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Abstract: Aiming at the existing problems of BCI (brain computer 
interface), such as single input signal source, low accuracy of 
feature recognition, and less output control instructions, this paper 
proposes a robotic arm control system based on EEG 
(electroencephalogram) and EMG (electromyogram) mixed 
signals. The system flow is as follows: Firstly, the EMG signal of 
the unilateral arm and the EEG signal of the left and right hand 
motor imagery is collected synchronously. Then the collected EEG 
and EMG signals are extracted and classified, and the 
corresponding classification instructions are obtained. Finally, the 
multi-instruction real-time control of the robotic arm is realized 
under the classification instruction. The experimental verification 
results show that: The 10 subjects all realized the real-time multi-
command control of the robotic arm, and the average recognition 
accuracy of each action reached more than 94%. The proposed 
system enriches the diversity of hybrid BCI and provides a 
theoretical basis and application foundation for the extended 
application of BCI in robotic arm control. 
Keywords: Brain computer interface • Feature extraction • 
Classification and identification • Robotic arm 

 

1  Introduction 

 

Intelligent human-computer interaction is a high-end 
human-computer interaction technology based on the 
detection of the human bioelectrical signal, with feature 
engineering and machine learning as the core, to realize the 
machine's active understanding of human behavior intention, 
it represents the latest hot spot and trend of human-computer 
interaction [1]. In recent years, human-computer interaction 
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technology based on EEG or EMG [2] has achieved 
significant application achievements in rehabilitation 
medical treatment [3], gait recognition [4], human 
exoskeleton [5], and other fields.  

However, the majority of intelligent human-computer 
interaction systems related to BCI or MCI (muscle machine 
interface) adopt a single mode of bioelectrical signal to 
control external devices. This single-mode has the 
disadvantages of low information transmission rate, single 
information source, and less output control instructions of 
external equipment. Compared with the single-mode BCI 
system, the multi-mode hybrid BCI [6] can effectively make 
use of the fusion and complementarity of multi-source 
information, and make up for the shortcomings of the 
existing BCI in low recognition accuracy and fewer control 
instructions. 

At present, many scholars have carried out in-depth 
research on the hybrid BCI with multi-source information 
and achieved remarkable achievements. Li [7] proposed a 
multifunctional prosthetic control method based on EEG 
and EMG fusion to achieve high-precision identification of 
upper limb movement, aiming at the problem of too few 
residual muscles and insufficient EMG signal source of 
amputees. Duan et al. [8] implemented a multimodal online 
BCI system that combined μ rhythm, SSVEP, and MI-EEG 
(motor imagery electroencephalography) signal to control 
the robot to grasp objects. Ma et al. [9] proposed a multi-
mode cursor control system based on the combination of MI 
(motor imagery) and mVEP (motor onset visual evoked 
potential), which realized the overall improvement of the 
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control efficiency of the BCI system. Luis Mercado et al. 
[10] combined EMG and EEG to simulate tibial-femoral 
joint motion control, the simulation of the user's motion 
intention and dynamic behavior is realized. Heba Ibrahim 
Aly et al. [11] proposed a new hybrid BCI model that 
combined EEG and EMG signals to effectively improve 
limb movement control in amputees above the elbow joint. 
Koushik Bakshi et al. [12] proposed a hybrid strategy of 
EEG and EMG, which realized the motion control of the 
elbow, wrist, and finger. Aya Rezeika et al. [13] proposed a 
spelling controller that combines SSVEP and EMG signals 
to achieve faster letter spelling performance without 
compromising accuracy. Andrea Sarasola-Sanz et al. [14] 
proposed a control system based on hybrid brain-machine 
interfaces (EEG and EMG) to achieve real-time control of 
the 7-DOF (degree of freedom) exoskeleton of the upper 
limb. Tomasz Kocejko [15] proposed a control system 
combining EMG and EEG and added the detection and 
analysis data of the eye tracker to realize the movement 
detection and analysis of prosthetic limbs. Jingsheng Tang 
et al. [16] proposed a robotic arm control method combining 
EMG and EEG, using leg EMG signal to quickly and 
reliably select the currently activated joint, and using motor 
imagery signal to accurately control the computer interface. 
Agata Manolova et al. [17] proposed a multimodal fusion 
method based on user electromyography, which achieved 
more reliable control on the precondition of reducing fatigue 
and inattention during use. Ludovico Minati et al. [18] 
achieved the successful control of a 5+1 DOF robotic arm 
by simultaneously collecting bioelectrical signals such as 
eye electricity, jaw electromyography, brain electricity, and 
head movement through wearable devices. 

