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Classification Based on Single-Channel EEG
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Abstract—Mental task identification and classification using
single/limited channel(s) electroencephalogram (EEG) signals in
real-time play an important role in the design of portable brain-
computer interface (BCI) and neurofeedback (NFB) systems.
However, the real-time recorded EEG signals are often contam-
inated with noises such as ocular artifacts (OAs) and muscle
artifacts (MAs), which deteriorate the hand-crafted features ex-
tracted from EEG signal, resulting inadequate identification and
classification of mental tasks. Therefore, we investigate the use of
recent deep learning techniques which do not require any manual
feature extraction or artifact suppression step. In this paper,
we propose a light-weight one-dimensional convolutional neural
network (1D-CNN) architecture for mental task identification
and classification. The robustness of the proposed architecture
is evaluated using artifact-free and artifact-contaminated EEG
signals taken from two publicly available databases (i.e, Keirn
and Aunon (K) database and EEGMAT (E) database) and
in-house (R) database recorded using single-channel neurosky
mindwave mobile 2 (MWM2) EEG headset in performing not
only mental/non-mental binary task classification but also dif-
ferent mental/mental multi-tasks classification. Evaluation re-
sults demonstrate that the proposed architecture achieves the
highest subject-independent classification accuracy of 99.7% and
100% for multi-class classification and pair-wise mental tasks
classification respectively in database K. Further, the proposed
architecture achieves subject-independent classification accuracy
of 99% and 98% in database E and the recorded database
R respectively. Comparative performance analysis demonstrates
that the proposed architecture outperforms existing approaches
not only in terms of classification accuracy but also in robustness
against artifacts.

Index Terms—Electroencephalogram, Mental task identifica-
tion, Classification, Deep learning, Convolutional neural network.

I. INTRODUCTION

Electroencephalogram (EEG) represents the electrical ac-

tivity of the brain [1]. Due to low cost, high temporal

resolution and non-invasiveness, EEG is the most commonly

used signal in designing neurofeedback (NFB), neural control

interface (NCI) and brain computer interface (BCI) systems

[2]–[5]. Since portability is one of the critical features for

unsupervised mental health monitoring, these systems demand

accurate detection of neuronal activities using single/limited

channel(s) EEGs [6]. It has been shown that EEG signal

exhibits different neuronal changes due to various mental

activities including, mental tasks and mental stress [6]–[9].
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These changes are induced when the subjects are presented

with standardized stress tests, workload tasks, and question-

naires by psychologists [7], [8]. Accurate analysis of these

neuronal changes enables identification and classification of

different mental tasks which is useful for patients suffering

from motor, cerebral, and behavioral disorders, for example,

attention deficit hyperactivity disorder (ADHD) and autism

[10], [11], as well as for healthy persons to improve their

concentration and cognitive performance [5]. Furthermore, the

identification and classification of mental tasks from EEG are

beneficial for early detection of mental stress and diagnosis of

several diseases such as, depression, heart attack, etc [12].

Presently, existing techniques exploit the use of various

feature extraction techniques and different machine learn-

ing classifiers for mental task identification and classifica-

tion [7], [13]–[16]. Since single/limited channel(s) EEGs are

commonly corrupted with various ocular and muscle arti-

facts, performance of the hand-crafted features-based mental

task identification techniques deteriorates significantly [17],

[18]. Recently, deep convolutional neural network (CNN)

has gained attention due to its ability to extract high level

features automatically from the raw data for accurate analysis

of different physiological signals [3], [19], [20]. Although

CNN has been applied on EEG signals for mental workload

level classification, there exists no work which utilizes the ef-

ficacy of CNN for mental task identification and classification.

Furthermore, existing CNN-based mental workload technique

[21] uses time-frequency representation of EEG in 2D form

which demands a complex architecture for learning its 2D

features and increases the computational complexity [16],

[22]. However, real-time NFB system demands low latency

in classification process in order to provide timely feedback

to the user.

A. Related work and motivation

Numerous works have been reported in the literature for

the identification and classification of different types of mental

tasks from EEG [13], [14], [19]. In [6], Keirn et al. proposed

the use of autoregressive (AR) parameters and band power

asymmetry ratios to classify five mental tasks from EEG

recordings of five subjects, using Bayes quadratic classifier

(BQC). Similar features have been used to train elman neural

network (ENN) with resilient backpropagation (RBP) [2], and

feed forward neural network (NN) [23], for classification

of different mental tasks. In [14], S. Dutta et al., proposed

multivariate AR model based features extracted from intrinsic
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mode functions in multivariate empirical mode decomposition

