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A B S T R A C T

Synthetic polyp generation is a good alternative to overcome the privacy problem of
medical data and the lack of various polyp samples. In this study, we propose a deep
learning-based polyp image generation framework that generates synthetic polyp im-
ages that are similar to real ones. We suggest a framework that converts a given polyp
image into a negative image (image without a polyp) using a simple conditional GAN
architecture and then converts the negative image into a new-looking polyp image us-
ing the same network. In addition, by using the controllable polyp masks, polyps with
various characteristics can be generated from one input condition. The generated polyp
images can be used directly as training images for polyp detection and segmentation
without additional labeling. To quantitatively assess the quality of generated synthetic
polyps, we use public polyp image and video datasets combined with the generated syn-
thetic images to examine the performance improvement of several detection and seg-
mentation models. Experimental results show that we obtain performance gains when
the generated polyp images are added to the training set.

© 2024 Elsevier B. V. All rights reserved.

1. Introduction

Colorectal cancer (CRC) is the third most frequent cause
of cancer mortality and the second leading cause of death in
men and women globally [1]. Polyps are precursors to col-
orectal cancer, and resection of polyps can effectively prevent
the development of colorectal cancer [2]. Colonoscopy is an
important standard tool for colon screening globally. It has
the advantage of being able to visualize and remove lesions si-
multaneously during screening. However, the effectiveness of
a colonoscopy depends on the skills and expertise of the en-
doscopy specialist. Therefore, the polyp detection rate varies
widely, and the polyp miss rate is known to be between 6 and
27% in clinical trials [3].

∗Corresponding author: email: shinyh0919@gmail.com

Over the past two decades, many researchers have been
working on automatic polyp detection using efficient computer-
aided detection systems. Early studies attempted to detect polyp
by extracting features such as color, shape, and texture of polyp
[4–6]. Recently, attempts have been made to automatically
detect and segment polyps using deep learning models which
improved performance over traditional feature extraction-based
methods [7–12].

Most deep learning-based studies use several public polyp
datasets [7, 9–12] for research purposes and focus on devel-
oping deep learning model architectures with proper pre- and
post-processing methods to improve polyp detection and seg-
mentation performance. One of the difficulties in polyp detec-
tion and segmentation is the diversity of their features. Polyps
vary widely in color, shape, size, and texture. However, widely
used polyp datasets only have dozens of unique polyps used for
deep learning-based detection and segmentation model training
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[13–15]. Because in medical fields, abnormal data is inherently
more difficult to collect than normal data. To obtain the loca-
tion information required for polyp detection and segmentation,
manual annotations by colonoscopy experts are essential and
are usually costly and logistically difficult.

In order to overcome the limitation of availability of large
polyp image data, many deep learning-based studies are ac-
tively using transfer learning and image augmentation tech-
niques [5, 9]. However, to effectively train a deep learning
model with a large number of learnable parameters, it is nec-
essary to increase the diversity of polyp appearances within the
training dataset.

Recently, a GAN(generative adversarial network)-based im-
age generation approach has also been applied to polyp data
to overcome insufficient training datasets [16, 17]. In [16],
GAN based domain adaptation approach has been applied to
the Endoscopy dataset. They focused on adapting real data to
synthetic-like data to remove patient-specific details from real
images. This is the difference from our study, which aims to
generate new synthetic polyp images to improve polyp detec-
tion and segmentation performance.

In [18], to generate a synthetic polyp, a polyp mask is first
generated using a GAN framework, and the polyp part is gen-
erated when the polyp mask is given using the conditional
GAN approach. Then, the polyp-free part is found in the real
polyp image and the generated polyp is synthesized. The dif-
ference from the proposed approach is that two GAN frame-
works should be used for polyp generation. In addition, a sepa-
rate algorithm for each image is required to find the polyp-free
part, and another separate algorithm is used to naturally syn-
thesize the generated polyp part into the existing image. On the
other hand, the proposed method uses a single conditional GAN
framework to convert a polyp image into a negative image and
convert the negative image back to a polyp image. Therefore,
there is no need to use a separate algorithm to find a polyp-free
part or perform natural synthesis.

