to assess the test-retest 52 

reliability of these parameters in the specific case of fatigue detection.  53 

Method: Forty participants performed two sessions of fast strokes handwriting (simple strokes, 54 

triangles, horizontal and vertical oscillations) on a tablet placed at shoulder’s height. Reliability 55 

was assessed using the intraclass correlation coefficient (ICC), their relative standard error of 56 

measurement (SEM) and coefficient of variation. The minimal detectable change was also 57 

reported. 58 

Findings: In general, a moderate to excellent reliability was denoted in the main parameters of 59 

each test (ICC: 0.54-0.91). The parameters related to shoulder fatigue detection had good to 60 

excellent reliability (ICC: 0.77-0.90) with low SEM (SEM: 4.75-6.99%).  61 

Conclusion: Most of the parameters have good test-retest reliability, and the setup seems 62 

adequate for shoulder fatigue detection. 63 

 64 

Keywords: Sigma-Lognormal model; Kinematic Theory; Reliability; Shoulder; Muscle fatigue; 65 

Fatigue detection.  66 

 67 

 68 

  69 
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1. Introduction  70 

Muscle fatigue corresponds to a decline in strength production during a task [1], and results in 71 

atypical stresses, which can possibly lead to musculoskeletal injuries over time [2]. Those 72 

injuries are omnipresent in the population, especially in the shoulder [3]. Overuse injuries affect  73 

quality of life and are expensive to treat, requiring physiotherapy treatments over a period of 74 

years [4]. It is then essential to detect shoulder muscle fatigue before the onset of an injury. In the 75 

long pathway of assessing a test as clinically usable, an important step is to evaluate its 76 

diagnostic accuracy [5]. To that extent, screening tests have to be reliable with sensitive and 77 

specific data, but must also be affordable and easy to implement [6]. According to Weir [7], the 78 

Intraclass Correlation Coefficient (ICC) and the Standard Error of Measurement are powerful 79 

metrics in the quantification of data reliability.  80 

Current methods can detect shoulder fatigue, but unfortunately have limitations that prohibits 81 

their use in a clinical environment [8]. A common method includes questionnaires such as the 82 

Borg’s Rating of Perceived Exertion Scale, which represents a participant’s subjective level of 83 

exertion during exercise [9]. However, studies correlating this rating with physiological variables 84 

of exertion are not always consistent [10, 11], as the rating depends on motivation and is 85 

subjective. Objective measures can be used, such as biomarkers, but their assessment is often 86 

invasive [12]. Less invasive biomarkers such as those obtained from surface electromyography 87 

may be used, where the analysis of the signal amplitude and power spectrum density can be used 88 

to detect fatigue [13-15]. This is a reliable measure for fatigue detection [8, 16], as the median 89 

and mean power frequencies tend to be greatly reliable (Intraclass Correlation Coefficient > 0.80) 90 

[17]. However, a good electrode placement is essential to avoid cross-talk and maintain a good 91 

reliability [18, 19]. The post-collection data processing is also time-consuming, which is a 92 

disadvantage for clinical evaluation. Other methods, such as mecanomyography, sonomyography 93 

or near-infrared spectroscopy can also be used to detect fatigue. However, they are combined 94 

most of the time with electromyography, which is difficult to implement in clinics [8].  95 

Recently, a new method for shoulder fatigue detection has been settled using the Kinematic 96 

Theory of Rapid Human Movements [20, 21]. More broadly, the Kinematic Theory has been 97 

utilized to assess patients with Parkinson’s disease [22], concussion [23], attention deficit 98 

hyperactivity disorder [24], as well as aging phenomena [25], and stroke risk factors [26]. This 99 
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theory assesses behavior through their end-effector kinematics [27, 28] (see section 2.3). The 100 

movement velocity is described as the synergy of impulse responses from neuromuscular systems 101 

generating the movement. Each response is modeled through a lognormal equation whose 102 

parameters describe the participant’s motor control conditions [29]. The ideal movement is 103 

known and a change in the parameters baseline highlights neuromuscular problems, such as 104 

shoulder neuromuscular fatigue [20, 21]. Theoretically, identified parameters may be related to 105 

the central or the peripheral nervous systems (as well as to the agonistic or antagonistic systems) 106 

and to the motor program execution, as described in Appendix A. The specificity of the 107 

Kinematic Theory has therefore a prescreening potential that could be used by medical 108 

professional in their diagnoses. To characterize the cranio-caudal sequence of turning while 109 

walking [30], we know that the reliability in the kinematic parameters is moderate to good 110 

(Intraclass Correlation Coefficient = 0.64-0.81). However, to the best of our knowledge, the 111 

reliability of handwriting tasks for clinical applications has never been assessed. In the specific 112 

example of shoulder fatigue, handwriting data were recorded on a vertical setup [20], an 113 

ergonomic and easy to use tablet, and has shown potential for clinical applications [5]. After the 114 

onset of fatigue, the parameters related to motor program execution increased significantly, but 115 

their reliability was not assessed in this study.  116 

The objective of this study is then to assess the test-retest reliability of the parameters extracted 117 

through Kinematic Theory from handwriting movements recorded with a vertically oriented 118 

digitizing tablet. A characterization of the reliability of these parameters will allow a better 119 

comprehension of the parameters’ reproducibility and of their measurement errors for motor 120 

control studies. 121 

  122 
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2. Materials and methods 123 