From the above studies, it can be seen that multi-source 
information mixing improves the output accuracy of the 

BCI system by using the mixed enhancement of two or more 
different bioelectrical signals. However, this multi-mode 
fusion requires the subjects to complete multiple tasks at the 
same time with higher attention, and too long task time will 
cause excessive fatigue of the subjects, affect the stability of 
the system control, and the output category of the device 
control instructions is very limited. To improve the control 
stability of the BCI and provide multiple control commands, 
this study design a robotic arm control system based on EEG 
and EMG mixed signals based on the idea of a hybrid BCI. 
Firstly, EEG and EMG signals are collected synchronously. 
Then the EEG and EMG signals are featured extraction and 
classified by parallel mode, and the corresponding 
classification instructions are obtained. Finally, the multi-
instruction real-time control of the 6-DOF robotic arm is 
realized under the classification instruction.  

 

2  Brain-muscle Mixed Signals Robotic Arm 
Control System 

 

The block diagram of the robotic arm control system based 
on EEG and EMG mixed signals is shown in Figure 1. The 
system is mainly divided into three parts: Signal generation 
and acquisition, signal processing, and robotic arm task flow. 
Firstly, the corresponding experimental paradigm is 
designed for the task of the robotic arm, and the EEG and 
EMG signals are collected to reflect the movement state of 
the subjects. Then, the EEG and EMG signals are 
preprocessed, feature extraction, classification, and 
recognition respectively, and the EEG and EMG control 
instruction categories are obtained. Finally, the real-time 
control of the robotic arm is realized based on the 
corresponding EEG and EMG control instructions. 

 

 

Figure 1  Block diagram of the robotic arm control system with EEG and EMG mixed signals
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3  Materials and Algorithms 
 

3.1  Signal Generation and Acquisition 

 

According to the task requirements of the robotic arm, the 
experimental paradigm of EEG and EMG is designed. 
According to the prompts of the experimental paradigm on 
the screen, the subjects performed corresponding gestures 
and left and right hand motor imagery, and then the 
corresponding EMG and EEG signals are obtained. 

EMG signal acquisition: According to the distribution of 
human arm muscle groups, the EMG electrode adopts the 
ring attachment method with a total of 10 channels. The 
electrode distribution is shown in Fig. 2 (a). Gesture 
movements include wrist introversion, wrist extroversion, 
fist clenching, hand opening, finger kneading, and rest, as 
shown in Fig. 2 (b). The EMG training is performed in 
single trials, and the training duration of each movement is 
2s, with a total of 12s for 6 movements. 

EEG signal acquisition: According to the international 
standard 10-20 system [19], EEG signals of four channels 
C3, C4, FZ, and A1 are collected by the EEG electrode. A1 
left mastoid is selected as the reference electrode, and FZ 
forehead as the central grounding, as shown in Fig. 2(c). 
There are 10 trials for left and right hand motor imagery 
training. The single-trial lasted for 2s, in which the left and 
right hand motor imagery for 1s each. 

Neuroscan EEG acquisition system is used to acquire 
EEG and EMG signals synchronously. The sampling 
frequency is 500Hz, and the signals are processed by a 50Hz 
power frequency notch. Fig. 2(d) is the schematic diagram 
of the timing sequence of the EMG experiment. The 
experimental procedures are as follows: 

Step 1: When t=0~2s, a cross cursor appears in the center 
of the screen, indicating the START state, indicating that the 
subject is about to START the EMG training, and he/she 
needs to pay attention and wait for the action prompt 
instruction. 

Step 2: When t=2~14s, on the screen, there are six sports 
pictures of unilateral wrist introversion, wrist extroversion, 
fist clenching, hand opening, finger kneading, and rest. The 
subjects performed the corresponding arm movements 
according to the prompts. The six movements are performed 
in sequence, and each movement is completed in 2s 

Step 3: When t=14~16s, a cross cursor appeared on the 
screen, indicating that the subject is about to start the EEG 
training and needed to pay attention and wait for the action 
prompt instruction. 

Step 4: When t=16~36s, the left, and right indicator 
arrows appeared on the screen. According to the direction of 

the arrows, the subjects performed the corresponding left 
and right hand motor imagery. The left and right hand motor 
imagery tasks are performed alternately. The left and right 
hand motor imagery are trained 10 times, and the training 
time is 20 seconds. 