In [17], a conditional GAN was used to generate synthetic
polyps. The authors proposed to use a conditional mask to
control the position, size, and shape of generated polyps and
showed improved polyps detection performance when the gen-
erated polyps were added as additional training data. However,
negative images must be used to generate the polyp image, and
additional processing (i.e., edge filtering) was required to cre-
ate the input condition image. Furthermore, it is not possible
to generate polyps with various characteristics from the same
input condition. From a performance verification point of view,
the performance improvement was weakly evaluated, i.e., only
one deep learning model was evaluated for the polyp detection
task.

In this paper, to overcome the shortcomings of the previous
polyp image generation work, we conduct a study that gener-
ates synthetic polyp images similar to real ones using only a
given polyp dataset without the use of additional datasets and
processes. We propose a framework that uses the same GAN
architectures to convert the polyp images into a negative im-
age and the negative image back into a novel polyp image. In
addition, we attempt to generate various polyp features by in-

troducing a controllable polyp mask with one input condition
image. The experimental results show performance improve-
ment when synthetic polyp images generated by the proposed
method are used for training various deep learning models for
object detection and segmentation.

The remainder of this paper is organized as follows. In Sec-
tion 2, the proposed polyp to negative and negative to polyp im-
age generation framework including network architecture and
preparation of input conditioned images are introduced. We
also explain the polyp detection and segmentation models used
for the qualitative evaluation of generated polyp images. In Sec-
tion 3, experimental datasets used in this study are described. In
Section 4, experimental results and discussions are described.
Finally, we conclude this study in Section 5.

2. Methods

Figure 1 shows the concept of the proposed synthetic polyp
generation procedure. Using a given polyp image and its cor-
responding label mask, we first transform the polyp part to the
negative part. Then, we transform the generated negative im-
age into a new synthetic polyp image using a controllable input
condition mask. The controllable mask is used to force the gen-
erator network to produce polyps with different characteristics
depending on the color of the polyp mask in the input condi-
tion image (see Section 2.3). For both transformations, we use
the same network architectures. We explain each method in the
following subsections in detail.

2.1. Network Architectures

Figure 2 shows the structure of the generator and discrimina-
tor networks used for the conditional GAN framework in this
study. Recent GAN studies have focused on proposing new
network architectures to obtain task-specific high performance
image generation [17], image inpainting [19] and image detec-
tion and segmentation [12, 20]. On the other hand, we adopt a
simple U-net based generator architecture used in [21] to make
it universally work for two different tasks (e.g., converting from
polyp to negative and from negative to polyp). The difference
from the paper [21] is that a multi-patch discriminator is used
in the discriminator and WGAN-GP loss [22] is adopted as the
GAN loss function. Detailed explanations are provided in the
following paragraphs.

As shown in Figure 2, for the input image size of 256×256,
4×4 convolution with stride 2 is applied in each encoding layer,
so that the feature map size is reduced to 1/2 and then pro-
gresses to the final 1×1 feature map. In each subsequent de-
coding layer, transposed convolution is applied to increase the
feature map size by 2 and a final 256×256 image is gener-
ated. In the encoder part of the generator, we use Convolution-
BatchNorm-leakyReLU module in each layer while in the de-
coder part, we use transposed Convolution-BatchNorm-ReLU
module. Dropout is used in the first 3 layers of the decoder part
with a dropout rate of 50%.

In the case of the discriminator, a patch-based discriminator
which is widely used for image-to-image transformation tasks
is applied [17, 21]. Additionally, to reflect the diversity of polyp
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Fig. 1: Proposed conditional GANs based polyp image generation framework.

sizes well, a multi-patch discriminator was used that utilizes
two output patches at the same time as shown in Figure 2. In the
discriminator, the Convolution-BatchNorm-leakyReLU module
was applied to the input image in the same way as the encoding
layer of the generator, and the final feature map size is 16×16
as shown in Figure 2. For the multi-patch discriminator, GAN
loss for 64×64 and 16×16 feature maps is added.