2.1. Participants 124 

Forty healthy active adults participated in the study (18 males and 22 females, age: 24.8±4.3 125 

years, height: 173.3±9.8 cm, mass: 69.6±12.6 kg, dominant hand 6 left-handed and 34 right-126 

handed). Participants were excluded if: (i) they had upper-limb musculoskeletal disorders; (ii) 127 

neurological problems or (iii) history of shoulder surgery in the past years. The study was 128 

approved by Polytechnique Montréal research ethics committee (CER-1819-23 v.3).  129 

2.2. Protocol 130 

Fast stroke kinematics were recorded on a Wacom Cintiq 13HD tablet (sampling frequency: 131 

200 Hz) during two test sessions. The tablet was positioned at the participant’s shoulder height, 132 

as measured while standing (Figure 1). The tablet was positioned so that the participant’s 133 

fingertip was touching the bottom of the tablet with a shoulder flexion of 90°. The same tablet 134 

height was used for all tests for each individual. They were also asked to stand at a comfortable 135 

distance from the tablet. Four series of fast strokes were drawn on the tablet with the participant’s 136 

dominant hand in a random sequence: 30 simple strokes, 30 triangles, 10-second horizontal 137 

oscillations and 10-second vertical oscillations at their maximal speed. A training period of five 138 

to seven fast strokes was given before simple strokes and triangles. The current test is part of a 139 

larger study, which fully describes the procedure of collecting data [20]. Test and retest were 140 

recorded by a single tester with a minimum of one-day interval (up to two months).  141 

 142 

 143 
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Figure 1: Position of the participant while drawing strokes. The tablet was positioned at the 144 

shoulder’s height. 145 

2.3. Extraction of kinematic parameters, the Sigma-Lognormal model 146 

Numerous models have been used over the last few decades to study human motor control: 147 

models relying on neural networks, on equilibrium points, behavioral models, coupled oscillator 148 

models, kinematic models, motor synergetic models, non-Euclidean and Rieman models as well 149 

as models exploiting minimization principles (minimization of: acceleration, energy, time, jerk, 150 

snap, torque changes, and sensory-motor noise), sensory-motor optimal control models (see 151 

Plamondon [31] for an exhaustive list of references). Many of these models exploit the properties 152 

of various mathematical functions to represent human movements: exponentials, second order 153 

systems, Gaussians, beta functions, splines, and trigonometric functions. Among these, 154 

Kinematic Theory [27, 28, 32, 33] and its sigma-lognormal model [34, 35] is one of the most 155 

efficient methodologies for reproducing human-like movements. It has been tested time and again 156 

over the last few decades by numerous researchers, using various input devices under various 157 

experimental (1D, 2D and 3D) conditions [36]. It has even been mathematically demonstrated 158 

that it is the ultimate minimization theory, and that the process of trajectory selection could be 159 

described as the process of recruiting a sufficient number of neuromuscular subsystems to 160 

approximate the lognormal profile [37]. For all of these reasons, we have chosen to use 161 

Kinematic Theory in the present study.       162 

Empirical data of each stroke were modeled thanks to the Sigma-Lognormal model of the 163 

Kinematic Theory. To do so, the in-house program named Script Studio was used [34].  164 

The key concept behind the Kinematic Theory is twofold. First, it postulates that the invariant 165 

properties of simple pointing movements can be considered as specific movement primitives [38] 166 

that reflect the asymptotic behavior of complex systems, made up of a large number of coupled 167 

neuromuscular networks, whose impulse response can be modelled using lognormal functions.  168 

From a mathematical point of view, when a command  is input to a lognormal neuromuscular 169 

system at a given time  a velocity profile is produced at the output of such a system: 170 

  (1) 
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 171 
and where the set of parameters describing a lognormal pulse   refers to 172 

 : the input command, which is the intended distance to be covered with the pulse; 173 

 : the time occurrence of that command, as instantiated in the central nervous system (CNS); 174 

 : the log time delay (i.e., the time delay on a logarithmic time scale); 175 

 : the log response time (i.e., the response time on a logarithmic time scale). 176 
 177 
Accordingly, the sequence of lognormal velocity patterns observed in any movements are the 178 

results of an asymptotic convergence that can be interpreted as reflecting the behavior of subjects 179 

who are in perfect control of their movements. In other words, the production of complex 180 

movements is reached through the exploitation of the Lognormality Principle, by time 181 

superimposing and summing up lognormal vectors, with the goal of minimizing their number in a 182 

given task, to produce efficient, fluent gestures, optimizing the energy required to generate these. 183 

This summation process is referred to as the Sigma-Lognormal model: 184 

 185 
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and where  and  stand respectively for the starting and ending angular direction of each 186 

discontinuous primitive or stroke.  187 

From a practical point of view, what is interesting is that Kinematic Theory can be reverse 188 

engineered to decompose any movements into its lognormal constituents using specific software 189 

[34, 36, 39-41] that provide a set of central and peripheral parameters describing the 190 

neuromuscular state of the subject who has produced a given movement. Each lognormal 191 

function describes the impulse response of a neuromuscular component involved in the 192 
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movement execution (Figure 2A). All lognormals are scaled in time (t0i) and space (Di) (2). 193 

Under a physiological point of view, t0i (s) represents the time at which the brain send the 194 

command to execute the movement of the i-th lognormal; and Di (mm) is the amplitude of a 195 

lognormal. In case of an oscillatory movement, it is possible to calculate the time difference 196 

between two consecutive t0 (Δ(t0), s) to get the rhythmicity of a command sent during the test. All 197 

lognormals also have their own distribution, defined by the mean (μi) and the standard deviation 198 