(MEMD) domain, to classify three cognitive tasks using least

squares support vector machine (LS-SVM) classifier. In [15],

modified lempel–Ziv (LZ) complexity has been presented

along with band powers and entropy as features to discriminate

five mental tasks using K-nearest neighbour (K-NN) and

linear discriminant analysis (LDA) classifiers. Power spectral

density based features have been fed to LDA classifier for

classification of five mental tasks in six subjects [4]. In [24],

PSD features have also been used along with improved particle

swarm optimization (IPSO) based NN classifier to distinguish

three mental tasks. Similar features along with statistical fea-

tures, frequency-bands’ power and Higuchi’s fractal dimension

have been fed to SVM for classification of mental arithmetic

tasks in ten subjects [5]. In [25], Alyasseri et al. used subject-

independent discrete wavelet transform (DWT) based statisti-

cal features along with entropy to classify five mental tasks

for seven subjects using artificial neural network (ANN). In

[26], EEG signals recorded from 41 subjects during three

mental tasks have been classified using subject-independent

statistical features and multi-layer perceptron (MLP) kernel

based SVM. An immune-feature weighted SVM has been

proposed to classify five mental tasks for seven subjects with

approximate entropy feature in [27].

In [19], the EEG waves obtained from discrete wavelet

transform of the artifact-removed signal are used as inputs

to a 1-D CNN model for discriminating different levels of

multimedia learning tasks in 34 subjects. In [7], Z. Pei et.

al. utilized EEG features exhibiting intra-channel and inter-

channel information to classify multiple workload tasks with

an overall accuracy of 85%. In [28], P. Zhang, et al., proposed

a recurrent three dimensional (3-D) CNN to classify high and

low mental workload levels across two tasks, i.e., spatial n-

back task and an arithmetic task for twenty subjects. A custom

domain adaptation based 3-D CNN with the spatial, spectral

and temporal inputs has been used to distinguish four levels

of cognitive load from 13 subjects in [3]. In [21], Jiao et.

al., proposed a single-channel spectral- and temporal-spectral-

map based CNN model to classify four different levels (low

to high) of working memory while recalling some characters

from a set shown to 15 participants.

Most of the existing techniques use subject-dependent hand-

crafted features and conventional machine learning approaches

for mental task identification and classification [3]. How-

ever, these techniques may not generalize across subjects and

databases due to high structural and functional changeability

between subjects and the non-stationarity of EEG [3]. This

issue can be addressed by the use of deep learning approaches

where the features are automatically learnt from the raw data

during the training process [29]. One of the most popular

deep learning approaches is CNN, which has been successfully

applied for various classification problems related to EEG

signals including, seizure detection, emotion recognition, and

mental workload level classification [21], [28]–[32]. However,

most of these works utilize artifact removal preprocessing

step to improve classification accuracy [29] and/or time-

frequency representation of EEG signal as a 2-D or 3-D

input to CNN which increases the computational complexity

of the complete system [28], [30]–[32]. Though, there exists

two CNN-based subject-independent mental task classification

techniques that classify resting state from multimedia learning

task and different mental tasks respectively, they use artifact

removal step and DWT representation of the EEG signal [19]

and achieve low accuracy (70%) [33]. Also, the overall CNN

architecture becomes computationally complex. Therefore, in

this paper, we present a light-weight 1-D CNN architecture

which involves few layers and extracts features automatically

from the raw EEG signals for accurate identification and

classification of mental tasks.

B. Objective and key contributions

Literature studies demonstrate that most of the existing

hand-crafted feature-based mental task classification tech-

niques have poor subject-independent classification accuracy

for both artifact-free and artifact-contaminated EEG signals.

Furthermore, use of artifact removal step can alter clinical

features of EEG signals even in case of artifact-free EEG

signals [17], [18]. Existing CNN-based mental task and mental

workload classification techniques use complex architecture

and input signal in the form of 2D or 3D time-frequency

representations of single/multi-channel EEGs [16]. Therefore,

in this paper, we propose a light-weight 1D-CNN architecture

for identification and classification of mental tasks from single-

channel EEG signal. The significant contributions of this paper

are summarized as follows:

• Investigation of 1D-CNN for automated meaningful fea-

ture extraction from the raw single-channel EEG signal.

• Proposed a low complex subject-independent architecture

based on 1D CNN, using only a few layers.

• Recording of single channel EEG signal using Neurosky

mindwave mobile 2 device to examine the performance

of the proposed architecture on real-time EEGs.

• Examination of the classification accuracy of the pro-

posed architecture for not only mental/non-mental task

classification but also several mental/mental multi-tasks

classification unlike existing techniques.

• Examination of the mental task classification accu-

racy of the proposed architecture using OA- and MA-

contaminated EEG signals.

• Evaluation of the proposed architecture on three

databases, including two publicly available databases and

one real-time recorded database.

The rest of the paper is organized as follows: Section II

describes the databases used in this work. Section III describes

the major constituents of the proposed architecture. Section IV

discusses the performance results obtained on different EEG

signals taken from publicly available databases as well as real-

time recorded data. Section V concludes the paper.

II. DESCRIPTION OF DATABASES

This section presents a brief description of the three EEG

databases used in this work, including two publicly available

databases, i.e., Keirn and Aunon database, EEG during men-

tal arithmetic tasks (EEGMAT) database and one recorded

database.