Our training loss is comprised of a GAN term and a recon-
struction (Reconst) term which are commonly used in the exist-
ing methods [17, 21]:

arg min
G

max
D

LGAN(G,D) + λLReconst(G), (1)

where G refers to the generator network, D refers to the dis-
criminator network, and λ is a parameter to control the bal-
ance between two different loss terms. In the case of the GAN
loss term, we use the WGAN-GP loss [22], which is known to
improve training stability and has been recently used in many
GAN studies [22, 23]. For reconstruction loss, we use the L1
loss between the generated image and the original target im-

age [21]. L1 loss is needed to model low-frequency structure
(blurry results) because the GAN loss can only model high-
frequency structure and give much sharper results. The frame-
work can introduce virtual artifacts when the GAN loss is used
alone [21]. When both losses are used together, they lead the
framework to generate realistic images to fool D.

2.2. Polyp Image to Negative Image Generation
To generate a new polyp image, we first train our conditional

GAN model to transform a given polyp image to a new negative
image. To do this, we need to prepare a pair of training images,
i.e., input conditioned image and output target image as shown
in Figure 1.

Each row in Figure 3 is an example of a pair of images used
for training polyp to negative image transformation. An input
condition image (shown on the left side in Figure 3) is created
from combining a polyp training image and a generated mask.
The original polyp image (shown on the right side in Figure 3) is
used as an output target image. Thus, the proposed conditional
GAN trains an image inpainting task that targets generating the
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642
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Real or Fake 

WGAN-GP

Generator Discriminator

Fig. 2: Proposed U-Net based generator and discriminator architectures. The same architecture is used for both polyp to negative and negative to polyp tasks.
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negative parts in the right images by using the masks in the left
images in Figure 3 as its condition.

To create the masks shown in the left images in Figure 3,
we apply basic image augmentation such as rotation, scaling,
position translation, and perspective transform with randomly
selected parameters to the original polyp masks in the training
dataset. Since the network will be trained to reconstruct the
negative image portion only, the generated masks are randomly
placed in the input condition images, avoiding overlapping with
the polyp portion.

Fig. 3: Training image pairs for polyp to negative image generation. Left: input
condition image, Right: output target image.

In the inference phase, the goal is to transform the polyp re-
gion in a given polyp image to a negative region. The polyp
image is combined with its corresponding polyp mask to cre-
ate the input condition image. However, if we use the original
polyp mask, shadows or connections around the polyp will re-
main as shown in Figure 4(b). This shadow will appear as an
artifact and prevent generating a realistic negative image. To
avoid this issue, we dilate the original polyp mask by 10 pix-
els (as shown in Figure 4(c),) as the final mask for the input
condition in the inference.

2.3. Negative Image to Polyp Image Generation

Next, we prepare training data for the final objective, the
negative image to polyp image transformation task. Figure 5
shows two pairs of training images used for the negative im-
age to polyp image transformation. The input condition image
is generated from combining the polyp images with their cor-
responding polyp masks provided with the datasets. Figure 5
shows two pairs of training images: the input condition image
is shown on the left side, and the output target shown on the
right is the polyp image. We aim to train the generator network
to regenerate the same form of polyp in the given mask region.

In the previous image to image translation method [21], there
is a shortcoming in that the same image is always generated for

the same input condition. Also, in [17], there is a shortcoming
in that the characteristics of the generated polyps for various
input conditions are very similar. The reason is that a single
binary polyp mask was used for various polyps. To overcome
this problem, we try to use a controllable input condition. It is
intended to generate a new polyp by adjusting the mask values
even if the the shape of the mask in the input condition is the
same shape (see the left side in Figure 5).

Fig. 4: Example of input conditioned image for negative image generation in
inference. (a) original polyp image (b) original polyp image combined with
original polyp mask (c) original polyp image combined with extended polyp
mask.