(σi) of the normal distribution associated. These two parameters are related to the timing 199 

properties of the neuromuscular system: µ also called the log-time delay (s) and σ the 200 

log-response time (s). Nevertheless, as the reconstruction is performed for a complex movement 201 

with a change in direction (e.g. when drawing a triangle), the notion of trajectory is important. 202 

Each lognormal describes a trajectory part of the action plan. When all of the lognormals are 203 

combined, they form the complete action plan and thus the overall trajectory of the movement. In 204 

consequence, each lognormal has a starting (θs) and ending angle (θe) to define its own trajectory. 205 

The number of lognormal functions (NbLog) depends on the movement and its fluidity. The 206 

optimization of the reconstruction relies on the Signal-to-Noise Ratio (SNR), which is considered 207 

to be excellent if higher than 25 dB. For more details regarding the Theory and the extraction of 208 

parameters, can be found in [27], Plamondon, Feng and Woch [32], [34].  209 

Aside from the eight main parameters (i.e. t0, D, θs, θe, µ, σ, NbLog, SNR), six derived parameters 210 

were calculated as follows [32, 42]: (i) the mode (s) which corresponds to the time when the 211 

maximum velocity of the lognormal is reached; (ii) the median (s) that is the time when half the 212 

value of the lognormal integral is attained; (iii) the time delay (s) which corresponds to the 213 

response command rapidity of a given system; (iv) the response time (s) which evaluates the 214 

impulse response spread; (v) the asymmetry (no units) which describes the general shape of the 215 

lognormal; and (vi) the SNR/NbLog that depicts the motor control quality. The reaction time 216 

(RT), a classical parameter that is not otherwise part of the Theory, was also extracted in order to 217 

calculate the conduction time (s), which represents the duration of the command propagation 218 

[43]. The supplementary material (APPENDIX A) of the present study provides a more detailed 219 

explanation of these parameters and their physiological meaning. 220 

  221 
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2.4. Data processing 222 

Simple strokes were divided into their largest agonist and antagonist components (Figures 2B). 223 

When only one lognormal described the stroke, it was automatically labeled as agonist. 224 

Lognormals with parameters outside of the mean±3SD were rejected. For the NbLog, the SNR, 225 

the SNR/NbLog, the reaction time and the conduction time, no distinctions between 226 

agonist/antagonist components were made, as they refer to global stroke properties. The mean 227 

value of each parameter was calculated. 228 

Triangles were split into the agonist components explaining the three main strokes (Figures 2C). 229 

Outliers were manually removed when the action plan of the reconstruction was found to be 230 

incorrect. Finally, lognormals with parameters outside of the mean±3SD were rejected. The mean 231 

value of each parameter was calculated, except for t0 as only the first one was considered. 232 

For the horizontal and vertical oscillations (50-160 mm long), only lognormals extracted from a 233 

stable phase were analyzed (i.e. from 2 to 10-s oscillations). Each stroke of the oscillatory 234 

movement was considered as agonist (Figure 2D). Lognormals with an amplitude below 50 mm 235 

and with parameters outside of the mean±3SD were considered as artefacts, therefore rejected. 236 

The mean value of each parameter was calculated, except for the reaction time, the conduction 237 

time, the SNR and the SNR/NbLog, since only a single value per test and participant can be 238 

recorded. 239 

 240 
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Figure 2: Reconstruction of the different types of strokes. (Green) is the final velocity profile and 241 

(black) are the lognormals used for reconstruction referred as agonists (solid lines) or antagonists 242 

(dashed lines). (A) is a vizualisation of the parameters on a lognormal. (B) is the reconstruction 243 

of a simple stroke. (C) is the reconstruction of a triangle. (D) is an example of a signal portion 244 

reconstruction for the oscillations. 245 

2.5. Statistical analysis 246 

An analysis of variance (ANOVA) based on intraclass correlation coefficients (ICC) was 247 

performed (Matlab, the Mathworks Intraclass Correlation Coefficient (ICC) version 1.3.1.0 of 248 

Arash Salarian) to get the test-retest reliability. ICC were calculated by parameters at 95% 249 

confidence intervals using a two-way mixed effects model based on absolute agreement [44]. An 250 

average measurements model was used for mean values whereas a single measure model was 251 

used for single values (i.e. reaction time, conduction time, SNR and SNR/NbLog in the 252 

oscillations). The scores were interpreted in line with the scale used in Koo and Li [44]: poor 253 

(<0.50), moderate (0.50-0.75), good (0.75-0.90) and excellent (>0.90) reliability. As explained in 254 

Bartko [45], a value of zero was set in case of negative ICC. The absolute and relative standard 255 

error of measurement (SEM), the coefficient of variation (CV) and the minimal detectable change 256 

(MDC) were also reported to estimate the measurement errors. These measurements are the gold 257 

standards in reliability analyses of movement science [46, 47]. Bland-Altman plots were also 258 

drawn (see APPENDIX B) to display the degree of agreement of the intra-participant 259 

measurements for SNR, asymmetry, σ and conduction time.  260 
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3. Results  261 

Data are expressed as mean±SD. In the simple strokes (Table 3.1), the time t0 had good 262 

reliability, both for the agonist (ICC=0.80) and antagonist components (ICC=0.89). The 263 

coefficient of variation was higher in the agonist than in the antagonist components (respectively 264 

36.81% and 25.51%). Regarding σ, the ICC was moderate with a value of 0.62 for the agonist 265 

components and 0.69 for the antagonist. Their CVs were 18.12% and 23.27% respectively. The 266 

mode, median, time delay and response time had good to excellent reliability, ranging from 0.85 267 

to 0.90 in both components, with a low SEM (5.44 - 14.11%) and a minimal detectable change 268 