3

A. Keirn and Aunon database (K)

This database was recorded by Keirn and Aunon from seven

subjects while performing four mental tasks and one baseline/

non-mental task [6]. It consists of both artifact-free and OA-

corrupted EEG signals recorded at a sampling rate of 250Hz
from six electrode positions, i.e., C3, C4, P3, P4, O1 and O2

according to the 10 − 20 system, with A1 and A2 as the

reference electrodes. Eye blinks (OAs) were also recorded by

a separate channel. For each task, recording procedure was

performed for 10 seconds in a sound-controlled booth with

dim lighting. Different number of trials were performed by

each subject for each task. For example, subjects 1, 3, 4 and

6 performed 10 trials, subjects 2 and 7 performed 5 trials and

subject 5 performed 15 trials of each task. In this work, we

have used all subjects of this database except subject 4 due to

incomplete information available for that subject. The database

consists of the signals recorded during the following tasks [6]:

• Baseline task (BT): The subjects were informed to relax

and sit idle. No task was performed and the data was

recorded in ‘eyes closed’ and ‘eyes open’ position.

• Multiplication task (MT): The subjects were given a com-

plex multiplication problem to solve without speaking

and making any movements.

• Letter composing task (LT): The subjects were asked to

mentally compose a letter to a known person without

speaking or making any movement.

• Geometric figure rotation task (RT): The subjects were

presented with a complex 3 −D figure for 30 seconds,

after which the figure was removed, and they were asked

to visualize the same figure being rotated about an axis.

The data was recorded during this visualization process.

• Visual counting task (VT): The subjects were asked to

visualize some numbers written in a sequential order on

a blackboard, with the previous number being removed

before the next number was written.

B. EEG during mental arithmetic tasks (EEGMAT) database

(E)

Database E consists of EEG signals collected from 36
subjects before and during performance of a mental arithmetic

task using Neurocom 23 channel device [34], [35]. It consists

of artifact-free EEG signals of 60s duration each, recorded

from FP1, FP2, F3, F4, Fz , F7, F8, C3, C4, Cz , P3, P4, Pz ,

O1, O2, T3, T4, T5, and T6 electrodes positioned according

to the 10 − 20 electrode placement system. The sampling

frequency was kept at 500Hz. Only one trial with 19 EEG

signals was recorded per subject and task. The tasks are as

follows:

• No mental task/ baseline task (BT): The subjects did not

perform any mental task and were asked to sit in a relaxed

position.

• Serial subtraction task (ST): Subjects were instructed

to perform a serial subtraction task including 4 digit

minuend and 2 digit subtrahend and communicate the

results orally. At the end, the number of subtractions were

noted based on the communicated results. A good or a

bad quality count was given to each subject based on the

results.

TABLE I: Database R record details.

Subject

number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Gender M M M F F F F M M F F F M M F M M F M M

Age (Years) 25 22 27 28 31 27 30 55 25 28 28 27 25 27 30 32 27 29 26 26

Subtractions

(number)
8 6 7 9 6 5 7 9 8 9 10 9 10 7 8 7 9 8 7 10

C. Recorded database (R)

To evaluate the effectiveness of the feasibility of single-

channel EEG data for mental task identification and clas-

sification, we recorded in-house EEG signals using twenty

subjects during baseline and mental task activity. Details of

these subjects have been described in Table I. Neurosky

mindwave mobile 2 (MWM2) headset was used to record

single-channel EEG from FP1 position before and during the

performance of mental arithmetic task. The headset consists of

three electrodes, one for EEG (FP1) and other two electrodes

for ground and reference (A1 position) [36], as shown in the

recording set up in Fig. 1. EEG acquisition has been performed

in a sound controlled laboratory with normal lighting. The

inbuilt Thinkgear ASIC (application-specific integrated circuit)

module (TGAM) pre-processes the raw signal, i.e., removal

of powerline interference (PLI) and MAs. Communication is

established between the device and computer using a bluetooth

module [36]. The data was recorded at a sampling frequency

of 512Hz with 12 bit resolution and analyzed in MATLAB

software. Five number of trials of mental and baseline tasks

were recorded for each subject and each trial lasted for 10

seconds. Trials are the different sessions of EEG signal record-

ing which were performed during the verbal announcement of

another person to ‘start’ and ‘stop’ the session. The following

tasks were performed:

• Baseline task (BT): Subjects were asked to sit in a relaxed

position without making any movement, with ‘eyes open’

and ‘eyes closed’ positions. During this time, the data was

labeled as baseline task. This procedure was repeated for

all subjects five times, resulting in total five trials/sessions

of baseline task per subject.

