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A B S T R A C T   

Mechanical ventilation (MV) is a core treatment for patients suffering from respiratory disease and failure. 
However, MV settings are not standardized due to significant inter- and intra- patient variability in response to 
care, leading to variability in outcome. There is thus a need to personalize MV settings. This research signifi
cantly extends a single compartment lung mechanics model with physiologically relevant basis functions, and 
uses it to identify patient-specific lung mechanics and predict response to changes in MV settings. Nonlinear 
evolution of pulmonary elastance over positive end expiratory pressure (PEEP) is modelled by a newly proposed, 
physiologically relevant and simplified compensatory function to enable prediction of pulmonary response for 
both volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV), and identified as patient- 
specific using each patient’s data at a baseline PEEP. Predictions at higher PEEP levels test the validity of the 
proposed models based on errors in predicted peak inspiratory pressure (PIP) in two VCV trials and volume (PIV) 
in one PCV trial. A total of 210 prediction cases over 36 patients (22 VCV; 14 PCV) yielded absolute predicted PIP 
errors within 1.0 cmH2O (2.3%) and 3.3 cmH2O (7.3%) for 90% cases in VCV, while predicted PIV errors are 
within 0.073 L (16.8%) for 85% cases in PCV. In conclusion, a novel deterministic virtual patient model is 
presented, able to offer accurate prediction of pulmonary response across a wide range of PEEP changes for the 
two main MV modes used clinically, enabling predictive decision support in real-time to safely personalize and 
optimize care.   

1. Introduction 

Acute lung injury (ALI) and acute respiratory distress syndrome 
(ARDS) have detrimental impacts on lung stiffness and oxygenation 
resulting in high morbidity and mortality [1–4]. Mechanical ventilation 
(MV) is the core treatment for patients suffering from life-threatening 
respiratory failure in the intensive care unit (ICU). The primary goal 
of MV is to minimise the work of breathing, ensure adequate gas ex
change, and recruit and hold open lung volume to enable recovery 
[5–9]. However, suboptimal MV settings can lead to over-distension and 
ventilator induced lung injury (VILI), both of which increase morbidity 

and mortality [1,6,8–12]. To avoid these harmful effects, protective MV 
settings have been proposed [1,4,13–15]. 

Low tidal volume is clinically well-accepted in MV to mitigate VILI, 
but can lead to alveolar de-recruitment [16–18]. Thus, a protective 
‘open lung’ approach uses positive end-expiratory pressure (PEEP) 
during breathing to prevent alveolar collapse combined with low tidal 
volume ventilation, thus maintaining an open lung at the end of expi
ration to ensure sufficient oxygenation and pressure support 
[6,8,9,18–21]. Staircase recruitment maneuvres (RMs), comprising a 
series of incremental and decremental PEEP steps, have been used as one 
important component in clinical care for recruiting lung volume for lung 
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protective strategies and assessing the choice of PEEP [6,15,22–24]. 
RMs with subsequent PEEP changes can be effective in improving 

oxygenation, while minimising harm [20,25–27]. However, optimal RM 
and PEEP settings remain patient-specific, time-varying, and thus not 
standardized [11,12,18,28–31]. The ‘best’ setting can be different be
tween patients, as well as varying over different conditions and time 
[5,14,32–35]. An suboptimal PEEP setting can lead to excessive or 
insufficient support for patients, inducing VILI and leading to higher 
morbidity and mortality [36,37]. Thus, it is critical to to provide clini
cians with better information to monitor patient-specific pulmonary 
state and forecast the influence of new PEEP settings on pulmonary 
response for each patient, to improve and personalize care, minimize 
risk, and maximize care and safety [8,19,34,35]. Therefore, accurate, 
predictive and patient-specific MV strategies are a major need in 
advancing care and minimising MV-associated injury [5,19,34]. 

Furthermore, two different MV modes are both widely used, volume 
controlled ventilation (VCV) and pressure controlled ventilation (PCV) 
[38–40]. VCV allows clinicians to control tidal volume directly, elimi
nating volutrauma, but they need to be alert to the resulting peak 
inspiratory pressure (PIP) and barotrauma. Conversely, PCV controls 
pressure, but risks volutrauma from too large a peak inspiratory volume 
(PIV) [38]. Both limitations may lead to unexpected VILI [39,41]. To 
date, no noticeable clinical outcome differences have been seen 
comparing VCV and PCV [42,43]. Thus, the decision on MV strategies 
relies on clinician preference, patient characteristics, or patient comfort 
[38,39]. Therefore, accurate, model-based, and patient-specific pulmo
nary response prediction is necessary. 

In the last two decades, several complex models have been proposed 
and can effectively capture a large range of nonlinear pulmonary dy
namics [34,44–51]. However, their complexity means they suffer poor 
or non-identifiability [34,52], or are too complex to identify or apply at 
the bedside [53–59], thus limiting or eliminating their potential for 
clinical application. Far simpler black box models can be created, but 
require large amounts of data to train and may lack the ability to capture 
or describe all physiological features in various situations [58,60,61]. In 
addition, physiological relevance is important because it supports clin
ical confidence and use and provides further insight to clinical end-users 
[52,62], but such black-box models cannot offer physiological rele
vance. Finally, some models of all types capture lung mechanics well 
with good personalization of parameters, but are poor in predicting the 
response to changes in care [63–65], lacking the means to offer guidance 
to clinicians, and suggesting the identified parameters may not be cor
rect. However, accurate prediction is a major need in guiding and 
improving the safety and efficacy of clinical MV treatment [66–68]. 
Thus, there is a need for simpler, identifiable, physiologically relevant 
models which can offer accurate prediction to changes in care by 
capturing the evolution of lung mechanics as MV parameters change 
[34,52]. 

