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Abstract— In diagnosing sleep disorders, sleep stage
classification is a very essential yet time-consuming pro-
cess. Most of the existing state-of-the-art approaches rely
on hand-crafted features and multi-modality polysomnog-
raphy (PSG) data, where prior knowledge is compulsory
and high computation cost can be expected. Besides, few
studies are able to obtain high accuracy sleep staging
using raw single-channel electroencephalogram (EEG). To
overcome these shortcomings, this paper proposes an
end-to-end framework with a deep neural network, namely
SingleChannelNet, for automatic sleep stage classification
based on raw single-channel EEG. The proposed model
utilizes a 90s epoch as the textual input and employs two
multi-convolution blocks and several max-average pooling
layers to learn different scales of feature representations.
To demonstrate the efficiency of the proposed model,
we evaluate our model using different raw single-channel
EEGs (C4/A1 and Fpz-Cz) on two different datasets (CC-
SHS and Sleep-EDF datasets). Experimental results show
that the proposed architecture can achieve better over-
all accuracy and Cohen’s kappa (CCSHS: 90.2%-86.5%,
Sleep-EDF: 86.1%-80.5%) compared with state-of-the-art
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approaches. Additionally, the proposed model can learn
features automatically for sleep stage classification using
different single-channel EEGs with distinct sampling rates
from different datasets without using any hand-engineered
features.

Index Terms— Sleep stage classification, Convolutional
neural network, Raw single-channel EEG

I. INTRODUCTION

HUMANS spend about one-third time of life on sleeping,
and high-quality sleep plays a vitally important role

in the restoration of body and mind [1]. Whereas roughly
33% of the population in the world suffers from insomnia
disorder [2]. Correctly identifying sleep stage using whole-
night PSG data is essential to diagnose and treat sleep-
related disorders [3]–[6]. The PSG recordings comprise of
the EEG, electrocardiogram (ECG), electrooculogram (EOG),
electromyogram (EMG) and other respiration signals [7].

According to the guidelines of the Rechtschaffen and Kales
(R&K) [8] or American Academy of Sleep Medicine (AASM)
[9], the PSG data should be first segmented into 30s epochs
typically, then these sequential epochs are defined as different
stages. Some sleep-related disorders have particular sleep
structure, it is therefore beneficial to diagnose them with ac-
curate sleep stage classification. Traditionally, the sleep stage
classification task is conducted by experts manually following
the R&K and AASM rule which is often time-consuming,
labor-intensive and prone to subjective mistakes [6]. Hence,
there is an urgent need for automatic sleep stage classification
approach to assist the clinician’s work and achieve reliable
results.

Some methods based on machine learning have been pro-
posed to identify the sleep stage. These approaches gener-
ally extract either time-domain features [3], [10], [11] or
frequency-domain features [12]–[16] from the PSG signals and
these pre-extracted features are then fed into the conventional
classifier, such as support vector machine (SVM) [4], [14],
[17], [18], k-nearest neighbors (KNN) [16], [19], [20], random
forest [21]–[24] and so on. The performance tremendously
relies on the categories and the number of features, which are
extracted based on the characteristics of experimental datasets.
Therefore, these approaches may not be robust enough to
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be generalized to different datasets because of the distinct
properties between datasets.

In recent years, the deep networks show great capacity for
automatic features learning from data, and it can avoid the
reliance on hand-engineered features. Meanwhile, a series of
deep learning methods are applied to sleep stage classification.
Here, we categorize these approaches into multi-channel [6],
[25]–[29] versus single-channel schemes [30]–[35] based on
the number of input channels. Following the multi-channel
scheme, Phan et al. [6] first transformed the raw signals into
the time-frequency image through the short-time Fourier trans-
form as the input of the proposed convolutional neural network
(CNN). The overall accuracy achieved was equal to 82.3%,
in which there is room for improvement. Besides, the time-
frequency image relies much on many preprocessing steps,
it would be time-consuming and in need of prior knowledge
of signal processing. Aiming at this, Chambon et al. [27]
proposed a novel network architecture of low computational
cost adopting multivariate and multimodal time series from
EEG, EMG and EOG, but the classification performance is
not good enough with the accuracy of 80% compared to state-
of-the-art methodologies. One important reason is that the
convolutional layers with fixed filter size were stacked sequen-
tially, which can not learn multiscale features simultaneously.
A promising approach was proposed by Zhang et al. [29], who
employed the CNN and recurrent neural network (RNN) to
capture temporal and spatial information simultaneously from
the PSG data. The architecture attained an accuracy of 87%.
Although the combination of CNNs and RNNs can enhance
the model performance to some extent, the high computational
cost of RNNs should be taken into consideration. To the
best of our knowledge, the training speed of CNNs would
be dozens of times faster than that of RNNs under the same
GPU acceleration when implementing long time-series input.
To sum up, despite the fact that multi-channel PSG data can
provide additional referenced information compared to single-
channel EEG, there is also some irrelevant information being
introduced. Furthermore, multi-channel recordings can limit
the practical application on account of more complex operation
and equipment costs.