(MDC) of 0.10 s. Parameters describing the global state of the neuromotor system (NbLog, SNR 269 

and SNR/NbLog) had a moderate ICC ranging from 0.56 to 0.73 with low SEM values (from 270 

2.35% to 5.41%). The conduction time had a moderate ICC (0.67) with a high CV (38.78%).  271 

  272 
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Table 1: Test-retest reliability of kinematic parameters extracted from simple strokes with the 273 

Sigma-Lognormal model. Red, orange, green and blue respectively represents poor, moderate, 274 

good and excellent reliability. 275 

Parameter Test Retest ICC (95% CI) SEM SEM (%) CV (%) MDC 
Agonist component 

t0 0.24 ± 0.11 0.26 ± 0.09 0.80 (0.63-0.90) 0.04 16.29 36.81 0.11 
D 206.40 ± 20.75 208.40 ± 23.31 0.86 (0.74-0.93) 7.74 3.73 9.96 21.46 
µ -1.34 ± 0.26 -1.40 ± 0.19 0.76 (0.54-0.87) 0.10 7.44 15.05 0.28 
σ 0.27 ± 0.07 0.27 ± 0.05 0.62 (0.28-0.80) 0.03 11.19 18.12 0.08 

|cos(θs)| 0.79 ± 0.09 0.78 ± 0.09 0.91 (0.82-0.95) 0.03 3.17 10.32 0.07 
|cos(θe)| 0.94 ± 0.04 0.95 ± 0.03 0.83 (0.66-0.91) 0.01 1.47 3.53 0.04 

Mode 0.51 ± 0.09 0.51 ± 0.10 0.85 (0.71-0.92) 0.04 6.99 17.83 0.10 
Median 0.53 ± 0.10 0.52 ± 0.10 0.86 (0.73-0.93) 0.04 6.72 17.89 0.10 

Time Delay 0.54 ± 0.10 0.53 ± 0.11 0.87 (0.75-0.93) 0.04 6.60 17.99 0.10 
Response Time 0.07 ± 0.02 0.07 ± 0.02 0.84 (0.67-0.92) 0.01 10.10 25.02 0.02 

Asymmetry 0.10 ± 0.05 0.09 ± 0.04 0.51 (0.09-0.74) 0.03 29.24 41.81 0.07 

Antagonist component 
t0 0.46 ± 0.12 0.45 ± 0.13 0.89 (0.79-0.94) 0.04 8.59 25.51 0.11 
D 30.11 ± 6.00 29.69 ± 7.42 0.70 (0.44-0.84) 3.22 10.76 19.80 8.92 
µ -1.80 ± 0.18 -1.84 ± 0.24 0.19 (0.00-0.57) 0.14 7.86 8.71 0.40 
σ 0.37 ± 0.10 0.36 ± 0.10 0.69 (0.41-0.84) 0.05 12.98 23.27 0.13 

|cos(θs)| 0.94 ± 0.05 0.96 ± 0.05 0.00 (0.00-0.46) 0.03 3.41 3.39 0.09 
|cos(θe)| 0.89 ± 0.10 0.91 ± 0.07 0.86 (0.74-0.93) 0.03 3.17 8.55 0.08 

Mode 0.64 ± 0.11 0.63 ± 0.11 0.88 (0.77-0.94) 0.04 5.64 16.14 0.10 
Median 0.66 ± 0.11 0.65 ± 0.12 0.89 (0.79-0.94) 0.04 5.49 16.59 0.10 

Time Delay 0.67 ± 0.12 0.66 ± 0.12 0.90 (0.81-0.95) 0.04 5.44 16.97 0.10 
Response Time 0.06 ± 0.02 0.06 ± 0.02 0.81 (0.64-0.90) 0.01 14.11 32.13 0.02 

Asymmetry 0.21 ± 0.11 0.20 ± 0.11 0.66 (0.37-0.82) 0.05 26.49 45.75 0.15 

Whole signal 
NbLog 2.28±0.27 2.19±0.25 0.73 (0.49-0.86) 0.12 5.41 10.50 0.34 

SNR 30.05±1.34 30.06±1.21 0.56 (0.15-0.77) 0.71 2.35 3.53 1.96 
SNR/NbLog 13.89±1.68 14.41±1.75 0.67 (0.37-0.82) 0.86 6.11 10.57 2.40 

RT 0.41±0.08 0.41±0.10 0.82 (0.65-0.90) 0.04 8.55 19.90 0.10 
|t0-RT| 0.17±0.09 0.15±0.05 0.67 (0.39-0.83) 0.04 22.18 38.78 0.10 

ICC: Intraclass Correlation Coefficient, CI: Confidence Interval, SEM: Standard Error of Measurement, CV: Coefficient of Variation, MDC: 276 
Minimal Detectable Change 277 

 278 

For the triangles (Table 3.2), t0 presented a good reliability (ICC=0.81), with a SEM of 10.41%. 279 

Parameters related to the peripheral system, μ and σ, had respectively moderate (0.68) and good 280 

(0.78) reliability, with a low value of SEM (11.69% and 8.76%). The derived parameters (the 281 

mode, median, time delay, response time and asymmetry) had good reliability, ranging from 0.77 282 
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to 0.79 with a low CV (10.4% - 15.8%) except for the asymmetry (42.2%). Their MDC was 283 

0.11 s. The SNR had poor reliability (0.13) with a low SEM (1.10%) whereas the SNR/NbLog had 284 

moderate reliability. The conduction time had good reliability (0.77, 95%CI: 0.57-0.88), with a 285 