Currently, while several models can identify data [9,11,44,69–71], 
the authors are aware of only one approach able to accurately predict 
outcomes from changes in MV care for resulted airway pressure for VCV 
and tidal volume for PCV[8,19,72]. These approaches use physiologi
cally relevant basis functions to define respiratory mechanics over all 
possible pressures and volumes seen in MV, which is uncommon 
[35,58]. However, while they predict well, the basis functions proposed 
are independent of known PEEP levels and changes, creating complexity 
in understanding and implementation, especially for PCV predictions. 
Thus, if accurate prediction can be obtained with a simpler model where 
elastance evolution as PEEP changes is captured as a function of PEEP, it 
could provide an easier, more intuitive, and clinically applicable 
approach in clinical use. 

This research presents physiologically relevant, simpler, basis func
tions to estimate elastance and resistance evolution as MV parameters 
change using the same clinically validated single compartment lung 
mechanics model as previous studies [59,73]. It is validated by assessing 
prediction error when made patient specific using data from one single 

PEEP level to predict pressure and flow at higher PEEP levels. Such a 
predictive model would offer the ability to quantify the trade-off or 
compromise between increasing basis function simplicity and improving 
clinical utility. 

2. Methods 

2.1. Patient data 

Pressure and flow data from 36 mechanically ventilated ICU patients 
(4 from the CURE pilot trial [74], 18 from the McREM pilot trial [19,75], 
and 14 from the Maastricht pilot trial) were used to validate the method 
developed in this study. 

2.1.1. VCV trials 
In the CURE and McREM trials, all 22 patients were fully sedated and 

intubated under invasive volume-controlled ventilation , with tidal 
volume set to 6–8 ml/kg in CURE [76,77] and 8 ± 2 ml/kg in McREM 
(both based on ideal body weight). The two studies had consistent in
clusion criteria of PaO2/FiO2 < 300 mmHg and PaO2/FiO2 < 298 mmHg 
for CURE and McREM, respectively, which is part of ARDS severity 
scoring system [2]. 

2.1.1.1. CURE trial. The CURE trial was conducted on 4 patients at 
Christchurch Hospital ICU in August 2016 (ANZTR number: 
ACTRN12613001006730) [74,76]. Demographics are shown in Table 1. 
Pressure and flow data in this study were sampled at 50 Hz [76]. 

Spontaneous breathing was prevented using sedation with muscle 
relaxants during RMs, to minimise asynchrony [44,78–80]. Two stair
case RMs were applied to each patient with increments and decrements 
of 4 cmH2O, consisting of 2 sets, Set 1 and Set 3, with increasing PEEP 
levels and 2 sets with decreasing PEEP levels, as shown in Fig. 1 (a) [77]. 
Every set had six increasing or decreasing PEEP levels, while only five 
PEEP levels were used in Set 1 of Patient 1 by clinical choice. In this 
study, only sets with increasing PEEP levels are studied. Thus, there are a 
total of 47 steps across 8 sets for 4 patients, from which 8 cases are used 
for identifying the model at the lowest PEEP level. The remaining 39 
cases are used for prediction and model validation across increasingly 
large PEEP intervals up to 20 cmH2O. 

2.1.1.2. McREM trial. The McREM trial was conducted across eight 
ICUs from September 2000 to February 2002. Data were sampled at 125 
Hz [75]. Demographics are shown in Table 2. 

A total of 18 patients from a total of 28 in the McREM trial were 
selected as they underwent one complete increasing staircase RM where 
PEEP was set to increase at increments of 2 cmH2O, as shown in Fig. 1 
(b). During the protocol, an end-inspiratory hold of 0.2 s was set for all 
18 patients [75]. In this study, the identification procedure is applied at 
PEEP = 10 cmH2O instead of ZEEP (zero end-expiratory pressure) 
because starting at PEEP = 10 cmH2O creates a clear and equal com
parison with the other trial datasets in this study. Overall, this trial 
yields 100 cases, from which 18 cases are used for identification and the 
remaining 82 cases are used for prediction and model validation, with 
increasing PEEP intervals up to 16 cmH2O. 

Table 1 
Patients and clinical trial demographics in the CURE pilot trial [74]  

Patient 
No 

Sex Age 
(years) 

Length of MV 
(days) 

Clinical Diagnostic 

1 Male 33 23 Peritonitis 
2 Male 77 24 Legionella pneumonia 
3 Male 61 23 Staphylococcus Aureus 

pneumonia 
4 Female 73 2 Streptococcus pneumonia  
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2.1.2. PCV trial 
Data from the Maastricht trial was conducted on 14 patients from 

November 2017 to February 2018 in Maastricht, Netherlands (METC 
17–4–053). Ventilator pressure and flow data was recorded directly 
from the ventilator. Typical ventilators use hot wire anemometers to 
measure flow with accuracy to 1 ml/s or less. Volume was integrated for 
each breath separately from the flow data. All 14 patients are treated 
with Bi-level Positive Airway Pressure pressure-controlled ventilation. 
Demographics are shown in Table 3. 