Compared to the multi-channel scheme, the single-channel
scheme can reduce the related cost and be much easier for
data acquisition. Under the single-channel scheme, Supratak
et al. [30] introduced a deep learning model called Deep-
SleepNet. DeepSleepNet utilizes the capacity of deep learning
to extract time-invariant features automatically, the proposed
model can be adapted to different datasets. However, the
accuracy obtained from DeepSleepNet was 82%, which can
not outperform the state-of-the-art approaches. A promising
CNN model was proposed by Sors et al. [31], who used
raw single-channel EEG to classify the sleep stage without
any preprocessing. The architecture attained an accuracy of
87%, whereas the model complexity is a bit high with 12
convolutional layers. Furthermore, the filer size was chosen
among 7, 5, 3, the performance of larger size filters should be
compared considering the long length of input (1.5× 104).

To tackle these problems, this paper proposes the Sin-
gleChannelNet (SCNet), a model for automatic sleep stage

classification based on raw single-channel EEG, which can
learn different scales features simultaneously. We aim to
automate the sleep stage classification completely by utilizing
the capabilities of the proposed model. The main contributions
of this work are as follows:

i) We propose a new deep learning model with low model
complexity for sleep stage classification using 90s raw
single-channel EEG.

ii) We implement two multi-convolution (MC) blocks with
different filter sizes in our model. In addition, the max-
average (M-Apooling) layer is applied to take place of the
conventional max-pooling layer. Two strategies are used
for capturing more feature representations from different
scales to enhance the capacity of the feature extraction.

iii) The results demonstrate that our model can obtain
promising performance on different raw single-channel
EEGs (C4/A1, Fpz-Cz) from CCSHS and Sleep-EDF
datasets, without modifying the architecture and hyper-
parameters of model and training algorithm. Moreover, all
features are learned by the proposed model automatically.

The rest of this paper is organized as follows. We represent
the experimental datasets in Sec. II. Sec. III describes the
structure of the SCNet model and the training algorithm. In
Sec. IV, the experimental results are represented. The final
discussion and conclusion are included in Sec. V.

II. EXPERIMENTAL DATASETS

Two public datasets are employed to evaluate the per-
formance of the proposed framework in this work, namely
Cleveland Children’s Sleep and Health Study (CCSHS) [36],
[37] and Sleep-EDF Database Expanded (Sleep-EDF, 2018
version) [38]. It should be noted that all hypnograms of
experimental datasets are manually scored according to the
R&K manual rather than the AASM rule.

A. Cleveland Children’s Sleep and Health Study
(CCSHS)

The CCSHS dataset comprises of overnight PSG recordings
from 515 subjects aged 8-11 years, which is one of the largest
population-based pediatric cohorts studied with objective sleep
studies. Each 30s epoch is manually divided by experts into
several stages: Wake (W), Rapid Eye Movement (REM),
Non-REM1 (N1), Non-REM2 (N2), and Non-REM3 (N3). In
this work, single-channel EEG C4/A1 sampled at 128 Hz is
selected.

B. Sleep-EDF Database Expanded (Sleep-EDF)
The Sleep-EDF dataset consists of two subsets: sleep-

cassette (SC) contains 78 healthy Caucasians aged from 25 to
101 years and sleep-telemetry (ST) comprises 22 Caucasians
receiving temazepam treatment. Each participant was recorded
two subsequent night PSG data except the subject 13, subject
36 and subject 52, from the SC subset who had only a one-
night record. Each epoch of recordings is manually labelled
by clinicians according to the R&K rule into W, N1, N2, N3,
N4, REM, MOVEMENT and UNKNOWN stages respectively.
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Fig. 1. Illustration of 90s epochs and labels used in this paper, n donates the number of 30s epochs for a subject, Zm is comprised of Xm−1,
Xm and Xm+1, 2 ≤ m ≤ n − 1.