CV of 39.46%. 286 

Table 2: Test-retest reliability of kinematic parameters extracted from triangles with the 287 

Sigma-Lognormal model. Red, orange and green respectively represents poor, moderate and 288 

good reliability. No parameters had an excellent reliability. 289 

Parameter Test Retest ICC (95% CI) SEM SEM (%) CV (%) MDC 
t0 0.25 ± 0.06 0.25 ± 0.07 0.81 (0.64-0.90) 0.03 10.41 23.67 0.07 
D 151.87 ± 8.36 154.15 ± 9.05 0.54 (0.14-0.75) 4.92 3.21 4.72 13.63 
µ -0.75 ± 0.17 -0.77 ± 0.19 0.68 (0.40-0.83) 0.09 11.69 20.67 0.25 
σ 0.20 ± 0.04 0.19 ± 0.04 0.78 (0.58-0.88) 0.02 8.76 18.51 0.05 

Mode 0.79 ± 0.08 0.77 ± 0.10 0.77 (0.57-0.88) 0.04 5.08 10.61 0.11 
Median 0.82 ± 0.09 0.79 ± 0.10 0.77 (0.57-0.88) 0.04 5.02 10.47 0.11 

Time Delay 0.82 ± 0.09 0.80 ± 0.10 0.77 (0.57-0.88) 0.04 5.00 10.42 0.11 
Response time 0.08 ± 0.02 0.08 ± 0.01 0.79 (0.43-0.91) 0.01 7.28 15.84 0.02 

Asymmetry 0.06 ± 0.03 0.05 ± 0.02 0.78 (0.58-0.88) 0.01 19.99 42.19 0.03 
NbLog 5.43 ± 0.65 5.09 ± 0.50 0.78 (0.25-0.91) 0.25 4.82 10.27 0.70 

SNR 26.78 ± 0.41 26.97 ± 0.45 0.13 (0.00-0.52) 0.30 1.10 1.18 0.82 
SNR/NbLog 5.12 ± 0.63 5.47 ± 0.51 0.74 (0.19-0.90) 0.27 5.03 9.95 0.74 

RT 0.42 ± 0.07 0.43 ± 0.09 0.85 (0.71-0.92) 0.03 7.01 17.84 0.08 
|t0-RT| 0.17 ± 0.07 0.19 ± 0.08 0.77 (0.57-0.88) 0.03 18.82 39.46 0.09 

ICC: Intraclass Correlation Coefficient, CI: Confidence Interval, SEM: Standard Error of Measurement, CV: Coefficient of Variation, MDC: 290 
Minimal Detectable Change 291 

 292 

Parameters were categorized similarly for the horizontal and vertical oscillations (Table 3.3), 293 

except for the reaction time and the conduction time. Δt0 had good reliability (ICC=0.79 and 0.80) 294 

and a low SEM (horizontal oscillations: 5.07%; vertical oscillations: 6.92%). Poor reliability was 295 

observed for σ, asymmetry and SNR. The SNR/NbLog had moderate reliability, ranging from 0.64 296 

to 0.70 (95% CI: 0.29-0.82). The mode, median, time delay and response time had an ICC 297 

considered as good (horizontal oscillations: 0.83; vertical oscillations: 0.79-0.80). The conduction 298 

time had poor reliability in the horizontal oscillations and moderate in the vertical oscillations, 299 

with a low SEM (horizontal oscillations: 17.60%; vertical oscillations: 19.49%). The NbLog was 300 

exactly the same for every participant for both the horizontal or vertical oscillations. 301 
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Table 3: Test-retest reliability of kinematic parameters extracted from horizontal and vertical 302 

oscillations with the Sigma-Lognormal model. Red, orange and green respectively represents 303 

poor, moderate and good reliability. No parameters had an excellent reliability. 304 

Parameter Test Retest ICC (95% CI) SEM SEM 
(%) CV (%) MDC 

Horizontal oscillations 

Δ(t0) 0.09 ± 0.01 0.09 ± 0.01 0.79 (0.52-0.90) 0.00 5.07 11.04 0.01 

D 119.74 ± 22.42 116.30 ± 20.94 0.86 (0.73-0.92) 7.72 6.54 17.25 21.39 

µ -0.75 ± 0.13 -0.79 ± 0.10 0.83 (0.62-0.92) 0.05 5.91 14.39 0.13 

σ (0.06 ± 0.83)E-03 (0.06 ± 1.33)E-03 0.07 (0.00-0.50) 3.51E-04 0.61 0.63 9.73E-04 

Mode 0.57 ± 0.08 0.54 ± 0.06 0.83 (0.59-0.92) 0.03 4.75 11.38 0.07 

Median 0.57 ± 0.08 0.55 ± 0.06 0.83 (0.59-0.92) 0.03 4.75 11.38 0.07 

Time Delay 0.57 ± 0.08 0.55 ± 0.06 0.83 (0.59-0.92) 0.03 4.75 11.38 0.07 

Response Time (30.0 ± 3.67)E-03 (30.0 ± 2.71)E-03 0.83 (0.63-0.92) 1.22E-03 4.54 11.16 3.39E-03 

Asymmetry (3.36 ± 0.25)E-03 (3.43 ± 0.72)E-03 0.03 (0.00-0.48) 4.19E-05 1.27 1.29 1.16E-04 