Each patient was treated with one full staircase RM with 2 cmH2O 
increments or decrements in PEEP, as shown in Fig. 1 (c). Only the RM 
arm with incremental PEEP levels is studied for all 14 patients, with 
model identification starting at 10 cmH2O to be consistent with the two 
VCV trials. Thus, it yields 103 cases,while 14 cases for model identifi
cation and the remaining 89 cases are for prediction and validation, with 
a maximum 16 cmH2O PEEP interval. 

2.2. Model definition, identification, and prediction 

2.2.1. Lung mechanics model 
The proposed method is based on a well-validated single compart

ment lung mechanics model [73]: 

P(t) = E*V(t) + R*Q(t) + PEEP# (1) 

where P(t) is airway pressure (cmH2O), V(t) is the tidal volume 
delivered (L), Q(t) is the flow (L/s), and PEEP is the positive end- 
expiratory pressure (cmH2O). Pulmonary elastance (cmH2O/L) and 
pulmonary resistance (cmH2O*s/L) are defined as E and R , respectively. 

2.2.2. Identification 
At baseline PEEP, for all VCV and PCV trials, pressure and flow data 

are used to identify nonlinear evolution of elastance and resistance for 
each patient and any single breath. These basis functions for elastance, 
Ei(t) , and resistance, Ri(t) , are defined: 

Ei(t) = e1 + e2*Pi(t), i = 1# (2)  

Ri(t) = r1 + r2*Qi(t), i = 1# (3) 

where Pi(t) and Qi(t) (i = 1) are the measured pressure and flow data. 
The values of e1 , e2 , r1 , and r2 are the patient-specific, constant co
efficients to be identified for each patient. They can be identified from 
any single breath, and are identified at the baseline PEEP level for each 

Fig. 1. Example of RMs used in the CURE trial (a), the McREM trial (b), and the Maastricht trial (c). The values are schematic and varies with patients.  

Table 2 
Patients and clinical trial demographics in the McREM pilot trial [75]  

Patient 
No 

Sex Age 
(years) 

Length of MV 
(days) 

Clinical Diagnostic 

1 Male 37 10 Pneumonia 
2 Male 39 2 Traumatic aortic dissection, 

lung contusion 
3 Female 50 8 Pancreatitis, pneumonia 
4 Female 30 8 Peritonitis, sepsis 
5 Female 49 3 Pneumonia 
6 Male 34 10 Traumatic open brain injury 
7 Male 67 4 Post resuscitation 
8 Male 39 10 Perf. sigma, peritonitis 
9 Male 42 9 Pneumonia, pancreatitis 
10 Male 51 5 Traumatic brain injury, 

pneumonia 
11 Male 77 6 Pneumonia 
12 Male 74 10 Subarachnoid and subdural 

hemorrhage 
13 Male 41 16 Peritonitis 
14 Male 62 2 Subarachnoid hemorrhage 
15 Male 39 7 Traumatic brain injury, 

pneumonia 
16 Male 74 9 S/P coronary artery bypass 

grafting, pneumonia 
17 Male 59 19 ARDS 
18 Male 45 8 Blunt abdominal trauma, 

pneumonia  

Table 3 
Patients and clinical trial demographics in the Maastricht pilot trial. CABG =
Coronary Artery Bypass Grafting, AVR = Aortic Valve Replacement  

Patient 
No 

Sex Age 
(years) 

PaO2/ 
FiO2 

Clinical Diagnostic 

1 Male 77 255 CABG 
2 Female 85 308 CABG 
3 Male 57 323 CABG 
4 Male 47 233 CABG 
5 Male 73 150 AVR 
6 Male 75 383 CABG 
7 Female 71 443 AVR 
8 Male 76 398 CABG 
9 Female 64 255 Subarachnoid Haemorrhage 
10 Female 68 428 Pneumonia 
11 Female 78 143 Pneumonia 
12 Female 18 83 Mitral and Tricuspid Valve 

Replacement 
13 Female 71 443 Pneumonia 
14 Male 36 158 CABG  

Q. Sun et al.                                                                                                                                                                                                                                     
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patient in this study. 
The elastance basis function, Equation (2), is significantly simplified 

from the one used in [8,19,35], which defines E = f(P(t),V(t) ) . The 
functions in Equation (2)-(3) remain constant for all further PEEP levels 
using coefficient values identified at a given PEEP level for each patient. 
The accuracy of this choice of coefficients across all clinically realistic 
ranges of pressure and flow is tested in the accuracy of prediction results 
using the identified model. 

PIP error using the identified model parameters is defined: 

PIPfiterror =
fittedPIP − clinicalPIP

clinicalPIP
# (4) 

Thus, in this step, e1 , e2 , r1 , and r2 are identified, while the 
resulting Ei and Ri at i = 1, and PIPfiterror can be calculated with known or 
identified data and values. 

2.2.3. Prediction 
In this approach, a subscript, i , is used to indicate PEEP level, where 

PEEP1 (i = 1) is the baseline PEEP level to which the model is identified, 
and PEEPi is the ith applied PEEP level. In the three studied pilot trials, 
the maximum is i = 6 in the CURE trial, i = 9 in the McREM trial, and i =
8 in the Maastricht trial, where the McREM and Maastricht trials used 
smaller ΔPEEP steps. 