The dataset of polyp images used for training comprises 34
different unique polyps (see the information of CVC-ClinicDB
dataset in section 3). We allocate 34 different values evenly dis-
tributed between 0 and 255 rather than traditional binary masks
for the polyp regions in the training images. Therefore, the
value of the polyp masks varies depending on the polyp in the
given image as shown on the left side of Figure 5, meaning a
different gray-scale value is assigned for each unique polyp in
the dataset.

Fig. 5: Training image pairs for negative to polyps image generation. Left:
input condition images, Right: output target images (original polyp images).

By controlling the value of the polyp masks in the input con-
dition images, we can generate a polyp with different features
and characteristics from the same input condition of the same
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shape at the inference phase, see Section 4 for detailed gen-
eration results. When inferring the final polyp generation, the
input condition image is produced by combining a label mask,
which is created from a randomly generated shape and selected
value, with a negative image, which is obtained by the polyp to
negative image transformation model.

2.4. Polyp Detection and Segmentation Models

For quantitative evaluation of the generated polyp images, we
assess the performance of several polyp detection and segmen-
tation models when trained with and without generated syn-
thetic polyps. In more detail, performance evaluation is per-
formed on several detection and segmentation models trained
only with the data given as the original training set and the
models trained with the generated polyp images added to the
original training set.

For polyp detection, we select three well-known detection
models: Faster R-CNN ResNet101, Faster R-CNN Inception
Resnet v2 [24] and R-FCN ResNet101 [25]. Faster R-CNN
utilizes a pre-trained deep CNN as a feature extractor and uses
the last convolution layer as a region proposal network (RPN)
[24]. Then, the classification and regression are performed on
the RoIs (Region of Interest) proposed by the RPN. We use two
deep CNN models i.e. ResNet101 and Inception Resnet v2, as
the feature extractors pre-trained on Microsoft’s (MS) Common
Objects in Context (COCO) datasets.

R-FCN has been proposed to effectively overcome the slow
training and inference speeds occurring during RoI-specific
processing of the existing Faster R-CNN [25]. R-FCN imple-
ments the position-sensitive score maps technique that can in-
clude information about the location of objects while sharing
the operation of RoIs extracted from RPN using a fully convo-
lutional layer. Resnet101 pre-trained on MS COCO dataset is
used as the feature extractor of R-FCN.

We also use three segmentation models to qualitatively eval-
uate the generated synthetic polyps when used as additional
training data. All three models are based on encoder-decoder
architecture of the U-Net family: TernausNet-16 [20, 26],
AlbuNet-34 [20], and MDeNetplus [12]. U-Net is a widely
used segmentation model in the field of medical imaging where
training data is limited [27]. A U-Net architecture consists of
an encoder-decoder structure with skip connections. The skip
connections enable feature combinations of the encoder layers
and decoder layers, which allows for sophisticated localization.
The TernausNet-16 model uses ImageNet pre-trained VGG-16
for the encoder network, while the AlbuNet-34 uses ImageNet
pre-trained ResNet-34 as an encoder and improves the method
of skip-connections from U-Net [20]. MDeNetplus has not only
skip connections from the encoder layers to decoder layers, but
also feedback connections. The feedback connections sum the
activation maps of similar layers of different decoders.

2.5. Model Training

We train the GAN network from scratch and the Adam op-
timizer with a momentum of 0.5 at a learning rate of 0.0002.
Before training, the input images of 256×256 are resized to

312×312 and then randomly cropped back to 256×256 for ap-
plying random jittering [21]. For other parameters in model
training such as learning rate, batch size, and weight for recon-
struction loss, we refer to the values which were used in the
image to image translation work [21].