TABLE I
NUMBER OF 90S EPOCHS FOR EACH SLEEP STAGE FROM

EXPERIMENTAL DATASETS

Dataset W N1 N2 N3 REM Total

CCSHS 211030 19221 249681 17242 110188 690372

Sleep-EDF 69518 21522 69132 13039 25835 199046

Sleep-EDF-v1 10197 2804 17799 5703 7717 44220

In addition, MOVEMENT and UNKNOWN are excluded, as
they do not belong to the six stages. The PSG data include
two-channel EEGs (Fpz-Cz and Pz-Oz), single-channel EOG,
single-channel EMG and the event marker (sampled at 1 Hz).
The sampling rate fs of EEG, EOG, and EMG is 100 Hz.
Single-channel EEG Fpz-Cz is adopted in our experiment.
For the Sleep-EDF dataset, stages N3 and N4 are merged
into stage N3 which is consistent with the AASM manual.
Additionally, resampling operation is not applied to C4/A1 and
Fpz-Cz EEGs. We also found that most previous studies use
the Sleep-EDF dataset of the first 20 subjects (Sleep-EDF-v1).
For a fairer comparison, we also experiment with the Sleep-
EDF-v1 dataset.

C. Contextual input
In previous works, most schemes use a single 30s epoch as

the classifier input [7], [31], [35] and then produce a single
output label. Although being straightforward, this classifica-
tion method ignores the existing correlation and dependency
between surrounding epochs. It is considered that the sleep
stage classification depends not only on the local epoch,
but also on the prior and following temporal features [6],
[9]. For this reason, an extension of single 30s epoch input
is conducted by combining it with its neighboring epochs
to make a contextual input. Furthermore, we employ 90s
epoch (Zm) as contextual input of the proposed model, and it
contains three sequential epochs: prior 30s epoch (Xm−1), 30s
epoch (Xm) and subsequent 30s epoch (Xm+1). The ground
truth label of Zm is ym which also denotes Xm’s label. As in

Zm = (Xm−1,Xm,Xm+1) 7→ ym. (1)

Details are illustrated in Fig. 1. As shown in Table I, we
summarize the number of 90s epochs for each sleep stage
from CCSHS, Sleep-EDF and Sleep-EDF-v1 datasets in our

experiments. The distribution of the number of five stages is
imbalanced. For all datasets, W and N2 stages account for
more than 60% of all 90s epochs. By contrast, the proportion
of stages N1 and N3 is the smallest.

III. PROPOSED SCNET

Fig. 2 shows the overall architecture of the SCNet. The
convolution block performs three operations sequentially: one-
dimensional convolutional layer (Conv1D), batch normaliza-
tion and M-Apooling1D. Similarly, each MC Block is followed
by batch normalization, M-Apooling1D and Dropout layer
in sequence. In our model, we employ the concatenation of
max-pooling and average-pooling to take place of the max-
pooling for capturing more representable features. Similar to
the inception module [39], the MC block contains different
sizes of convolutional filters to capture the corresponding
information. Besides, we use the GAP layer to replace the
traditional fully connected layer, and it is proved to be more
robust spatial translations of the input without parameter
optimization [40].

A. Model Specification
In Table II, we relate detailed parameters of the proposed

model. The size of the model’s input is (90 × fs, 1), where
fs is the sampling rate. To be specific, the fs of EEG C4 and
Fpz-Cz is 128 Hz and 100 Hz, respectively. Here, the SCNet
does not restrict the length of input which can be applied to
different datasets.

The first convolutional layer with 128 filters of size 128
and a stride of 2 is applied to obtain the feature map from
raw single-channel EEG. The activation function of this layer
is rectified linear unit (ReLU) which is defined as the positive
part of its argument:

f(x) = max(0, x) (2)

where x is the input of a neuron. To normalize the prior layer
output, we apply the batch normalization technique. Besides,
the M-Apooling layer can get the combination of maximum
and average values from each of a cluster of neurons at the
previous layer.