• Serial subtraction task (ST): Subjects were instructed to

perform serial subtraction between one 4 digit number

(minuend) and other 2 digit number (subtrahend) without

speaking and making any movement, in ‘eyes open’

and ‘closed’ position. After the announcement of ‘start’,

participants started performing serial subtraction and

communicated their subtraction results after the ‘stop’

announcement. Based on their outcome, the number of

subtractions performed by each subject was noted by the

person. In each trial, different sets of numbers were given

for performing ST. To illustrate an example of ST, let

the minuend be 4373 and subtrahend be 59, then the

result after first subtraction: 4373 − 59 = 4314, after

second subtraction: 4373− 59− 59 = 4314− 59 = 4254
and so on. Each participant performed varying number of

subtractions depending upon his/her calculation speed.

Fig. 2 shows two EEG signals recorded from 3rd subject

in ‘eyes closed’ position while performing serial subtraction

and baseline tasks. The difference between the amplitudes
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Fig. 1: Recording of EEG data of 4th subject from neurosky MWM2 headset
while performing the mental task (ST) in ‘eyes closed’ position.
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Fig. 2: Recorded EEG signals of 3rd subject (a) and (b) while performing
the BT and ST tasks in ‘eyes closed’ position respectively.

and frequencies of the two signals is quite observable from

the figure. Since the EEG signals have been recorded at

different sampling frequencies for all the three databases, all

signals have been re-sampled to 500Hz using cubic spline

algorithm [37], [38] for adequate classification. In this work,

we assume that the EEG data is always available and it may

be corrupted by in-band ocular artifacts and muscle artifacts,

baseline wander and powerline interference. Although use

of basic pre-processing is essential to eliminate flat line,

instrumentation noise or raw noise, for which there are well-

established techniques, it is out of scope of this work.

III. PROPOSED 1D-CNN ARCHITECTURE

CNN is a popular deep learning approach that has been

successfully applied to EEG signal analysis [28], [39]. It pos-

sesses a hierarchical structure in the form of different layers, in

which each layer with a specific operation extracts high-level

features from the raw input data [40]. In comparison with the

conventional fully connected networks, CNN has a tremendous

learning capability in extracting more robust features at each

layer as well as a good generalization performance [40]. This

section presents the proposed 1D-CNN architecture with an

input raw single-channel EEG signal denoted as x[n] which is

illustrated in Fig. 3. It comprises of two 1D-convolution layers,

one 1D-max pooling layer, one flatten layer with dropout and

a final dense/ fully connected layer with softmax/ sigmoid

activation for classification output.

A. 1D-convolution layer (Conv1D)

The raw one-dimensional EEG signal (vector) x[n], where,

n = 1, 2, . . .N , is given as an input to the first layer of the

CNN architecture, i.e., conv1D, as shown in the Fig. 3. The

layer utilizes the following parameters:

• Filters / Kernels: The filters / kernels produce feature

maps by performing convolution with the input signal.

The number and size of kernels are crucial for ade-

quately capturing relevant features from the signal. Let

k[n] denote the convolution kernel with size v, then the

convolution output c[n] can be given as:

c[n] = x[n] ∗ k[n] =

v−1
∑

m=0

x[m] · k[n−m] (1)

where, ‘∗’ denotes the convolution operation. In general,

the convolved feature at the output of lth layer can be

written as [41]:

cli = σ



bli +
∑

j

cl−1
j × klij



 (2)

where, cli represents the ith feature in the lth layer;

cl−1
j denotes the jth feature in the (l − 1)th layer; klij

represents the kernel linked from ith to jth feature,

bli denotes the bias for this feature and σ represents

the activation function. In the proposed work, two

conv1D layers are used. The first convolution layer

has 16 convolution kernels and the second convolution

layer has 32 kernels, each with size v = 5 and shift

/ stride = 1 in both the layers. The output of conv1D

layer (I) is given as input to the conv1D layer (II). The

length of the output of convolution layer is generally

given by N − v + 1 for stride of 1, where N is the

corresponding input length. The convolution operation

with aforementioned parameters is illustrated in Fig. 4

[41], where,

c1 = k1x1 + k2x2 + k3x3 + k4x4 + k5x5;

c2 = k1x2 + k2x3 + k3x4 + k4x5 + k5x6;
...

Finally, cN−v+1 = k1xN−4 + k2xN−3 + k3xN−2 +
k4xN−1 + k5xN .

The filter weights, i.e., k1 . . . k5, are initialized using

the He uniform initializer [44] and the bias vector is

initialized to all zeros. This operation is performed for

each filter in both the layers, hence, there are 16 outputs

of conv1D layer (I) and 32 outputs of conv1D layer

(II). Since N is taken as 5000 in Fig. 3, the output

dimensions of conv1D layers (I) and (II) are 4996× 16
and 4992 × 32 respectively. Let lc denote the length of

final output of the convolution layers, which is 4992 here.

• Activation function (σ): It plays an important role in

capturing the non-linearity of the input signal. Here,

rectified linear unit (ReLu) is used as the activation

function which is defined as [21]:

σ(c) = max(0, c) (3)

B. 1D-max pooling layer (Maxpool1D)

The output feature maps (convolution outputs, c) produced

from the conv1D layers are given as an input to the 1D max

pooling layer, which reduces the feature map dimension by

retaining only the maximum value of feature map in a window/
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Fig. 3: The proposed CNN architecture for classification of different mental tasks. Note: M denotes the number of classes.