For training of detection models, i.e., Faster R-CNN
ResNet101 and Inception Resnet v2 and R-FCN ResNet101,
we use the Tensorflow object detection API [28]. The stochas-
tic gradient descent (SGD) method with a momentum of 0.9
is used as an optimizer. In each iteration of the RPN training,
256 training samples are randomly selected from each train-
ing image and the ratio between positive (‘polyp’) and nega-
tive (‘background’) samples is 1:1. For all other parameters
such as learning rate, non-maximum suppression (NMS), and
the maximum number of proposals, we use the default values
which were used in the original Faster R-CNN work [24]. Each
segmentation model is trained with an Adam optimizer with a
learning rate of 0.0001 and batch size of 5 for a different number
of epochs to achieve the maximum performance for each model.
During training, the training dataset was randomly split into
training and validation subsets using 5-fold cross-validation.
The 5-fold cross-validation method was performed to choose
the best hyper-parameters for the models (e.g. the learning rate
relative to the batch size, best epoch, etc) and thus avoid overfit-
ting. The size of the images was changed to 512×512. Finally,
we use Jaccard loss combined with a pixel-wise binary cross-
entropy to optimize the parameters of the models

3. Experimental Datasets

We use three publicly available polyp datasets, CVC-
ClinicDB [13], ETIS-LARIB [14] and CVC-ClinicVideoDB
[15]. The CVC-ClinicDB image dataset is used for the whole
procedure of the polyp image generation task, i.e., model train-
ing for negative and polyp image generation. It is also utilized
for training detection and segmentation models as a baseline
original image set which is compared to those of the original
plus generated synthetic image set. The CVC-ClinicVideoDB
and ETIS-LARIB image dataset are used for detection and seg-
mentation model tests, respectively.

The CVC-ClinicDB image dataset consists of 612 polyp im-
age frames with corresponding 612 binary polyp mask images.
The mask images were annotated by skilled clinicians. The 612
polyp image frames have a pixel resolution of 388×284 pixels
in SD (standard definition). These images are extracted from
31 colonoscopy videos which contain 34 unique polyps. The
CVC-ClinicVideoDB dataset contains 18 SD (384×288 pixels)
videos. In this dataset, a total of 10025 frames out of 11954
frames contain a polyp. For each image in the video database,
an approximate circle-shaped binary polyp mask is given which
makes the dataset suitable for the evaluation of performance im-
provement the polyp detection models and benchmark our re-
sults with the existing studies. For the evaluation of detection
models, we use the whole 11954 frames as a test set.

The ETIS-LARIB dataset comprises 196 still images ex-
tracted from 34 colonoscopy videos. The images have an HD
(high definition) 1255×966 pixels resolution. In this dataset, 44
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different polyps are presented in 196 images. A binary polyp
segmentation mask annotated by an experienced clinician is
provided for each image. This dataset is suitable for the evalu-
ation of performance improvement of the segmentation models
because the polyp masks are polygon shapes drawn around the
polyp boundaries.

4. Results and Discussion

4.1. Generated Negative Images

In this work, we first transform the given polyp image into
a negative image and then create a new polyp in the generated
negative image using the polyp condition. In both image trans-
lation tasks, i.e., polyp to negative and negative to polyp, we
use the same proposed conditional GAN architectures.

Figure 6 shows some results of the generated negative images
from polyp to negative translation task. In each column of Fig-
ure 6, a different generated negative image is represented in (c)
which is created from images presented in (b) as the input con-
dition image and (a) is the corresponding original polyp image.
Thus, from this task, we transform polyp image (a) to negative
image (c). As we can see in Figure 6, the generated negative
images not only clearly remove the corresponding polyp in the
polyp portion given by input condition (b), but also naturally
harmonize the removed and surrounding parts. We can see that
it produces natural negative images even for the third and fifth
columns, which are relatively large polyps.

Figure 7 is an example of generated negative images with
large texture changes in the part of the binary condition mask.
As we can see in the generated negative images (c) of Figure 7,
our trained model adaptively creates a realistic negative colon
image by applying the shape and texture of the surrounding

parts of the polyp mask. As a result, we can see that capil-
laries or folds of colon in the generated negative images in the
blue circle part of (c).

Fig. 7: Example of images with large texture changes in the corresponding
polyp mask part among the generated negative images. (a), (b) and (c) repre-
sents original polyp image, input condition and generated negative image.