2.2.3.1. Elastance and resistance prediction. In the modelling approach 
presented here, a compensatory coefficient, Φi , is proposed aiming to 
capture the nonlinear evolution of elastance over PEEP for all three trials 
and calculated as a unit-less value. For PEEPi levels (i > 1), the function 
of Φi is defined with a clinically selected PEEPmax = 24 cmH2O: 

Φi=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
1+PIPfiterror

)− 1
, i=2

ϑ1*ΔPEEP, if i>2and PEEPi≤PEEPmax

ϑ1*ΔPEEP− ϑ2*
(

PEEPi −
PEEPmax

ΔPEEP

)2

, if i>2and PEEPi>PEEPmax

(5) 

while ϑ1 = 0.0174 in the CURE trial and = 0.0087 in both the 
McREM and Maastricht trials, and ϑ2=

⃒
⃒PIPfiterr

⃒
⃒ – 0.0123 for all trials. 

ΔPEEP=PEEPi − PEEPi− 1 , where PEEPi is the currently applied PEEP 
level. The values for ϑ1 and ϑ2 were optimized parametrically by line 
search. In the CURE trial, ΔPEEP is 4 cmH2O clinically, while in the 
McREM trial and the Maastricht trial it is 2 cmH2O. Thus, ϑ1 is 
reasonably decreased to half the value used for the CURE trial (ϑ1 =
0.0174 → 0.0087), while ϑ2 and PEEPmax remain the same. Hence, the 
parameters are general over all three trials and two MV modes. 

Thus, elastance is predicted for PEEPi levels (i = 2, 3, 4, …) using: 

Ei(t) = e1*
∑j=i

j=2
Φj + e2*P1(t)*

∑j=2

j=2
Φj*

∑j=3

j=2
Φj*⋯*

∑j=i

j=2
Φj (6) 

Resistance is assumed to be constant over all PEEP levels for each 
patient as identified at PEEP1(i = 1) [19,35,72], yielding: 

Ri(t) = r1 + r2*Q1(t)# (7)  

2.2.3.2. Pressure prediction for VCV. For VCV, the CURE trial and the 
McREM trial, predicted airway pressure is the independent output var
iable. Pressure prediction from PEEP1 to a new PEEPi level can be 
calculated with predicted elastance and resistance: 

Pi(t) = Ei(t)*V1(t) + Ri(t)*Q1(t) + PEEPi# (8) 

where Ei(t) and Ri(t) are obtained from Equations (6) – (7). 

2.2.3.3. Volume and flow prediction for PCV. For PCV, the Maastricht 
trial, since pressure is the known input, instead of tidal volume and flow, 
tidal volume is the predicted variable, using: 

Vi(t) =
P1(t) − PEEP1 − Ri(t)*Q1(t)

Ei(t)
# (9) 

where Ei(t) and Ri(t) are obtained from Equations (6) – (7). 
A flowchart presenting the entire identification (i = 1) and prediction 

(i > 1) procedure is shown in Fig. 2. 

2.3. Validation and error analysis 

In this study, the same error metrics are used to describe the results 
for both identification and prediction. PIP is the critical clinical indi
cator in VCV, as it is related to ventilator induced lung injury (VILI) due 
to pulmonary barotrauma [6,81,82]. Equally, PIV is the key indicator 
during PCV [39]. Errors are presented as absolute difference (cmH2O 
and L). Root-mean-square (RMS) error is also used to show prediction 
error in pressure and reproducibility of the P(t) trajectory over an entire 
breath in VCV trials, and volume prediction errors and the reproduc
ibility of V(t) trajectory in PCV trial. 

2.4. Sensitivity analysis 

Equation (5) relies on fixed values for ϑ1 , ϑ2 , and PEEPmax . While 
PEEPmax is clinically justified, the ϑ1 and ϑ2 values are tested across a 
range of ± 5%, ± 10%, and ± 15% individually and jointly in a sensi
tivity analysis to quantify robustness in addition to the three indepen
dent data sets and different MV modes used in validation. Mixed 
changes, such as + 15% for one variable and − 15% for the other, are 
also run, although changes of the same sign are expected to produce the 
largest errors based on Equation (5). Thus, a total of 48 combinations of 
ϑ1 and ϑ2 are analysed in this approach. The same error metrics are 
reported to assess model robustness to these parameter value choices. 

3. Results 

3.1. VCV trials prediction 

3.1.1. Elastance evolution and prediction 
Fig. 3 (a) shows an example of elastance evolution for the CURE trial 

Patient 4, Set 1 across 6 PEEP levels, identified at PEEP = 11 cmH2O and 
predicting response at higher PEEP levels. Fig. 3 (b) shows an example 
for Patient 15 across 6 PEEP levels in the McREM trial, identified at 
PEEP = 10 cmH2O and then predicting response, where T0 is the time 
when inspiration ends and reaching maximum tidal volume. Typical 
prediction cases are shown in Fig. 4, with low absolute median pressure 
predicted error of 0.25 cmH2O, 0.46 cmH2O and PIP error of 0.23 
cmH2O, 0.58 cmH2O for Patient 1, Set 3 in CURE and Patient 14 in 
McREM, respectively. 