Fig. 4: Illustration of convolution operation at conv1D layer.

patch with a specified pool size [21]. The window is moved

across the feature map with a shift/ stride. The operation of

max pooling can be represented as [41]:

clh = max
∀p∈rh

cl−1
p (4)

where, rh denotes the pooling region with index h.

In this work, the value of pool size and stride is taken as 2. An

illustration of the max pooling operation with these parameters

is given in Fig. 5, where, cm1
= max(c1, c2);

cm2
= max(c3, c4);

cm3
= max(c5, c6);

...

cmlc/2
= max(clc−1, clc).

Hence, the output of this layer has the dimension of 2496×32
which can be seen in Fig. 3.

Fig. 5: Illustration of max pooling operation with both pool size and stride
of two.

C. Flatten layer and dropout

The flatten layer transforms the input data into a one-

dimensional vector, to be fed to the fully connected/ dense

layer as shown in the Fig. 3. A dropout parameter is added

after the flatten layer, which helps the architecture to gener-

alize well by reducing over fitting during the training process

[42]. This is achieved by randomly setting the activations of

some nodes to zero, specified by a dropout rate. In this work,

a dropout rate of 0.25 has been used.

D. Dense layer for classification

The flattened output is given as an input to the next

layer, i.e., dense/fully connected layer which produces the

classification output with dimension M×1, where M denotes

the number of classes. In general, the layer operation can be

represented as:

output = σ(< input, wd > + bd) (5)

where, < input, wd > denotes the dot product between weight

vector wd used in this layer and the input, bd represents the

bias vector for this layer and σ is the activation function. In

this work, we use both sigmoid and softmax activation for

binary and multi-class classification respectively. The sigmoid

activation function is given by [43]:

σ(z) =
1

1 + e−z
(6)

This function produces the binary output as the probability

value for binary classification, based on which the class label

is either ‘0’ or ‘1’. Also, the softmax activation function can

be given as [41]:

softmax(z)i = pi =
exp (zi)

∑M

j=1 exp (zj)
(7)

where, zi represents the ith element of the output vector of

previous layer z. The numerator is normalized by the sum
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of all exponential terms from 1 to M to bring the value of

pi between 0 and 1. This layer produces the categorical class

labels for multi-class classification. In this work, no bias vector

has been used for this layer and the weights are initialized

using the glorot uniform initializer [44].

IV. RESULTS AND DISCUSSIONS

In this section, the performance of the proposed architec-

ture is evaluated using different artifact-free and artifactual

EEG signals taken from publicly available databases and our

recorded database.

A. Performance metrics and training parameters

The performance of the proposed architecture is assessed in

terms of following performance metrics [27]:

Classification accuracy (Accuracy) =
TP + TN

TP + TN + FP + FN
(8)

Here, TP denotes true positives which is the number of

cases where the actual positive class is correctly predicted to

be positive by the model. TN denotes true negatives which

is the number of cases where the actual negative class is

correctly predicted to be negative by the model. FP denotes

false positives which is the number of cases where the actual

negative class is incorrectly predicted to be positive by the

model. FN denotes false negatives which is the number of

cases where the actual positive class is incorrectly predicted to

be negative by the model. For example, in binary classification

problem of datasets E and R, we have labeled the non-mental

(BT) task as negative and mental (ST) task as positive. If the

model predicts a BT task correctly, then it is a true negative.

Otherwise, if the model predicts it as an ST task, then it is

a false positive. Similarly, if the model predicts an ST task

correctly, then it is a true positive, and if it predicts it as BT

task, then it is a false negative. Similar interpretation can be

drawn for the case of multi-class classification.

Precision (PRC) = TP/(TP + FP ) (9)

Recall (RCL) = TP/(TP + FN) (10)

F1 score =2× PRC × RCL

/( PRC + RCL )
(11)

The performance is evaluated through training and testing of

the proposed architecture for the identification and classifica-

tion of mental tasks. Similar to existing works [4], [24], EEG

signal of 10sec duration has been used as an input to the first

layer of the model. We perform both binary classification and

multi-class classification using the same architecture. In this

work, following tasks have been classified: BT-MT, BT-LT,

BT-RT, BT-VT, MT-LT, MT-RT, MT-VT, LT-RT, LT-VT, RT-

VT, BT-ST and BT-MT-LT-RT-VT from all the three databases.

To evaluate the performance of the proposed architecture, 80%

of the data is chosen for training and 20% for testing. 20%
data for testing is further split into 10% each for testing and

validation. Since different subjects have varying number of

trials recorded on separate timings/days, 80% of the trials have

been selected randomly for training and rest 20% for testing.