RT 0.48 ± 0.11 0.45 ± 0.10 0.36 (0.00-0.66) 0.07 14.43 18.06 0.18 

|Δ(t0)-RT| -0.38 ± 0.10 -0.36 ± 0.10 0.33 (0.00-0.64) 0.07 17.60 21.51 0.18 

SNR 28.21 ± 1.20 28.62 ± 0.97 0.00 (0.00-0.26) 0.77 2.71 2.64 2.13 

SNR(dB)/NbLog 0.23 ± 0.04 0.22 ± 0.03 0.70 (0.44-0.84) 0.02 7.04 12.83 0.04 

Vertical oscillations 

Δ(t0) 0.10 ± 0.02 0.09 ± 0.01 0.80 (0.49-0.91) 0.01 6.92 15.38 0.02 

D 116.04 ± 21.12 114.44 ± 22.21 0.84 (0.69-0.91) 8.12 7.05 17.41 22.52 

µ -0.68 ± 0.17 -0.75 ± 0.14 0.81 (0.49-0.91) 0.06 8.86 20.11 0.18 

σ (0.06 ± 4.74)E-04 (0.06 ± 2.82)E-03 0.25 (0.00-0.60) 0.0013 2.30 2.66 3.60E-03 

Mode 0.61 ± 0.11 0.57 ± 0.08 0.79 (0.47-0.90) 0.04 6.80 14.87 0.11 

Median 0.61 ± 0.11 0.57 ± 0.08 0.79 (0.47-0.90) 0.04 6.80 14.87 0.11 

Time Delay 0.61 ± 0.11 0.57 ± 0.08 0.79 (0.47-0.90) 0.04 6.80 14.87 0.11 

Response Time 0.03 ± 0.01 0.03 ± 0.004 0.80 (0.50-0.91) 0.00 6.57 14.84 0.01 

Asymmetry (3.30 ± 0.06)E-03 (3.55 ± 1.56)E-03 0.06 (0.00-0.50) 0.00 22.40 23.14 2.13E-03 

RT 0.46 ± 0.15 0.43 ± 0.10 0.55 (0.16-0.76) 0.07 15.61 23.25 0.19 

|Δ(t0)-RT| -0.37 ± 0.14 -0.34 ± 0.10 0.53 (0.12-0.75) 0.07 19.49 28.56 0.19 

SNR 28.00 ± 1.43 28.07 ± 1.30 0.45 (0.15-0.67) 0.86 3.07 4.14 2.39 

SNR(dB)/NbLog 0.25 ± 0.05 0.23 ± 0.04 0.64 (0.29-0.82) 0.02 10.26 17.10 0.07 
ICC: Intraclass Correlation Coefficient, CI: Confidence Interval, SEM: Standard Error of Measurement, CV: Coefficient of Variation, MDC: 305 
Minimal Detectable Change 306 

 307 

  308 
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4. Discussion  309 

The aim of this study was to assess the test-retest reliability of fast strokes’ kinematic parameters 310 

drawn on a tablet using a vertical setup. They were extracted according to the Sigma-Lognormal 311 

model with the aim of using the setup for clinical applications in fatigue detection. Overall, most 312 

of the parameters from the four tests seem to present sufficient reliability for clinical applications. 313 

4.1. Reliability of the four tests 314 

In general, the four series of tests seem to present an adequate level of reliability. The movement 315 

execution with the dominant hand enables one to attain superior levels of motor control quality, 316 

and have less variability in the gesture [48]. As found by Smits, Tolonen, Cluitmans, van Gils, 317 

Zietsma, Tijssen and Maurits [49], a zigzag graphical task (i.e. a combination of simple strokes) 318 

had already been assessed as good, with an ICC of 0.89 for its movement time and of 0.82 for its 319 

mean error. Other handwriting tasks were considered to have excellent reliability (ICC=0.927) in 320 

their average absolute velocity [50], meaning that the overall kinematics of handwriting seems to 321 

be reliable from day to day for an individual. This result is reflected in the kinematic parameters 322 

for each test. When analyzing simple strokes through the theory, the parameters describing the 323 

action plan (t0, D, θs and θe) of the agonist system seem to be more reliable than for the 324 

antagonist (e.g. D agonist ICC=0.86, D antagonist ICC=0.70; |cos(θs)| agonist ICC=0.91, 325 

|cos(θs)| antagonist ICC=0.00). The parameters of the agonist system are reliable as the strokes 326 

are equally oriented each time thanks to the guiding sheet. However, as determined by 327 

Plamondon and Djioua [35], glitches at the end of the movement, can change the velocity profile 328 

of the stroke. Those glitches do not occur in the main orientation of the movement, i.e. the 329 

agonist system, and can therefore enlarge the variability of the antagonist system. Even if 330 

glitches were partly rejected during the data processing, they could have still influenced the 331 

reliability of the antagonist parameters and also explain the poor ICC value of μ antagonist. A 332 

detailed comparison with a Delta-Lognormal extraction (i.e. simple strokes defined only by two 333 

Lognormals) could help to determine the most appropriate and accurate extraction method for 334 

simple strokes [51]. When analyzing more complex movements, such as the triangles or the 335 

oscillations, a good reliability is also denoted in general. Except for the logresponse time σ in the 336 

oscillations, the intrinsic parameters of a lognormal (t0 or Δ(t0), D, μ, σ) are reliable from day to 337 

day. In fact their ICC values may be lowered by the very low inter-participant variability, as 338 
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explained in Weir [7]. This explanation could also be relevant for the SNR, which has a poor ICC 339 

for every test. As a stopping criterion for the reconstruction program Script Studio is for the SNR 340 

to attain 25dB, the SNR/NbLog should be analyzed instead when evaluating the motor control 341 

quality [25, 52]. The triangles, which are more complex tests than simple strokes and oscillations, 342 

may be more reliable for the assessment of fine motor control quality because the inter-session 343 

learning effect is smaller, as mentioned in Smits, Tolonen, Cluitmans, van Gils, Zietsma, Tijssen 344 

and Maurits [49]. The Sigma-Lognormal model seems to reconstruct the data similarly each time 345 

it is deployed, whether for a simple stroke or a complex movement, leading to parameters with 346 

sufficient reliability.  347 

4.2. The setup as a new clinical tool for the detection of shoulder fatigue 348 

The vertical setup was specific to shoulder neuromuscular fatigue detection [20, 21] and its 349 

clinical relevance still needs to be assessed. As explained in Van den Bruel, Cleemput, 350 