We implement two MC blocks in our model, and the filter
sizes are selected among 1, 3, 16 and 64 to obtain multiscale
representative features. More specifically, the small filter is
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Fig. 2. An overall architecture of the proposed SCNet.

prone to learn temporal information, while the large filter is
better to capture frequency information. Considering the long
length of input (128×90, 100×90), we optimize the filter sizes
from the small sizes (3, 5 and 7), medium sizes (16 and 32) and
big sizes (64, 128 and 256). The filter size of 1 is to improve
the nonlinearity of the network and reduce the dimension
of previous layer output. The filter sizes are chosen with 1,
3, 16 and 64 based on the optimized results. Furthermore,
after concatenating the output of all convolutional layers, the
dimension of the MC block1 output is (d45 × fs/2e, 272).
The following M-Apooling layer can get (d45 × fs/4e, 544)
dimension feature map. Each MC block is followed by a batch
normalization layer, a M-Apooling layer with size of 3 and a
dropout layer with the probability of 0.1. To find appropriate
strides, we test 4 strides: 1, 2, 3 and 5. The stride of two MC
blocks is set to 1, while the stride of the M-Apooling layer and
the first convolutional layer is 2. The GAP layer is applied to
flat the previous output before the final decision layer. Through
a drop layer with drop rate of 0.5, the dense layer using
softmax as the activation function makes the final decision.
Softmax function can calculate the probabilities of five stages,
the stage with maximum probability is as the consequence of
the predicted sleep stage.

B. Regularization

We adopt two regularization approaches to help prevent the
overfitting problem. The first technique is L2 regularization
that adds squared magnitude of coefficient as penalty term to
the loss function. It is important to choose a proper regular-
ization rate (lambda), if lambda is very large, it would add

TABLE II
PARAMETERS OF THE PROPOSED MODEL

Layer Layer Type Filters Size Stride Activation Output dimension

1 Input - - - - (90× fs, 1)
2 Conv1D 128 128 2 Relu (45× fs, 128)
3 M-Apooling1D - 3 2 - (d45× fs/2e, 256)
4 MC Block1 - - 1 Relu (d45× fs/2e, 272)
5 M-Apooling1D - 3 2 - (d45× fs/4e, 544)
6 Dropout(0.1) - - - - (d45× fs/4e, 544)
7 MC Block2 - - 1 Relu (d45× fs/4e, 272)
8 M-Apooling1D - 3 2 - (d45× fs/8e, 544)
9 Dropout(0.1) - - - - (d45× fs/8e, 544)

10 GAP - - - - 544
11 Dropout(0.5) - - - - 544
12 Dense - - - Softmax 5

too much weight causing an underfitting issue. By contrast, a
very small lambda would make the model more complex, then
the model would learn too much about the particularities of
the training data, L2 regularization therefore has little effect on
avoiding overfitting. Hence, we test four lambda values: 10−1,
10−2, 10−3 and 10−4, the results show that 10−3 achieves
the best performance. The L2 regularization is applied to all
convolutional layers, including the MC block.

Another regularization method is dropout, which randomly
drops units from the model during training with a specific
probability from 0 to 1. It is noteworthy that the dropout
layers is not used for testing. Dropout layers with probability
of 0.1 and 0.5 are employed for the MC block and GAP layer,
respectively.
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Fig. 3. The normalized confusion matrices of each fold cross-validation. (a) CCSHS dataset and (b) Sleep-EDF dataset.

C. Training Setup

We select Adam as the network optimizer whose parameters
((learning rate) lr, beta1 and beta2) are set to 10−3, 0.9 and
0.999 respectively. Moreover, ReduceLROnPlateau of Call-
back in Keras is implemented to reduce the lr. Specifically,
when the model monitors the validation accuracy showing no
improvement within 3 epochs, the lr would drop to half of it.
The minimum lr is set to 10−7. To find out appropriate batch
size of mini-batch, size of 32, 64, 128, and 256 are evaluated,
we select 64 as the size of mini-batch finally. The categorical
cross entropy is chosen as the loss function of the model which
is always used for classifying multi-class tasks. The model
converges to the optimal solution within 40 iterations, hence
the number of iteration is set to 40.