4.2. Generated Polyp Images
Our main goal is to create new polyp-looking images. For

this purpose, the negative to polyp translation is performed us-
ing the previously mentioned method. Figure 8 shows sev-
eral examples of negative to polyp translation and each column

Fig. 6: Some results of the polyp to negative translation. Each column represents different image generation result. (a) is polyp image used for preparing the
corresponding input conditioned image (b). (c) is generated negative image from the corresponding input condition (b).
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shows a different image result. In this experiment, we use the
generated negative image (a) for the preparation of the input
condition image (b). Then, our trained model, i.e., negative to
polyp model generated output polyp image (c) using the (b) as
the input condition.

As mentioned in Section 2.3, in the input condition image
(b) of Figure 8, the value of the polyp mask is randomly se-
lected among 34 different pixel values representing different
gray-scale colors. The resulting images in Figure 8 (c) show
that the position and shape of the generated polyp are controlled
by the polyp mask of (b). In addition, it can be seen that various
gray-scale colors and textures are generated rather than similar
characteristics, which was a challenge in the existing synthetic
polyp generation study [17]. This is because different pixel val-
ues are used as input conditions for the polyp mask part.

To analyze this in detail, we have generated synthetic polyp
images by varying the pixel value of the polyp mask part in the
same input condition image in Figure 9. Each row in Figure 9
is an example of a polyp image generation result when only the
pixel value of the polyp mask part varies for the same input con-
dition. In other words, each column is generated from different
input conditions with different polyp mask values.

As it can be seen from the results of each row in Figure 9,
even with the same shape of polyp mask and background im-
age, it is possible to create polyps with various characteristics
in terms of color or texture by controlling the pixel value of the
polyp mask. If we look at each column in Figure 9, we can
confirm that the model learns to generate synthetic polyps de-
pending on the polyp mask value rather than the shape or the
background image. Because even if different background im-
ages and shapes are used, the model can generate polyps with
similar characteristics. These two experiments confirm that di-
verse image generation using the same input, a limitation of the
existing image to image transform study [17, 21], can easily be

achieved by adjusting the mask pixel value of the input condi-
tion rather than changing the network structure or training loss.
This methodology makes it possible to control the generation
of synthetic polyps with characteristics that are difficult for the
model to detect, or polyps with clinically malignant character-
istics that should not be overlooked.

Furthermore, we measured the inference speed of the gen-
erator network after being trained within the Conditional GAN
framework used in this paper. As a result, the average infer-
ence time was measured to be 51.33 msec on an NVIDIA RTX
2080Ti GPU.

4.3. Evaluation of Polyp Detection Performance
The advantage of synthetic polyp generation based on the

proposed input condition mask is that the generated polyp im-
age can be used directly as a training image for polyp detection
or segmentation task without mask annotations. This is signif-
icant because it can reduce the manual labeling cost of experts
in mask annotation of medical data.

For evaluation of generated polyp images, we first assess
polyp detection performance when generated polyp images are
used as additional training samples. As polyp detection models,
the Faster R-CNN ResNet101, Faster R-CNN Inception ResNet
v2, and R-FCN ResNet101 models mentioned in section 2.4
are used. To define evaluation metrics for polyp detection, it is
important to specify and compute the following medical termi-
nologies: true positive (TP), false positive (FP), false negative
(FN), and true negative (TN) where:

TP = detection output within the polyp ground truth.
FP = any detection output outside the polyp ground truth.
FN = polyp not detected for positive (with polyp) image.
TN = no detection output for negative (without polyp) image.
If there is more than one detection output, only one TP is

counted per polyp. Based on the above parameters, we de-

Fig. 8: Some results of the negative to polyp translation. Each column represents a different image generation result. (a) is generated negative image from polyp to
negative translation. (b) and (c) is the input conditioned image and the corresponding generated polyp image.
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fine three performance evaluation metrics, precision (Pre), re-
call (Rec) and, f1-score (f1):

Pre =
T P

T P + FP
× 100, Rec =

T P
T P + FN

× 100,

f 1 =
2 × Rec × Pre

Rec × Pre
× 100, (2)

For evaluation of polyp detection performance, the CVC-
ClinicVideoDB dataset (see Section 3 for details) is used as the
test dataset.