Aertgeerts, Ramaekers and Buntinx [5], any tool being used to assess neuromuscular fatigue 351 

clinically needs to be easily implementable with quickly accessible data. The tablet linked to the 352 

computer offers numerous advantages as the whole process is integrated [53]. However, triangles 353 

had to be manually verified, because some reconstructions presented inaccuracies in their 354 

trajectory. As Script Studio optimizes the reconstruction on the velocity profile, a trajectory offset 355 

can be observed [34, 54]. The use of “iDeLog”, a new algorithm that optimizes parameters based 356 

on both speed and trajectory may avoid outliers and speed up the data formatting process [40]. 357 

This will be the subject of a follow-up study. Nevertheless, the simplicity of the use of the tablet 358 

and the possibility of improvements in algorithm optimization leads us to believe that the setup 359 

will soon be capable of meeting the requirements for clinical implementation.  360 

In addition to this, clinical guidelines require data to be reliable with high sensitivity and 361 

specificity [6]. As shown in Laurent, Plamondon and Begon [20], the mode, median and time 362 

delay present the most significant differences pre and post shoulder fatigue in internal and 363 

external rotation. Their reliability on all tests was good to excellent, ranging from 0.77 to 0.90. In 364 

comparison, goniometers and inclinometers, have a reliability ranging from moderate to excellent 365 

in external and internal rotation (goniometer: ICC from 0.64 to 0.91, inclinometer: ICC from 0.63 366 

to 0.97) [55, 56]. The latter are tools that are currently used in clinics for the evaluation of the 367 

articular amplitude, which may be used as to assess shoulder neuromuscular disorders [57]. 368 
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These disorders can also be assessed with a muscular force evaluation. To that extent, stationary 369 

dynamometers have high reliability with ICC ranging from 0.87 to 0.94 [58]. However the 370 

minimal detectable changes (MDC) were not reported [58, 59], or had high values (21 to 43% 371 

MDC) [60] limiting their assessment of sensitivity to changes. In our study, the MDC were 372 

higher than the mean difference pre and post fatigue [20]. However, the effect sizes of the pre and 373 

post fatigue differences always ranged from moderate to good, indicating that the observed 374 

phenomenon of variation was high and that a clinically relevant change has still occurred. The 375 

MDC might be too severe in the assessment of the sensitivity to changes in our study. Further 376 

studies need to be undertaken to specify the sensitivity and specificity after internal and external 377 

rotation fatigue using Kinematic Theory. For clinical requirements, these values tend to have to 378 

be excellent, as in medical imaging (sensitivity and specificity>0.85) [61, 62]. Otherwise, a 379 

combination of several tests with different values of sensitivity and specificity is also possible, as 380 

is done with physical tests [63, 64]. Tests with a high sensitivity will correctly identify persons 381 

who have a pathology, while tests with a high specificity will correctly reject those without the 382 

pathology [65]. The theory is reliable from day to day and its use in shoulder fatigue detection 383 

could be clinically relevant, when sensitivity and specificity are assessed. 384 

4.3. Further clinical applications 385 

Kinematic Theory has been used in many applications for motor control evaluation. A tablet is an 386 

ergonomic and standardized method [53], which has already shown many interesting results in 387 

studies such as Parkinson’s disease [22], concussion [23], attention deficit hyperactivity disorder 388 

[24], aging phenomena [25], stroke risk factors [26]. Contrary to the present study, these data 389 

were recorded on a setup horizontally oriented, with sitting participants. Another study from 390 

Fischer, Plamondon, O'Reilly and Savaria [66] reconstructed handwriting from a whiteboard, in a 391 

vertical orientation. Portnoy, Rosenberg, Alazraki, Elyakim and Friedman [67] postulated that 392 

whether on a vertical or horizontal surface, the graphic product performance level during 393 

handwriting will not be affected. However, without efficient support from the table as in a 394 

horizontal set-up, upper-limb muscles have higher amplitude activation [68, 69]. Moreover, the 395 

handwriting kinematics on horizontal surfaces seems more fluid than on vertical surfaces [70]. A 396 

better reliability may thus be expected on horizontal surfaces with sitting participants than on 397 

vertical surfaces with standing participants. As simple strokes and more complex tasks (i.e. 398 
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triangles and oscillations) were reliable after the Sigma-Lognormal model analysis, it can be 399 

expected that the parameters extracted from any kind of well-specified movement are reliable 400 

from one day to another. 401 

4.4. Limitations 402 

A first limitation to our study is that participants were not constrained when executing their 403 

strokes. The distance between the participant and the tablet in-between days was not controlled in 404 

this study. Although differences in posture might affect the kinematics, forcing a given posture 405 

might have created biases in the results of some participants who might have been obligated to 406 

use strategies that were not optimal for them. We thus chose to prioritize a comfortable, self-407 

selected posture, which is important during a clinical test involving maximal speed. As a result, 408 

different strategies were used by the individual participants, especially for the vertical 409 

oscillations. However, postural difference between test days for the participants could have 410 