Step 5: After the EEG training, the screen is in the END 
state, indicating the END of the training experiment. 

 

  
(a) EMG electrode arrangement 

     

wrist introversion    wrist extroversion    fist clenching 

     
hand opening      finger kneading         rest 

(b) EMG gesture movements 

 

(c) EEG signal acquisition channel 
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(d) Time sequence diagram of EEG and EMG acquisition experiment 

Figure 2  EEG and EMG signals acquisition and experimental sequence diagram 

 

 

Figure 3  EMG signal preprocessing process 

 

3.2  Signal Processing Algorithm 

3.2.1  EMG Signal Processing 

(1) EMG signal preprocessing 
1 2
1 2( ) [ ( ), ( ),..., ( )]   j m N n m

i n
x t x t x t x t R is the collected EMG 
signal, where N  is the total number of sample points, n  
is the number of EMG channels, m   is the number of 
sampling points. During the acquisition process, the EMG 
signal is subject to various interferences, resulting in a large 
number of artifacts. To improve the quality and decoding 
effect of the EMG signal, it is necessary to preprocess the 
collected EMG signal. The preprocessing process is shown 
in Figure 3. As can be seen from the figure, the 
preprocessing [20] of EMG signal includes DC component 
removal, filtering, artifact removal, baseline correction, 
denoising, etc. The high efficiency of signal processing can 
be realized by adding several manual checks in the 
preprocessing process. The preprocessed signal is 

( ) ( {1,2,..., }, {1,2,..., }, {1,2,..., })  j

i
x t t N i n j m . 
(2) Feature extraction of EMG signal 

Aiming at the motion range of each joint in the 
exoskeleton, considering the lossless and real-time 
characteristics of feature vectors in the time-frequency 

domain, and the relatively simple extraction, a feature 
subset extraction method in time-frequency domain is 
proposed. 

To ensure the continuity of features, the method of setting 
time window and incremental window [21] is adopted to 
extract features (as shown in Figure 4). 
 

Time window at 
time k

Incremental 
window

Time window at 
time (k+1)

 

Figure 4  Time window and incremental window 

 

 T
N   as the length of the time window, C

N   as the 
incremental window length, and ( )j

i
x t  as the tth  EMG 

signal value in the time window. Common EMG 
characteristics are as follows: 

a) Mean Absolute Value [22], MAV 

1

( )
1



 
T

j

i

N

tT

M tV xA
N

             (1) 
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MAV reflects the total electromyography. 
b) Root Mean Square [23], RMS 

2

1

)
1

[ ( ]


 
T

t

j

N

T

i
RMS t

N
x            (2) 

RMS reflects the effective amplitude of the EMG signal 
at a certain time of exercise. 

c) Zero Crossings [24], ZC 
1

1

]( )sg (n 1)[




 
T

j j

i i

N

t

x t x tZC  

( ) ( 1)  j j

i i
x t x t  and  

1,  if 0 
sgn

0,  otherwise.





 


 (3) 

   is introduced to prevent small-value noise. ZC 
represents the number of sign change in signal amplitude per 
unit time (usually 1s), and ZC can reflect signal frequency. 

d) Slope Sign Changes [25], SSC 
1

2

( ) ( 1) (sgn{[ ][ ( 1)]})




  
T

j j j j

i i

N

t

i i
S x t x t t x tSC x  

( ) ( 1)  j j

i i
x t x t  or ( ) ( 1)  j j

i i
x t x t    (4) 

   is introduced to reduce the interference caused by 
noise on the sign change of slope, the SSC can roughly 
reflect the frequency of the signal. 

e) Waveform Length [26], WL 
1

1

( 1) ( )




 
T

j j

i i

N

t

x t x tWL          (5) 

WL reflects the waveform complexity of the EMG signal. 
f) Willison Amplitude [27], WA 

1

1

( 1) ( )




    
T

j j

i i

N

t

W x t xA f t ,  
1,  if 

0,  otherwise.