3.1.2. Pressure prediction 
Prediction uses the first PEEP level to identify patient-specific model 

parameters and then predicts the response at higher PEEP levels. Ab
solute prediction errors (cmH2O) of PIP and RMS with median pressure 
error over the whole breath and interquartile range (IQR) for both two 
VCV trials are shown in Table 4. Cumulative distribution functions 
(CDFs) and boxplots for prediction error as a function of ΔPEEP interval 
showing absolute predicted PIP error (cmH2O) are given in Fig. 5 for the 
CURE trial and Fig. 6 for the McREM trial. For both two VCV trials, the 
predicted error is slightly larger with larger ΔPEEP, which is reasonable 
and expected. It is worth noting with larger ΔPEEP, the clinical PIP is 
also increasing, and thus the percentage errors of PIP prediction do not 
have noticeable relationship with ΔPEEP. Finally, Fig. 7 (a) shows the 
correlation of predicted and measured PIP values with R2 = 0.99 for 
CURE and R2 = 0.88 for McREM showing a high level of prediction 
accuracy (R2 = 0.94 overall). 
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3.2. PCV trial prediction 

Prediction outcome of volume in PCV basing on base PEEP level, 
absolute prediction errors of PIV (L) and RMS errors (L), are shown with 
median prediction error and IQR in Table 5. Correlation for predicted 
and measured PIV is shown in Fig. 7 (b) with R2 = 0.74. It is clinically 
acceptable, and 74% of predictions are greater than the clinical value, 
which can lead to a more conservative treatment choice and thus lower 
the risk of volutrauma. A typical prediction case for predicted volume in 
PCV is shown in Fig. 8, with median predicted volume error of 0.018 L 
over the whole breath trajectory and PIV error of 0.027 L. 

3.3. Sensitivity analysis 

The values of ϑ1 and ϑ2 were optimised parametrically by line 
search. To quantify the impact of this choice of values and decision to 
used fixed values, ϑ1andϑ2 are modified ± 5%, ± 10%, and ± 15% 
individually and jointly. These changes yield further 48 analyses. The 
maximum changes of predicted PIP error (cmH2O), PIV error (L), and 
RMS error (cmH2O, L) are recorded and compared with those form the 
initial values of ϑ1andϑ2 , as shown in Table 6 for VCV trials and the PCV 
trial. 

Fig. 2. Flowchart of the entire identification (i = 1) and prediction (i > 1) procedure.  

Fig. 3. Examples of elastance evolution at end of inspiration, T0 , over PEEP in Set 1 of Patient 4 for CURE (a) and Patient 15 for McREM (b). It is identified (filled 
circle) at PEEP = 11 cmH2O in CURE and 10 cmH2O in McREM, and predicted (empty circle) to higher PEEP levels using Equations (5) - (6). 
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3.4. Model identification quality 

Prediction accuracy is dependent on a good identification at the base 
PEEP level. For VCV trials, identification difference (cmH2O) for first 
PEEP level of 22 identification cases are presented in Table 7. Fig. 9 (a) 
shows the correlations of model identification, identified PIP and 
measured PIP, are R2 = 0.87 in CURE, R2 = 0.96 in McREM, and R2 =

0.98 overall. For the PCV trial, identification outcomes for tidal volume 

(L) is also provided in Table 7, while the correlation of model identifi
cation is shown in Fig. 9 (b) with R2 = 0.99. 

4. Discussion 

The personalized, predictive virtual patient model presented uses 
only data from the first clinically relevant PEEP level to predict the 
respiratory mechanics and response at higher PEEP, where ΔPEEP can 
be up to 20 cmH2O, a clinically unrealistically change used only to 
validate the model. Changing PEEP is a key setting to optimise MV care 
and outcomes [6,12,31]. This overall outcome is achieved using a 
relatively simple first order single compartment lung mechanics model 
and physiologically relevant basis functions for elastance and resistance. 
It is simplified from more complex, and potentially less intuitive, virtual 
patient models with equally accurate prediction [8,19,35]. 

Similar to Morton et al [8,19,35,72], resistance is assumed constant 
across all PEEP levels, as identified at the first PEEP level. Given the 
relatively low prediction errors, assessing any evolution in resistance 
would add complexity for minimal gain. Morton et al treated elastance 

Fig. 4. Typical predicting case in Set 3 of Patient 1, from 11 to 23 cmH2O (ΔPEEP = 12 cmH2O) in CURE (a) and in Patient 14, from 10 cmH2O to 16 cmH2O (ΔPEEP 
= 6 cmH2O) in McREM (b). 

Table 4 
Prediction outcome for VCV trials with PIP error (cmH2O) and RMS error 
(cmH2O)  

Prediction outcome for VCV trials CURE trial McREM trial 

Prediction cases 39 cases 82 cases 
Maximum ΔPEEP 20 cmH2O 16 cmH2O 
PIP error(cmH2O) median 0.43 1.04 

[IQR] [0.21, 0.79] [0.46, 2.18] 
RMS error(cmH2O) median 0.97 1.11 

[IQR] [0.81, 1.12] [0.81, 1.48]  

Fig. 5. CDFs plots of predicted absolute PIP error (cmH2O) for all 39 prediction cases (a) and boxplot of absolute PIP error (cmH2O) with ΔPEEP (b) for the 
CURE trial. 
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and its evolution as a more complex function of both volume and 
pressure. It yielded very good results, but was much higher in 
complexity, and had some higher prediction errors. Moreover, the pro
posed approach also yields clinically acceptable results in PCV, which is 
more difficult to simulate than VCV trials because the two unknown 
variables of flow and volume are changing simultaneously. Hence, the 
greater simplicity in the model presented could offer a better approach 
given to similar to improved prediction performance for both VCV and 
PCV pilot trials. 

The cost of this model simplification is a loss of physiological in

formation, which may concern some clinicians. While effective, it does 
not have the physiological and clinical relevance of the residual volume 
(Vfrc) calculation calculated and predicted by Morton et al [8,19,35,72]. 
Vfrc volume is the volume captured by ΔPEEP holding more of the lung 
open at the end of expiration. Thus, this model is effective and gener
alizes well across MV modes and patients, but may not meet some cli
nicians requirements or provide greater physiological or clinical insight. 
This outcome is expected, and occurs in many modelling areas. 