There are two types of methods to split the training and test
sets [30], [41]. One is the subject-wise scheme which splits
the training and test datasets based on the subjects. Another
one is the epoch-wise method in which the split is conducted
by epochs rather than subjects. In the epoch-wise scheme, We
use 20% of whole data set as the test set and the remaining 90s
epochs as the training set. As for the subject-wise approach,
80% subjects are selected as the training set, the other 20%
subjects are used as the test set. Furthermore, we use the 5-fold
cross-validation (80% training set for training, 20% training set
for validation) scheme to train and evaluate our model for both
datasets. In addition, only 90s epochs from the CCSHS dataset
are used to determine the hyper-parameters of the proposed
model. Once achieving optimal hyper-parameters, they would
be used in all experiments. To be specific, when the model is
applied to another dataset, there would be no need to modify
the architecture and hyper-parameters of the model except for
the input length which should adapt to the fs of EEG from
different datasets.

Graphic card Nvidia Tesla P100 with 16 Gbytes memory

is used for model training. The implementation is written in
Keras [42] with the Tensorflow backend [43].

TABLE III
MEAN CONFUSION MATRIX OF 5-FOLD CROSS-VALIDATION ON RAW

SINGLE-CHANNEL EEG C4/A1 FROM THE CCSHS DATASET

Predicted Per-class Metrics Overall Metrics

W N1 N2 N3 REM PR(%)RE(%)F1(%) ACC(%)K(%)

W 40450 440 934 124 392 94.7 95.5 95.1

N1 1039 1253 740 1 765 52.8 33.0 40.6

N2 766 382 45679 1739 1359 88.8 91.5 90.1 90.2 86.5

N3 60 0 3126 18791 8 91.0 85.5 88.1

REM 384 299 971 6 18358 87.9 91.7 89.8

TABLE IV
MEAN CONFUSION MATRIX OF 5-FOLD CROSS-VALIDATION ON RAW

SINGLE-CHANNEL EEG FPZ-CZ FROM THE SLEEP-EDF DATASET

Predicted Per-class Metrics Overall Metrics

W N1 N2 N3 REM PR(%) RE(%) F1(%) ACC(%) K(%)

W 14650 498 142 8 82 94.1 95.3 94.7

N1 712 2020 1214 11 330 58.4 47.1 52.1

N2 109 705 12255 385 383 84.9 88.6 86.7 86.1 80.5

N3 4 5 532 2127 4 84.0 79.6 81.7

REM 99 233 299 1 4573 85.1 87.9 86.5

IV. EXPERIMENTAL RESULTS

A. Performance Metrics
We evaluate the model performance (epoch-wise) using

accuracy (ACC), precision (PR), recall (RE), F1 score (F1),
and Cohen’s kappa coefficient (K). ACC is the proportion of

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 3, 2021. ; https://doi.org/10.1101/2020.09.21.306597doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.306597


6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2021

(a)

(b)

Fig. 4. The comparison between hypnogram labeled by the clinician and the model’s prediction. The solid black line is the ground truth, the dotted
red line donates the hypnogram labeled by the prediction of the proposed model. (a) CCSHS dataset and (b) Sleep-EDF dataset.

correct predictions made by the model to the total predications.
PR calculates the ratio of correctly predicted positives to all
positives. RE means the fraction between true positives and
all predications in the actual class. F1 represents the weighted
average of PR and RE. K measures the agreement between
true labels and predicted labels. A large value of K can
indicate good performance of the model. They are calculated
as follows:

ACC =
TP + TN

TP + FN + TN + FP
. (3)

PR =
TP

TP + FP
. (4)

RE =
TP

TP + FN
. (5)

F1 = 2 · RE · PR

RE + PR
. (6)

K =

∑n
i=1 xii

N −
∑n

i=1(
∑n

j=1 xij

∑n
j=1 xji)

N2

1−
∑n

i=1(
∑n

j=1 xij

∑n
j=1 xji)

N2

. (7)

where TP , TN , FN and FP donate the true positives, true
negatives, false negatives and false positives, respectively. N
is the number of 90s epochs of the test set, n represents the
number of classes. In this work, n equals 5, xii (1 ≤ i ≤ 5)
represents the diagonal value of the confusion matrix.