affected the kinematics [71] and could therefore lead to decreased reliability in some tests, 411 

especially the vertical oscillations. A standardization of the distance between the participant and 412 

the tablet, and the standing posture could be means by which to increase the intra-participant 413 

reliability, but would add complexity to the setup for clinical testing. Further studies evaluating 414 

the parameters’ reliability with comparison of self-selected versus controlled posture could help 415 

improve the reliability of handwriting tasks for clinical application. In addition, tiredness and 416 

boredom could be observed in such studies. As the model describes the neuromotor condition of 417 

the participant [33, 72], it could be of interest to add a fatigue scale or a subjective scale to know 418 

if the participants were tired [73]. Performing the study at the same moment of the day (whether 419 

always the morning or afternoon) could also heighten the reliability as handwriting speed could 420 

be affected by circadian variations [74]. The use of neurostimulants should also be documented, 421 

as they have an effect on fatigue [75]. Furthermore, a learning process can be observed between 422 

two sessions as the velocity in handwriting can be affected by familiarity and practice of the test 423 

[76]. Despite the training period at the beginning of each session, kinematic profiles appeared 424 

faster on the second day in our study, as in Smits, Tolonen, Cluitmans, van Gils, Zietsma, Tijssen 425 

and Maurits [49], and parameters for the second day showed more variability. To diminish the 426 

inter-session variability, additional training sessions could be assigned at least one day before the 427 

recording session. For clinical reasons, the same study should be performed on fatigued 428 
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participants. Despite the need for some improvements, the method in the present study seems 429 

appropriate for fatigue detection and with these improvements should be feasible for clinical use.   430 
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5. Conclusion (89) 431 

Most of the parameters have good test-retest reliability in the four series of tests presented. Both 432 

agonist lognormals and more complex movements were modelled by parameters that presented 433 

high reliability. The mode, median and time delay had good to excellent reliability supporting 434 

their use in shoulder fatigue detection. However, the minimal detectable change may need to be 435 

refined. Nevertheless, the theory has many other applications and its use on a horizontal surface 436 

(e.g. in a sitting position) leads us to believe that the reliability of the data could be even better 437 

for other applications.  438 

  439 
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Equations 1 to 3: Mathematical model of movement reconstruction according to Kinematic 
Theory. 
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Table A.1: Resume of the main parameters extracted and their meaning 

t0 

The time that it takes the brain to perceive the stimulus and emit the 
command to the musculoskeletal system. It refers to the moment when a 
population of neurons sends a motor command, and it occurs after the 
audible stimulus is perceived and the motor command prepared. From this 
parameter, we can calculate Δ(t0), which is the elapsed time between two 
successive t0. It reflects the rhythmicity of an input command, and is used in 
oscillation tasks only. 

D The distance covered by the resulting lognormal. 

θs The starting angle of the lognormal. 

θe The ending (terminal) angle of the lognormal. 

μ 
Also known as the logtime delay, it represents the time taken to reach half 
of the distance movement on a logarithmic scale. It corresponds to the 
rapidity of the reaction to a command by a system. 

σ 

Also known as the logresponse time, it represents the time taken from the 
neuromuscular system to respond to a command on a logarithmic scale. It is 
also linked to the movement duration and is a measure of the asymmetry of 
the lognormal. 

Nblog The number of lognormals required to reconstruct the velocity profile of the 
movement. 

SNR A measure of the quality of the movement reconstruction. 

 



Table A.2: Resume of the derived parameters extracted and their meaning 

Mode 
The time at which the maximum value of the lognormal impulse response is 
reached. 

K = $" +	>*+,² 

Median 
The time at which the half value of the integral under the lognormal curve 
(50% of the covered distance) is reached. 

L = $" +	>* 

Time delay 
The rapidity of the neuromuscular system in response to a command. 

$̅ = $" +	>*.".0,² 

Response 
time 

A measure of the spread of the impulse response. 

0 = ($̅ − $")N1>,² − 13 

Asymmetry 
Characterizes the shape of the lognormal. 

P1 = 1 − >+,² 

SNR/NbLog 

A performance criterion that represents the motor control fluency of a 
gesture. The lognormality principle predicts that the ideal movement 
converges toward a lognormal profile. When the SNR/NbLog is higher, the 
movement is more similar to the ideal one, as postulated by the lognormal 
behavior. 

Command 
propagation 

The duration of the command propagation. It represents the elapsed time 
between the emission of the command from the brain (t0) to the execution 
of the command, the reaction time (RT). In the present study, the reaction 
time was computed as the time required to reach 10% of the maximal 
velocity during the test. 

QR = ST − $" 

Note: Δ(t0) is used instead of t0 for the calculus in the oscillations 
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Figure B.1: Bland Altman plots of the SNR for simple strokes, triangles, horizontal and 
vertical oscillations with the mean difference (solid lines) and the limits of agreement 

(dotted lines). 

 

 

 

 

 

Figure B.1: Bland Altman plots of |t0-RT| for the simple strokes and triangles; and for 
|Δ(t0)-RT| for horizontal and vertical oscillations with the mean difference (solid lines) 

and the limits of agreement (dotted lines). 

 

 

 



 

 

 

 

Figure B.2: Bland Altman plots of σ for the horizontal and vertical oscillations with the 
mean difference (solid lines) and the limits of agreement (dotted lines). 

 

 

 

 

 

Figure B.3: Bland Altman plots of the asymmetry for the agonist and antagonist 
components of simple strokes (ST), triangles, horizontal and vertical oscillations with the 

mean difference (solid lines) and the limits of agreement (dotted lines). 