In particular, considering the nonlinear evolution of elastance, a 
compensatory equation is proposed in Equation (5). It successfully es
timates elastance other approaches did not capture as well [8,19]. The 
compensatory equation is a function of the known ΔPEEP, applied PEEP 
level, identification error of base PEEP, and an assumed general PEEPmax 
. PEEPmax is suggested as an internal factor in the nonlinear evolution of 
elastance, set as 24 cmH2O in this approach, which is clinically typical 
and justified maximum PEEP level and worked well for all 210 pre
dictions. Fig. 3 presents the clear nonlinear relationship between PEEP 
and elastance, while the turning points vary with patients and data sets. 
This performance matches clinically observed evolution in [1,32,69]. 
However, despite being a personalized approach, it relies on correlation 
and set values for PEEPmax , ϑ1 and ϑ2 , which may not generalize in 

Fig. 6. CDFs plots of predicted absolute PIP error (cmH2O) for all 82 prediction cases (a) and boxplot of absolute PIP error (cmH2O) with ΔPEEP (b) for the 
McREM trial. 

Fig. 7. (a) Predicted PIP vs Clinical PIP (R2 
= 0.99 in CURE, R2 

= 0.88 in McREM, and R2 
= 0.94 overall); (B) Predicted PIV vs Clinical PIV (R2 

= 0.74 in Maastricht).  

Table 5 
Prediction outcome for PCV trial with absolute error (L) and RMS error (L)  

Prediction outcome for PCV trial Maastricht trial 

Prediction cases 89 cases 
Maximum ΔPEEP 16 cmH2O 
PIV error (L) median 0.037 

[IQR] [0.020, 0.058] 
RMS error (L) median 0.043 

[IQR] [0.034, 0.063]  
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larger data sets or studies. In contrast, the robustness of prediction 
performance across independent data sets and MV modes shows it 
generalized well enough over the studied data sets. Overall, these sim
plifications and choices represent a loss of physiological information, 
and a potentially too simple model for broad clinical use, where this 
study needs more clinical data for a more complete validation. 

Similar to this approach, Vicario et al [83] used an added physio
logical constraint which is estimated for respiratory muscle pressure to 
help illustrate and estimate the nonlinear behaviour of the lungs. These 
results offer an effective way to estimate the pulmonary elastance and 
resistance. However, due to its time-varying physiological constraint 
equation, the results may have more instability and also lack generality 

and mechanical or physiological relevance. However, this independent 
study result still indicates the impact of such assumptions and con
straints on lung mechanics and response, which is also seen in this study. 
In this case, the physiological compensatory equation employed will be 
the same constant during each PEEP level. Thus, it is more stable than 
the one used in Vicario et al. 

In predicted pressure for VCV trials, for all 39 cases of CURE, the 
highest absolute predicted PIP error is 1.36 cmH2O difference, where 35 
cases are within 1 cmH2O PIP error. In the McREM trial, a total of 82 
cases, the highest predicted PIP error is 6.26 cmH2O. However, except 
for this worst prediction case, all the other predicted PIP errors are 
within 4.7 cmH2O, while 59 cases are within 2 cmH2O and 40 cases are 
within 1 cmH2O. Overall, 90% of predictions are within 5.7% prediction 
error. Table 4 indicates reproducibility for overall pressure trajectory 
with 0.97 cmH2O and 1.11 cmH2O median RMS error in the CURE trial 
and the McREM trial, respectively, compared to other modelling studies, 
which only identify models and make no prediction [32,69,83–85], 
where prediction is the clinically useful impact. 

In predicting tidal volume and airway flow for the PCV trial, the 
performance between volume prediction and flow prediction is not 
consistent. Considering the very good prediction outcomes in VCV trials, 
a median PIV prediction error with 0.037 L is acceptable, while biased 
errors to higher PIV could lead to a clinically preferable conservative 
decision. This result is achieved with a simple calculation, which means 
convergence problems are avoided with a low computational cost. 
Finally, it is important to note these sets of results predict pulmonary 
response for changing MV inputs (PEEP), where only Morton et al 
[8,19,35,72] have provided such results previously. Thus, comparison of 
prediction errors is favourable in comparing to model-identified errors 
and to prior work by Morton et al. 

A sensitivity analysis of the values of ϑ1 and ϑ2 is shown in Table 6. 
Among the 48 analysed sets, the median predicted absolute median PIP 
error in CURE trial increases 0.22 cmH2O from the initial baseline value 
choice, while ϑ1 and ϑ2 are both 15% smaller, which also yielded a 
largest median PIP error increasing of 0.07 cmH2O in the McREM trial. 
In the Maastricht trial, the median PIV prediction error increases with a 
0.004 L difference under same set and 0.002 L for RMS error. Thus, this 
approach is robust to these parameter choices. 

This study is tested with three independent data sets including two 
VCV trials and one PCV trial covering a total of 36 patients under various 
diagnostic and situations. Generalization is reasonably demonstrated, 
and more data with different PEEP settings, tidal volume decisions, and 
MV strategies need to be analysed to ensure more widespread generality 
to more completely quantify the impact of the simplifying choices made. 
These studies require more data than available for this proof-of-concept 
validation, although the initial results presented here show significant 
promise. 