Table 1 lists the polyp detection performance for three dif-
ferent models. The original columns show the performance
when the models are trained with The CVC-ClinicDB image
dataset (612 polyp images), which is the originally given train-
ing dataset. The paper [17] columns show the detection results
when the models are trained on the original training dataset plus
additional 372 synthetic polyp images generated by the method
proposed in paper [17]. The combined columns show the per-
formance when the models are trained by adding 350 polyp im-
ages generated by the proposed method in this paper to the orig-
inal training dataset.

Table 1: Comparison of polyp detection performance for the three detection
models using the original training set and combined training set by generated
polyp image. Number of samples is: Original (612); [17] (612+372); Com-
bined (612+350)

Faster R-CNN ResNet101
Models TP TN FP FN Rec Pre F1
Original 6047 1431 1513 3978 60.32 79.99 68.76

[17] 5370 1603 1049 4655 53.57 83.66 65.31
Combined 6263 1508 991 3762 62.47 86.34 72.49

Faster R-CNN Inception ResNet v2
Models TP TN FP FN Rec Pre F1
Original 6011 1496 1333 4014 60 81.9 69.22

[17] 6831 1399 1177 3194 68.1 85.3 75.74
Combined 7056 1351 1212 2969 70.38 85.34 77.14

R-FCN ResNet101
Models TP TN FP FN Rec Pre F1
Original 5762 1304 2062 4263 57.48 73.65 64.56

[17] 5554 1653 809 4471 55.4 87.29 67.78
Combined 6555 1596 1032 3470 65.38 86.39 74.43

The results in Table 1 show that the use of generated images
(Combined) demonstrates better polyp detection performance
for all three models than the use of the original dataset only.
For the three models, both recall and precision increased. This
means that polyps missed by the model trained with the exist-
ing training dataset are improved when the combined dataset is
used. For example, when training using the combined set based
on the Faster R-CNN Inception ResNet v2 model, 1045 addi-
tional polyps are detected compared to the polyps detected by
the original set training. In addition, when the polyp images
generated by the proposed method are used for training, im-
proved performance is demonstrated in all three models based
on f1-score compared to using the polyp image generated by
the existing method [17].

In [18], the same dataset as of this study was used for the
evaluation of polyp detection performance, i.e., the detection

model was trained on the synthetic polyp generated by their pro-
posed method together with the CVC-ClinicDB training data.
They evaluated the detection performance of Faster R-CNN
ResNet50 on the CVC-ClinicVideoDB. For comparison, we
measure the detection performance for the same model using a
dataset generated by our proposed method (i.e., Combined). Ta-
ble 3 summarizes the detection performance of Faster R-CNN
ResNet50 for both methods and shows that our method obtains
better results in terms of Precision and F1-score while their
model obtained better Recall.

Table 2: Comparison of polyp detection performance of Faster R-CNN
ResNet50 between our results and the results shown in [18]

Models
Faster R-CNN ResNet50

TP TN FP FN Rec Pre F1
[18] 7378 - 6313 2647 73.5 53.8 62.1
Ours 6597 1692 859 3428 65.8 88 75.3

4.4. Evaluation of Polyp Segmentation Performance
To quantitatively evaluate the effectiveness of the generated

synthetic polyps in improving the performance of the segmenta-
tion models, we apply commonly used evaluation metrics: Jac-
card index (J) also known as intersection over union (IoU) and
Dice similarity score (D) as follows:

J(A,B) =
| A ∩ B |
| A ∪ B |

=
| A ∩ B |

| A | + | B | − | A ∩ B |
,

Dice(A,B) =
2 | A ∩ B |
| A | + | B |

, (3)

where A refers to a generated output by the models and B is the
corresponding ground-truth of A.