To show the performance of each fold cross-validation
from the CCSHS and Sleep-EDF datasets, we present the
normalized confusion matrices (CM) in Fig. 3. Firstly, we
use single-channel EEG C4/A1 (90s epochs) from the CCSHS
dataset to tune the hyper-parameters. Once getting the best
performance, the hyper-parameters and model architecture are
fixed for all experiments. Table III provides the mean CM of
5-fold cross-validation from the CCSHS dataset, we can see

that the overall accuracy and K are respectively 90.2% and
86.5%. The proposed model shows the best ability to detect the
W stage with the PR of 94.7%. By contrast, the performance
of stage N1 classification is the worst which is consistent with
the results of existing works. To be specific, there are 33.0% of
N1 90s epochs being recognized correctly. In addition, 27.4%
of N1 samples are misclassified as W, 19.5% as N2 and 20.1%
as REM. Stages N2, N3 and REM have similar classification
results in terms of the PR corresponding to 88.8%, 91.0%
and 87.9% respectively.

To demonstrate the generalization capability of the proposed
architecture, we also conduct the 5-fold cross-validation using
the same model determined by the CCSHS dataset (i.e.,
without any hyper-parameters modification except for the input
length) on the Sleep-EDF dataset. As can be seen from Table I,
the distribution of the numbers of five stages is a bit different.
Stage W has the biggest proportion and the number of N3
is the smallest in Sleep-EDF dataset, whereas the largest
percentage is stage N2 in the CCSHS dataset. Besides, the
EEG channel used in two datasets is also distinct, C4/A1 for
the CCSHS dataset and Fpz-Cz for the Sleep-EDF dataset. It is
worthy to note that despite the EEG channel and the size of the
input length (90×fs, 1) are quite different, the proposed model
can obtain promising performance on two different datasets by
comparing Table III and Table IV.

We further reveal the hypnogram comparison labeled by
experts and the model’s prediction for one subject of CCSHS
and Sleep-EDF datasets in Fig. 4.

B. Performance Comparison

We make a comparison between the proposed model (epoch-
wise and subject-wise) with some existing works using the
same datasets in terms of the ACC and K in Table V.
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TABLE V
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND PREVIOUS METHODS ON THE CCSHS, SLEEP-EDF AND SLEEP-EDF-V1

DATASETS

Study Database Method Input channel Preprocessing Input type Subjects ACC(%) K(%)

Nakamura et al. [44] CCSHS HMM C4/A1 + C3/A2 Yes Spectrogram 515 - 73
Li et al. [45] CCSHS Random Forest C4/A1 Yes Features 116 86.0 80.5
Proposed (subject-wise) CCSHS Deep CNN C4/A1 No Time series 515 88.2 83.8
Proposed (epoch-wise) CCSHS Deep CNN C4/A1 No Time series 515 90.2 86.5
Mousavi et al. [46] Sleep-EDF CNN + LSTM Fpz-Cz No Time series 78 80.0 73
Supratak et al. [47] Sleep-EDF CNN + LSTM Fpz-Cz No Time series 78 83.1 77
Proposed (subject-wise) Sleep-EDF Deep CNN Fpz-Cz No Time series 78 83.9 77.8
Proposed (epoch-wise) Sleep-EDF Deep CNN Fpz-Cz No Time series 78 86.1 80.5
Mikkelsen et al. [28] Sleep-EDF-v1 Deep CNN Fpz-Cz + EOG No Time series 20 84.0 -
Supratak et al. [30] Sleep-EDF-v1 CNN + LSTM Fpz-Cz No Time series 20 82.0 76
Wei et al. [33] Sleep-EDF-v1 Deep CNN Fpz-Cz Yes Time series 20 84.3 78
Phan et al. [6] Sleep-EDF-v1 Deep CNN Fpz-Cz + EOG Yes Time-frequency image 20 82.3 75
Phan et al. [34] Sleep-EDF-v1 1-max CNN Fpz-Cz Yes Time-frequency image 20 79.8 72
Phan et al. [35] Sleep-EDF-v1 Attentional RNN Fpz-Cz Yes Features 20 79.1 70
Proposed (subject-wise) Sleep-EDF-v1 Deep CNN Fpz-Cz No Time series 20 86.2 81.1
Proposed (epoch-wise) Sleep-EDF-v1 Deep CNN Fpz-Cz No Time series 20 91.0 87.8