Overall, the proposed model provides accurate and robust pre
dictions even with a clinically unrealistic Δ PEEP up to 20 cmH2O and 16 
cmH2O for VCV and PCV trials, respectively, avoiding complicated 
procedures or iterative calculation seen in limited prior works 
[19,35,72]. It is computationally efficient to identify the required pa
rameters for following prediction without any training or updating in 
black box models, thus minimizing computation, identifiability, and 
generalisation issues seen in these other approaches and more complex 
models. Finally, despite simplification, nonlinear elastance evolution is 
effectively captured and yields accurate predictions across 3 clinical 
trials (2 VCV, 1 PCV), while offering new insight into the required level 
of complexity for a virtual patient model for clinical use in MV. Clini
cally, defining the elastance evolution as a function of the key changing 
MV parameter, PEEP, ensures the model is more intuitive and easy to 
understand as evolution is solely a function of the input parameter being 
changed. All these outcomes significantly extend prior works and offer 
new insight into modelling of pulmonary mechanics and the potential 
use of such models to guide clinical care. 

Fig. 8. Typical prediction for volume in Patient 6, from 10 cmH2O to 18 
cmH2O (ΔPEEP = 8 cmH2O) in the Maastricht trial cohort, showing the model 
prediction (dashed) and clinically measured volume (solid) at this higher 
PEEP level. 

Table 6 
Comparison of median and average predicted PIP/PIV (cmH2O, L) and RMS 
error (cmH2O, L) between initial set and tested analyses of ϑ1 and ϑ2 for VCV 
trials and PCV trials respectively  

Errors changes in VCV and PCV 
trials with tested analyses of ϑ 1 and 
ϑ 2  

Maximum error change 

VCV trials PCV trial 

CURE 
trial 

McREM 
trial 

Maastricht 
trial 

PIP/PIV error(cmH2O, 
L) 

median 0.22 0.07 0.004 
average 0.34 0.04 0.003 

RMS error(cmH2O, L) median 0.04 0.04 0.002 
average 0.11 0.03 0.002  

Table 7 
Identification outcome for VCV and PCV trials with PIP/PIV error (cmH2O, L) 
and RMS error (cmH2O, L).  

Identification outcome for VCV and 
PCV trials 

VCV trials PCV trial 

CURE trial McREM 
trial 

Maastricht 
trial 

Identification cases 8 cases 18 cases 14 cases  
PIP/PIV error (cmH2O, 

L) 
Median 0.49 0.60 0.010  

[IQR] [0.15, 
0.61] 

[0.19, 
1.01] 

[0.004, 0.012] 

RMS error (cmH2O, L) median 0.85 0.64 0.016  
[IQR] [0.73, 

0.96] 
[0.56, 
0.77] 

[0.015, 0.023]  
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5. Conclusion 

This paper presents a predictive model with a novel, simpler model 
to capture nonlinear lung elastance and its evolution. In particular, this 
newly proposed compensatory function is validated in use to predict the 
pulmonary response in pressure during VCV and volume during PCV, 
where prediction accuracy is the key element in creating model-based 
control and validating these virtual patient models before clinical 
testing. All fixed parameter choices were checked for robustness using a 
sensitivity test to ensure there was no hidden dependence on these 
choices. The overall model showed results accurate enough for it to be 
clinically tested in prospective clinical studies to demonstrate its po
tential safety, efficacy, and ability to improve care and outcomes. 
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tion. Serge J Heines: Data curation. Dennis C. Bergmans: Data cura
tion. Geoffrey M. Shaw: Conceptualization, Data curation. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was supported by the NZ Tertiary Education Commission 
(TEC) fund MedTech CoRE (Centre of Research Excellence; #3705718) 
and the NZ National Science Challenge 7, Science for Technology and 
Innovation (2019-S3-CRS). The authors also acknowledge support from 
the EU H2020 R&I programme (MSCA-RISE-2019 call) under grant 
agreement #872488 — DCPM. 

References 

[1] R. Amini, J. Herrmann, D.W. Kaczka, Intratidal Overdistention and Derecruitment 
in the Injured Lung: A Simulation Study, IEEE Trans Biomed Eng 64 (3) (2017) 
681–689. 

[2] Force*, T.A.D.T., Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA, 
2012,307(23): p. 2526-2533. 

[3] Bilan, N., Dastranji, A., and Ghalehgolab Behbahani, A., Comparison of the spo2/fio2 
ratio and the pao2/fio2 ratio in patients with acute lung injury or acute respiratory 
distress syndrome. Journal of cardiovascular and thoracic research, 2015,7(1): p. 28- 
31. 

[4] D.M. Needham, E. Colantuoni, P.A. Mendez-Tellez, V.D. Dinglas, J.E. Sevransky, C. 
R. Dennison Himmelfarb, S.V. Desai, C. Shanholtz, R.G. Brower, P.J. Pronovost, 
Lung protective mechanical ventilation and two year survival in patients with 
acute lung injury: prospective cohort study, BMJ : British Med. J. 344 (2012), 
e2124. 

[5] Marianna Laviola Declan G Bates Jonathan G Hardman Mathematical and 
Computational Modelling in Critical Illness 5 1 2019 12 10.17925/ 
ERPD.2019.5.1.12. 

[6] V.J. Major, Y.S. Chiew, G.M. Shaw, J.G. Chase, Biomedical engineer’s guide to the 
clinical aspects of intensive care mechanical ventilation, Biomed Eng Online 17 (1) 
(2018) 169. 