For training, a batch size of 50, and 20 number of epochs

Fig. 6: Training curves for multi-task classification (BT-MT-LT-RT-VT) in
database K .

have been used along with the Adam learning algorithm with

a learning rate of 0.001. Ten fold cross-validation has been

performed for all the three databases. Binary cross entropy and

categorical cross entropy are used as loss functions for binary

and multi-class classification respectively. These functions are

defined as [45]:

Binary cross entropy = −(y log(p)+(1−y) log(1−p)) (12)

Categorical cross entropy = −

M
∑

c=1

yo,c log (po,c) (13)

where, log represents natural log, y represents binary indicator

(0 or 1) if class label c is the correct classification for the

observation o, p represents the predicted probability that the

observation o is of class label c, M represents the number of

classes.
B. Performance analysis

In this section, we demonstrate the classification perfor-

mance results of the proposed architecture. Figs. 6, 7 depict

the training curves with respect to validation and training

loss, and validation and training accuracy for the proposed

architecture which demonstrate the learning process for the

multi-task classification and pair-wise mental task classifi-

cation in the database K respectively. It can be observed

from the curves that the proposed architecture has learnt from

the given data in few epochs and does not over-fit. Table II

depicts the performance of the proposed architecture in terms

of aforementioned performance metrics for all classification

tasks and databases. It can be observed from the table that a

subject-independent accuracy of 100% has been achieved for

the following task pairs: BT-MT, BT-LT, BT-RT, MT-LT, MT-

RT, and LT-RT, of the database K . It means that the these

tasks are accurately classified. It can be observed from the

table that the other metrics PRC, RCL are also equal to 1
for these task pairs, which implies that there are no false

positives and false negatives respectively. This results in a

perfect balance between PRC and RCL, as observed from the

F1 score values (which are also 1) for these tasks. Further,

an overall average subject-independent accuracy of 99.7% has

been achieved for the case of multi-class classification for

this database. For databases E and R, proposed architecture

achieves an average subject-independent accuracy of 99% and

98% for the classification of BT-ST task pair.
C. Impact of EEG processing length and number of conv1D

layers

For assessing the sensitivity performance of the proposed

architecture with respect to the processing length of the input
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Fig. 7: Training curves for pair-wise mental task classification in database K , (i) BT-MT, (ii) BT-RT, (iii) MT-LT, (iv) MT-VT, (v) LT-VT, (vi) BT-LT, (vii)
BT-VT, (viii) MT-RT, (ix) LT-RT and (x) RT-VT.

TABLE II: Mental task classification performance of the proposed architecture for all databases (Mean(std) over subjects (10s data)).

Database K E R N
P
P
P
P
PP

Metrics

Task
BT-MT BT-LT BT-RT BT-VT MT-LT MT-RT MT-VT LT-RT LT-VT RT-VT BT-MT-RT-LT-VT BT-ST BT-ST BT-ST

Accuracy 1 (0) 1 (0) 1 (0) 0.99 (0.12) 1 (0) 1 (0) 0.99 (0.12) 1 (0) 0.98 (0.40) 0.98 (0.21) 0.997 (0.11) 0.99 (0.11) 0.98 (0.22) 0.99 (0.16)

PRC 1 (0) 1 (0) 1 (0) 0.99 (0.20) 1 (0) 1 (0) 0.99 (0.11) 1 (0) 0.98 (0.25) 0.98 (0.20) 0.99 (0.18) 0.99 (0.15) 0.98 (0.27) 0.99 (0.22)

RCL 1 (0) 1 (0) 1 (0) 0.98 (0.11) 1 (0) 1 (0) 0.99 (0.11) 1 (0) 0.98 (0.22) 0.98 (0.11) 0.99 (0.10) 0.99 (0.17) 0.98 (0.21) 0.99 (0.21)

F1 1 (0) 1 (0) 1 (0) 0.98 (0.10) 1 (0) 1 (0) 0.99 (0.11) 1 (0) 0.98 (0.32) 0.98 (0.12) 0.99 (0.16) 0.99 (0.10) 0.98 (0.20) 0.99 (0.17)

signal and the number of conv1D layers, different input lengths

ranging from 2s-10s with a step of 2s and varying number of

conv1D layers have been used. It is quite observable from

the Fig. 8a that the proposed architecture is not significantly

variant to the input signal length. Even for shorter durations of

processing length, the proposed architecture achieves similar

accuracies for different mental tasks classifications. This is

useful for the systems where quick response is needed, for

example, BCI and neurofeedback systems. Further, it can be

observed from the Fig. 8b that the mental tasks classification

accuracy is higher for two conv1D layers as compared to

one or more than two layers in the proposed architecture.

Therefore, two conv1D layers are optimal in the proposed

architecture for the classification of mental tasks.

D. Robustness evaluation under different artifacts

In this subsection, we evaluate the robustness of the

proposed architecture under different artifacts in the EEG

signal. As mentioned earlier, database E contains artifact-

free EEG signals and databases K and R consist of EEG

signals contaminated with ocular artifacts and muscle artifacts.