 



 


f (6) 

WA reflects the level of muscle contraction. 
g) Variance [28], VAR 

1

2[ ( )]
1

1 


 

T

j

t

i

N

T

VAR
N

x t           (7) 

VAR reflects the power of the EMG signal. 
h) Log Detector [29], LogD 

1

1
exp l g ( )o



 
  

 


T

j

N

tT

i
x tLogD

N
        (8) 

LogD reflects the external force assessment of the muscle. 
i) Auto Regression Coefficient [30], ARC 

1

( ) ( ) ( ) ( )


  
p

j j

i i

k

x t a k x t k e t         (9) 

Where ( ), 1,...,a k k p   is the AR model coefficient, 
namely the extracted feature, p   is the model order, and 

( )e t  is the model white noise. ARC describes each EMG 
signal value as a linear autoregressive time series, reflecting 

information about the state of muscle contraction. 
j) Cepstrum coefficients [31], Ceps 

1

1

(1) (1)

( ) ( ) 1 ( ) ( )




 


         

l

j

c a

j
c l a l a j c l j

l

    (10) 

Where ( )a l  is calculated from ( ), 1,..., ,...,a k k l p  in 
Equation (9), Ceps reflects the change rate information of 
signal in different spectral segments. 

k) Median frequency [32], MD
f  

     
0 0

1

2
     

 
   

MD

MD

f

f
P d P d P d  (11) 

MD
f  divide the signal power spectrum into two parts of 

equal energy, where  P  is the power spectral density of 
the EMG and    is the frequency of the signal. MD

f  
reflects the energy distribution. 

l) Mean frequency [33], ME
f  

 

 
0

0

  

 



 


ME

P d
f

P d
            (12) 

The definitions of  P  and   are the same as above 
and ME

f  reflect the degree of muscle fatigue. 
The selection of features directly affects the result of 

motion recognition. A good feature should show the 
consistency of parameters in the same motion mode, and at 
the same time, it should show the obvious difference of 
parameters in different motion modes. Feature selection is 
essentially an optimization problem. Feature selection is 
essentially an optimization problem. M   features are 
selected from the original N   features to form a feature 
subset, among which M  meets M N , and the subset is 
optimal when evaluated by a certain evaluation standard. To 
optimize feature selection, this system takes the average 
value of the extracted feature mean and standard deviation 
of the mean [34]: 

 2

1

1



 
N

n

n

S T T
N

, 
S

FBP
T

         (13) 

Where n
T   is the normalized mean of the characteristic 

mean of the data in the group n , T  is the mean of n
T , 

N   is the number of data groups calculated in the 
experiment, and S  is the standard deviation of n

T . FBP 
can be used to measure the quality of features. The 
characteristics of different features can be obtained by the 
characteristic average value and FBP value. 
(3) Recognition and classification of EMG signal 

The neural network [35] is used to train the feature subset. 
A neural network consists of an input layer, hidden layer, 
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and output layer. Let 1 2[ , ,..., ] T

m
u u u u   and 

1 2[ , ,..., ] T

m
y y y y   be network input and output vectors 

1 2[ , ,..., ] T

N
X x x x   is the vector composed of all the 

weights and thresholds of the network. Given group P  
input and output training sample 

( ) ( ){( , ) | 1,2,..., }p p
u t p P  , the network error-index 

function is defined as: 

1

1
( ) ( )

2 

 
P

p

p

E X E X
P

           (14) 

        ( ) ( ) 2

1

( ) ( )


 
n

p p

p j j

j

E X y t          (15) 

And then train X   to get optimal 
opt

X  , so that 

( ) min ( )
opt

X
E X E X . 

3.2.2  EEG Signal Processing 

(1) EEG signal preprocessing 
1 2
1 2( ) [ ( ), ( ),..., ( )]   j m N n m

i n
x t x t x t x t R is the collected EEG 
signal, where N  is the total number of sample points,  n  
is the number of EEG channels, m   is the number of 
sampling points. During the acquisition process, the EEG 
signal is subject to various interferences, resulting in a large 
number of artifacts. To improve the quality and decoding 
effect of EEG signals, it is necessary to preprocess the 
collected EEG signal. The preprocessing process is shown 
in Figure 5. As can be seen from the figure, the 
preprocessing [36] of EEG signal includes DC component 
removal, filtering, artifact removal, baseline correction, 
remove of the interference, etc. The high efficiency of signal 
processing can be realized by adding several manual checks 
in the preprocessing process. The preprocessed signal is 

( ) ( {1,2,..., }, {1,2,..., }, {1,2,..., })  j

i
x t t N i n j m .

 

 

Figure 5  EMG signal preprocessing process 

 

(2) Feature extraction of EEG signal 
A feature extraction method based on energy (second-

order moment [37]) and wavelet packet transform is 
proposed by considering the relevant information of EEG 
between different channels and combining the 
comprehensive characteristics of signal energy and time-
frequency domain. 