Table 3 demonstrates performance evaluation of the three
segmentation models where two scenarios in terms of training
data, i.e., original and original plus 350 synthetic polyp images
(combined training), are used to train the models. As it can
be seen from the table, the performance of the three segmen-
tation models improves when the generated synthetic polyps
are added to the original training data as follows: The per-
formance of TernausNet-16 improved by 6.44% Jaccard and
9.66% Dice, and AlbuNet-34 by 4.11% Jaccard and 5.87%
Dice, and MDeNetplus by 5.27% Jaccard, 6.47% Dice.

Table 3: Comparison of polyp segmentation performance for three different
models using original training set and combined training set by generated polyp
image.

Models TernausNet-16 AlbuNet-34 MDeNetplus
Jaccard Dice Jaccard Dice Jaccard Dice

Original 35.47 43.18 46.75 56.98 45.77 56.53
[17] 37.86 47.57 50.48 60.31 50.49 60.77

Combined 41.91 52.84 50.86 62.85 51.04 63

In Table 2, we use the same segmentation models to compare
the improvement capability of the synthetic polyps generated
by this work and the synthetic polyps generated by the method
presented in [17]. For all three models, the synthetic polyps
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Fig. 9: Example of generated polyps. The images in each row are generated when only the pixel value of the polyp mask is changed under the same input condition..

of the current study show a better result improvement than the
synthetic polyps of [17] study. This might be because we are
capable of controlling the generation of synthetic polyps with
various shapes and features from the same input condition im-
age. As a result, with the proposed method, polyps with various
characteristics can be generated. This is a difference from [17]
in which only the shape of the polyp can be controlled.

4.5. Limitations and Future Work

One natural question might be how performance changes as
the number of generated polyps increases. In Figure 10, the
detection performance of the RFCN ResNet101 model is eval-
uated when different numbers of synthetic polyp images are
added to the original training dataset. As it can be seen that
the model starts gradually improving its performance when it
is exposed to additional synthetic polyp images. However, the
model reaches a saturation performance improvement after a
certain point even if more synthetic polyp images are added to
the training set. This is due to the limitation of this method that
is unable to introduce new unseen features. This method only
manipulates the existing features in the training dataset used to
train the GAN model and tries to reuse the same set of fea-
tures to generate new-looking synthetic polyps. In other words,
the proposed framework cannot improve data distribution and is
unable to add new features to the training data, it only leads to
an image-level transformation and feature-level manipulation.
This is a common limitation of GAN-based image generation
models.

For future work, studies that generate polyps with new char-
acteristics not included in the training data will be needed.
Performance can further be improved if characteristics of
two/multiple polyps can be fused into a single synthetic polyp.

This could be done by fusing obtained abstract features from
different polyps or by manipulating the features by adding ran-
dom noise. Both approaches could be performed in the latent
space. Alternatively, we can apply a method such as CAN
(Creative Adversarial Networks) [29] that adjusts the loss term
of GAN to generate a creative image by maximizing deviation
from established styles and minimizing deviation from the dis-
tribution of several datasets.
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Fig. 10: Performance improvement with different number of synthetic polyp
images added to the training data

5. Conclusion

It is expensive to acquire images of various types of polyps
that can be used for training deep learning based automatic
polyp detection and segmentation models. We proposed a syn-
thetic polyp image generation framework based on the condi-
tional GAN architectures. In the proposed framework, we con-
verted a given polyp image into a negative image and then the
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negative image back into a new-looking synthetic polyp im-
age using the same networks for both tasks. In the previous
polyp generation studies, a single value was assigned to the
polyp mask in the condition input image. This led the mod-
els to face difficulties to generate various polyps with different
characteristics. In this study, we attempted to overcome this
shortcoming. We developed a framework to generate various
polyps with different features by controlling the value of the
polyp masks in the input condition images. The experimen-
tal results showed that the proposed framework could gener-
ate polyps with various characteristics similar to the real ones.
In addition, it was confirmed that the polyp detection and seg-
mentation performance could be improved when the generated
synthetic polyp images were used to train several detection and
segmentation models.
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