Hence, in order to evaluate the robustness of the proposed

architecture on a large pool of contaminated EEG data, we

create a new database namely ’N ’ by including only artifact-

contaminated EEG signals from database R and all artificially

contaminated EEG signals of database E after adding OAs

and MAs taken from existing publicly available databases.

These OAs and MAs are taken from Mendeley database [46]

and MIT BIH polysomnographic database [35], and examples
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Fig. 8: Illustrates average classification accuracies for (a) varying lengths
of input signal and (b) varying number of conv1D layers in: (i) database
K , where the accuracies are shown with respect to pair-wise mental task
classification, (ii) and (iii) databases E and R with respect to all the subjects
respectively.

of electromyogram database [35] and cerebral vasoregulation

in elderly with stroke (CVES) database [35] respectively.

Various realizations of the contaminated data are generated

by randomly adding OAs and MAs separately, as well as both

together, to each signal of the database E, after re-sampling

all OAs and MAs signals to the rate of 500Hz. Let xcl[n]
denote an EEG signal from the database E, yo[n] denote an

OA signal, and ym[n] denote a MA signal. Then, this process

can be summarized as follows: xo[n] = xcl[n] + λ · (yo[n]),
xm[n] = xcl[n] + β · (ym[n]), and xom[n] = xcl[n] + λ ·
(yo[n])+β · (ym[n]). Here, xo[n] represents OA-contaminated

signal, xm[n] denotes MA-contaminated signal, and xom[n]
represents combined OA-MA-contaminated signal. λ is a pa-

rameter which denotes the contribution of OAs and β denotes

the contribution of MAs. These parameters alter the signal to

noise ratio (SNR) of the realized signal [47]. For example, the

SNR for OA contaminated signal can be obtained as [47]:

SNR(xo[n]) =

√
1

n

∑
n x2

cl[n]√
1

n

∑
n(λ·yo[n])2

. Similarly, the SNR values

for other realizations of contaminated data can be obtained.

In this work, the value of λ and β is chosen as 1 such

that the EEG signal is fairly contaminated by artifacts. Fig.

9 depicts the training curve with respect to validation and

training loss, and validation and training accuracy for the

proposed architecture which demonstrate the learning process

for classifying BT-ST task in the created database N . In order

to demonstrate the robustness of the proposed architecture,

mental classification accuracy is computed for contaminated

EEG signals with different SNR values ranging 0.4 - 3 which

are calculated based on different values of λ and β. Fig.

10 depicts the average classification accuracy at different

SNRs which demonstrates the robustness of the proposed

architecture in classifying mental and baseline tasks for both

artifact-free and artifact-contaminated EEG signals. Also, the

average performance of the proposed architecture in terms of

performance metrics is demonstrated in Table II for the created

database N . As mentioned earlier, the average accuracy is

computed for the value of λ = β = 1 and corresponding SNR

value of 0.8, as shown in Fig. 10. It can be observed from

the table that the proposed architecture achieves an average

accuracy of 99% for the artifact-contaminated database N .

E. Performance comparison

In this subsection, the supremacy of the proposed archi-

tecture for mental task classification is analyzed with respect

to the other existing mental task classification techniques.

Table III demonstrates the overall comparison of the proposed

architecture with the existing mental task classification tech-

niques. It can be observed from the table that the proposed

architecture not only outperforms existing approaches in terms

of accuracy for mental tasks classification but also does

not use an artifact suppression/ removal step before train-

ing unlike existing approaches. Furthermore, it can be seen

from the table that the proposed architecture can accurately

classify not only pair-wise mental/baseline task but also five

multi-tasks simultaneously unlike existing approaches. To

Fig. 9: Training curves for BT-ST task classification in created artifact-
contaminated database N .
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Fig. 10: Illustrates the classification accuracies at different values of (λ,β)
and corresponding SNRs for the realized contaminated signals in database N .

demonstrate the learning process through both the layers, the

feature/activation maps are produced in the proposed 1D-

CNN architecture. The feature maps are extracted as filter

weights for conv1D and maxpool1D layers, based on which

the outputs of flatten layer and softmax layer correspond to the

particular class (mental task). Figs. 11-12 depict the features

extracted by the proposed 1D-CNN from EEG signals with

baseline and different mental tasks taken from database K
and N respectively. From the figures, it can be observed that

for each class, the feature maps have inhibitory (small) or

excitatory (large) weights for different EEG signals which is

illustrated by lighter squares in the Conv1D and Maxpool1D

filters. From 11 (a), (b) it can be seen that more filter weights

are excitatory in the case of BT, as compared to MT. Also,

for the case of RT as shown in Fig.11(d), the activations in

maxpool1D are higher for all filters, indicating the brain is

in attention state throughout the duration, which is true since

the task involves memorizing the figure and visualization of

the figure rotation. Similar interpretation can be drawn from
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TABLE III: Comparison of the proposed architecture with the
existing approaches.