Table V reveals that the proposed framework can achieve
higher ACC and K using raw single-channel C4/A1 EEG
compared to approaches using multi-channel PSG data [44] or
the single-channel EEG [45] on the CCSHS dataset. For the
Sleep-EDF and Sleep-EDF-v1 databases, the proposed model
also achieves comparable performance compared to state-
of-the-art methods. Some studies [34], [35] extract features
manually or multi-channel signals are used as input [6], [28]
or some methods adopt single-channel EEG [33], [34], [46],
[47]. Considering results of the comparison, the proposed
framework can achieve promising performance on CCSHS,
Sleep-EDF and Sleep-EDF-v1 datasets.

V. DISCUSSION AND CONCLUSION

In this paper, we propose an end-to-end framework with
CNNs, namely SCNet, which combines the feature learning
ability and classification capacity. The proposed model is
applied to classify sleep stages automatically from raw single-
channel EEG without using any hand-engineered features and
any other preprocessing (e.g., signal filtering and resample
implementation). There are two main advantages that we train
and evaluate the model with raw single-channel EEG. Com-
paring with those methods with hand-crafted features [4], [12],
[48], where extracting hand-engineered features is conducted
with priori knowledge and not in a data-driven way, and it is
time-consuming for the researchers. Moreover, the selection of
types and number of features would result in different model
performance, there is no gold standard about the extraction of
hand-crafted features. The second advantage is that it is much
easier and more comfortable to record single-channel EEG
data compared to the multi-channel scheme [6], [28] either
at the hospital or home. Moreover, multi-channel PSG data
used as input can increase the computational cost. Considering
practical applications, the use of raw single-channel EEG can
simplify the measurement scheme and reduce the related cost.

Comparing with the conventional deep neural network based
on CNNs, where the convolutional layers with the fixed filter
size are assembled in sequence. In such a case, it is not capable
of capturing features representation from different scales. To
address this issue, our model employs two MC blocks, which
are the concatenation of several convolutional layers with
four distinct filer sizes, to extract different scale features.
Instead of using the traditional max-pooling layer, we adopt
the M-Apooing layer to add average feature representation
with maximum features simultaneously, which further improve
the proposed model’s ability of feature learning. In addition,
the SCNet model is quite simple and compact with a total
5 × 105 parameters compared to the methods in [46] which
has 2.1 × 107 parameters and [30] in which the number
of parameters of the representation learning and sequence
residual learning parts has up to 6 × 105 and 2 × 107

respectively. Moreover, the proposed SCNet model can achieve
the comparable performance with less computing resources
occupied. Concerning online and realtime applications (e.g.,
sleep monitoring), our model with raw single-channel EEG is
more reasonable to reduce the time latency and obtain reliable
results.

To demonstrate the generalization of the proposed archi-
tecture, different single-channel EEGs from two datasets are
adopted. The length of input is not restricted to a fixed number,
our model can be adapted to different length of input relating
to the fs of EEG efficiently. Experimental results show that
the proposed model can obtain promising performance on two
datasets (CCSHS: ACC-90.2%, K-86.5%; Sleep-EDF: ACC-
86.1%, K-80.5%), which indicate the desirable generalization
of the SCNet model.

It is challenging to train on dataset A and test on B, not
only for the proposed SCNet but also for typical CNNs.
CNNs are running in a data-driven way which means the
model must learn some crucial features from the training
samples. Otherwise, it cannot perform well on an unfamiliar
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dataset. This is also the biggest difference (generalization
ability) between machine and human, human beings are good
at deducing and inducing. To further show the generalization
ability of the proposed model, we perform two additional
experiments. Firstly, we train our model with the CCSHS
database, the obtained model then is tested on the Sleep-EDF
dataset without any training, the accuracy is 65.9%. In reverse,
The proposed model is trained on the Sleep-EDF dataset and
tested with the CCSHS database, the accuracy achieved is
70.2%. In our future work, we will try to construct a more
brain-inspired model with some cognitive neural dynamic from
neuroscience [49] to increase the generalization ability for the
sleep stage classification task. Also, it is valuable to adopt
clinic datasets that have rarely been explored in previous
studies.
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