[7] Laurent Brochard, Arthur Slutsky, Antonio Pesenti, Mechanical Ventilation to 
Minimize Progression of Lung Injury in Acute Respiratory Failure, Am J Respir Crit 
Care Med 195 (4) (2017) 438–442. 

[8] Sophie E. Morton, Jennifer L. Knopp, J. Geoffrey Chase, Paul Docherty, Sarah 
L. Howe, Knut Möller, Geoffrey M. Shaw, Merryn Tawhai, Optimising mechanical 
ventilation through model-based methods and automation, Annual Reviews in 
Control 48 (2019) 369–382. 

[9] Ashwath Sundaresan, J. Geoffrey Chase, Positive end expiratory pressure in 
patients with acute respiratory distress syndrome – The past, present and future, 
Biomed Signal Process Control 7 (2) (2012) 93–103. 

[10] Jeremy R. Beitler, Atul Malhotra, B. Taylor Thompson, Ventilator-induced Lung 
Injury, Clin Chest Med 37 (4) (2016) 633–646. 

[11] K.L. Steimle, M.L. Mogensen, D.S. Karbing, J. Bernardino de la Serna, 
S. Andreassen, A model of ventilation of the healthy human lung, Comput. Methods 
Programs Biomed 101 (2) (2011) 144–155. 

[12] Marcelo B.P. Amato, Maureen O. Meade, Arthur S. Slutsky, Laurent Brochard, 
Eduardo L.V. Costa, David A. Schoenfeld, Thomas E. Stewart, Matthias Briel, 
Daniel Talmor, Alain Mercat, Jean-Christophe M. Richard, Carlos R.R. Carvalho, 
Roy G. Brower, Driving Pressure and Survival in the Acute Respiratory Distress 
Syndrome, N. Engl. J. Med. 372 (8) (2015) 747–755. 

[13] P. Severgnini, G. Selmo, C. Lanza, A. Chiesa, A. Frigerio, A. Bacuzzi, G. Dionigi, 
R. Novario, C. Gregoretti, M.G. de Abreu, M.J. Schultz, S. Jaber, E. Futier, 
M. Chiaranda, P. Pelosi, Protective Mechanical Ventilation during General 
Anesthesia for Open Abdominal Surgery Improves Postoperative Pulmonary 
Function, Anesthesiol. J. Am. Soc. Anesthesiol. 118 (6) (2013) 1307–1321. 

[14] K. Ladha, M.F. Vidal Melo, D.J. McLean, J.P. Wanderer, S.D. Grabitz, T. Kurth, 
M. Eikermann, Intraoperative protective mechanical ventilation and risk of 
postoperative respiratory complications: hospital based registry study, BMJ Brit. 
Med. J. 351 (2015), h3646. 

[15] Marcelo Britto Passos Amato, Carmen Silvia Valente Barbas, Denise 
Machado Medeiros, Ricardo Borges Magaldi, Guilherme Paula Schettino, 
Geraldo Lorenzi-Filho, Ronaldo Adib Kairalla, Daniel Deheinzelin, Carlos Munoz, 
Roselaine Oliveira, Teresa Yae Takagaki, Carlos Roberto Ribeiro Carvalho, Effect of 

Fig. 9. (a) Model identified PIP vs Clinical PIP (R2 = 0.87 in CURE, R2 = 0.96 in McREM, and R2 = 0.98 overall); (b) Model identified PIV vs Clinical PIV (R2 = 0.99 
in Maastricht). 

Q. Sun et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S1746-8094(21)00964-2/h0005
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0005
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0005
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0020
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0020
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0020
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0020
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0020
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0030
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0030
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0030
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0035
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0035
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0035
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0040
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0040
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0040
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0040
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0045
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0045
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0045
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0050
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0050
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0055
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0055
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0055
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0060
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0060
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0060
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0060
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0060
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0065
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0065
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0065
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0065
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0065
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0070
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0070
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0070
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0070
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0075
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0075
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0075
http://refhub.elsevier.com/S1746-8094(21)00964-2/h0075


Biomedical Signal Processing and Control 72 (2022) 103367

10

a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress 
Syndrome, N. Engl. J. Med. 338 (6) (1998) 347–354. 

[16] D.R. Hess, L.M. Bigatello, Lung recruitment: the role of recruitment maneuvers, 
Respirat. Care 47 (3) (2002) 308–317, discussion 317–8. 

[17] Maureen O. Meade, Deborah J. Cook, Gordon H. Guyatt, Arthur S. Slutsky, Yaseen 
M. Arabi, D. James Cooper, Andrew R. Davies, Lori E. Hand, Qi Zhou, 
Lehana Thabane, Peggy Austin, Stephen Lapinsky, Alan Baxter, James Russell, 
Yoanna Skrobik, Juan J. Ronco, Thomas E. Stewart, for the Lung Open Ventilation 
Study Investigators, and Lung Open Ventilation Study Investigators, f.t., Ventilation 
Strategy Using Low Tidal Volumes, Recruitment Maneuvers, and High Positive End- 
Expiratory Pressure for Acute Lung Injury and Acute Respiratory Distress Syndrome: A 
Randomized Controlled Trial, JAMA 299 (6) (2008) 637, https://doi.org/10.1001/ 
jama.299.6.637. 

[18] D.R. Hess, Recruitment Maneuvers and PEEP Titration, Respiratory Care 60 (11) 
(2015) 1688–1704. 

[19] Sophie E. Morton, Jennifer L. Knopp, J. Geoffrey Chase, Knut Möller, 
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