Method (Author) Database
Channel locations

(Number)

Subjects

(Number)

Artifact
removal/

rejection

Length

used

Accuracy

(%)

BQC (Keirn and
Aunon) [6]

K
C3, C4, P3, P4, O1,
O2 (6)

5 Y 2s 85-95

FF-NN (Anderson
et. al.) [23]

K
C3, C4, P3, P4, O1,
O2 (6)

4 Y 10s 38-71

IF-SVM (Guo et.
al.) [27]

K
C3, C4, P3, P4, O1,
O2 (6)

7 Y 10s 88-98

LDA, QDA, SVM
(Gupta et. al.) [4]

K
C3, C4, P3, P4, O1,
O2 (6)

6 N 10s 85

KNN, LDA
(Noshadi et. al.)
[15]

K
C3, C4, P3, P4, O1,
O2 (6)

7 Y 10s 97

ENN-RBP
(Palaniappan)
[2]

K
C3, C4, P3, P4, O1,
O2 (6) 6

4 Y 10s 80-94

LS-SVM (Dutta et.
al.) [14]

K
C3, C4, P3, P4, O1,
O2 (6) 6

3 N 10s 94

BP-MLANN
(Alyasseri et. al.)
[25]

K
C3, C4, P3, P4, O1,
O2 (6)

7 Y 10s 78-87

SVM-MLP (Anand
et. al.) [26]

Self recorded
F3, FZ , F4, C3,
CZ , C4, P3, POz ,
P4 (9)

41 N 5 min 73

IPSO-NN (Lin et.
al.) [24]

IDIAP BCI-III
C3, Cz , C4, CP1,
CP2, P3, Pz , P4 (8)

3 N 4 min 69

SVM-RBF (Wang
et. al.) [5]

Self recorded

AF3, F7, F3, FC5,
T7, P7, O1, O2, P8,
T8, FC6, F4, F8,
AF4 (14)

10 Y 2 min 97

Random forest (Z.
Pei et. al.) [7]

Self recorded 62 EEG channels 7 Y 2s 85

Proposed K
C3, C4, P3, P4, O1,
O2 (6)

6 N 10s
99.7 (MT), 99
(TP)

E

FP1, FP2, F3, F4,
Fz , F7, F8, C3, C4,
Cz , P3, P4, Pz , O1,
O2, T3, T4, T5, T6

(19)

36 N 10s 99

R FP1 (1) 20 N 10s 98

BQC: Bayesian quadratic classifier, FF-NN: Feed forward neural network, IF-SVM: Immune feature weighted SVM,

QDA: Quadratic discriminant analysis, KNN: K nearest neighbor, BP-MLANN: Backpropagation-multilayer artificial

neural network, SVM-RBF: SVM-radial basis function, Y: Yes, N: No.

the feature maps of other mental tasks. Further, it can be

observed from the Fig.12 (a), (b) that the activations for BT

are higher and uniform for all layers, while for ST, activations

are higher in only certain locations. These uniform activations

in BT indicate the subject’s relaxed mental state as against

random patterns of activations in ST which indicate that the

subject has concentrated on some mental activity. Therefore,

these features can be mapped to the neurophysiology of

the brain. Our proposed CNN architecture has adequately

learned discriminatory feature maps for baseline and different

mental task classification as depicted by different activation

weights which yield high accuracy. To demonstrate the subject

adaption of the proposed architecture, we train the proposed

model on all signals from EEGMAT and test on the subjects

from recorded data. A classification accuracy of 97% has

been achieved in this case, which is quite high and indicates

the subject-adaptability of proposed architecture. While, the

existing features fail in capturing the subject-adaptability, as

seen from the performance comparison results. In the future

direction, we will analyze the performance of the proposed

architecture in case of missing EEG samples and implement

the proposed architecture on a real-time embedded processor

to determine the real-time latency and power consumption in

mental task classification.

V. CONCLUSION

In the proposed work, a light-weight one-dimensional con-

volutional neural network (1D-CNN) architecture is proposed

for mental task identification and classification. The proposed

architecture consists of a few layer network which does not

require any manual feature extraction or artifact suppression

step. The proposed architecture is evaluated using two publicly

available databases (i.e, Keirn and Aunon (K) database and
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EEGMAT (E) database) and in-house database (R) recorded

using single-channel neurosky mindwave mobile 2 (MWM2)

EEG headset for performing mental/baseline binary classifi-

cation and mental/mental multi-tasks classification. The pro-

posed architecture achieves classification accuracies of 100%
for the following binary task pairs: BT-MT, BT-LT, BT-RT,

MT-LT, MT-RT, and LT-RT, in the database K . Further, the

proposed architecture achieves an overall average accuracy

of 99.7% for multi-class classification in database K , and

99% and 98% for the classification of BT-ST task pair in

the databases E and R respectively. Comparative performance

results show that the proposed architecture outperforms exist-

ing approaches not only in terms of classification accuracy

but also in robustness against artifacts. Further, the proposed

architecture provides good classification accuracy for shorter

processing length of EEG signals which makes it suitable for

BCI systems with neurofeedback.
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