1) Energy (second-order moment) 
EEG signal is collected by EEG cap and expressed in the 

form of amplitude voltage, the instantaneous energy is 
denoted as: 

2 2[ ( )] [ ( )]j j

i i
E x t x t             (16) 

2[ ( )]j

i
E x t  express the jth  sampling point of the ith  

channel of the tth  sample, point of EEG signal of transient 

energy. 

Suppose j

i
E  is the average energy of the EEG in the 

jth  sampling point of the ith  channel in the N  

experiments, and is expressed as: 

2 2

1

1
[ ( )] [ ( )]



 
N

j j

i i

n

E x t x n
N

        (17) 

According to equation (17), the average energy of each 
lead signal is calculated respectively, and the signals with 
obvious differences in periods are selected for feature 
extraction. 

2) Wavelet packet transform 

Wavelet packet [38] decomposition is performed for the 
EEG signal ( )( {1,2,..., }, {1,2,..., }) j

i
x t i n j m   selected 

in Step 1). Then, the wavelet packet space belonging to the 
   rhythm (8~12Hz) and    rhythm (14~30Hz) is 
selected for EEG signal reconstruction. 

(a) Wavelet packet transform is used to decompose signal 
( )j

i
x t , and the wavelet packet decomposition coefficients of 
layer l  and point k  are respectively: 

2
0 1( ) ( 2 ) ( ) r r

l l

k

d k g m k d m         (18) 

2 1
1 1( ) ( 2 ) ( )

 r r

l l

k

d k g m k d m        (19) 

0g   is a low-pass filter, m   is the sequence number of 
filter coefficients, r   is the sequence number of wavelet 
packet subspace, and 1g  is a high-pass filter. 

After wavelet packet decomposition, the original signal is 
divided into several wavelet packet subspaces according to 
frequency bands. The frequency bands corresponding to 
each subspace of layer l  are respectively: 

1 1 1 1 1 1

2 2 3 (2 1)
{[0, ];[ , ];[ , ];...;[ , ]}

22 2 2 2 2 2     


s s s s s s s

l l l l l l

f f f f f l f f
 

( s
f  is signal sampling rate) 

(b) The wavelet packet space covering the rhythm of   
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and    is selected, and the signal is reconstructed 
according to the reconstruction formula of the wavelet 
packet coefficients of layer 1l  and point k : 

2 2 1
1 0 1( ) ( 2 ) ( ) ( 2 ) ( )
     r r r

l l l

m m

d k g m k d m g m k d m (20) 

(3) Recognition and classification of EEG signal 
Support Vector Machine (SVM) [39] is a machine 

learning method based on statistical learning theory. For a 
binary classification problem, SVM has stronger 
adaptability, better classification ability, and higher 
computational efficiency. Common kernel functions of the 
SVM method include linear kernel, polynomial kernel, and 
radial basis kernel, etc. Different kernel functions can be 
used to construct different SVM classifiers. In this study, the 
radial basis kernel function is used: 

2
( , ) exp( ), 0    

i j i j
k x x x x      (21) 

i
x   represents the input sample i  , and    is the kernel 
parameter. For SVM, kernel parameter    and error 
penalty factor C   are the main parameters that affect the 
performance. The parameter    affects the data 
distribution after spatial transformation, while the parameter 
C   determines the convergence rate and generalization 
ability of SVM. In this study, the grid search method is used 
to determine parameters   and C , and a 10-fold cross-
validation method is used for verification. That is, of the 200 
times of data, 180 times are known whether the experiment 
is to the left hand motor imagery or the right hand motor 
imagery, which is used as the training set, and the other 20 
times do not give the motion mode, which is used as the test 
set. 
 

3.3  Robotic Arm Task Flow 

 

The Robotic arm used in the brain-muscle mixed signals 
robotic arm control system is AUBO-I5 6-axis robotic arm 
from AUBO (Beijing) Robotics Technology Co., Ltd. 
According to the working tasks of the robotic arm, the 
overall movement process of the robotic arm is as follows: 
Firstly, the robotic arm is initialized. Then through four 
movement steps (position 1, position 2, position 3, position 
4), the end of the robotic arm reaches the specified position, 
ready to grasp the target workpiece, after grabbing the target 
workpiece, through three steps (position 3, position 2, 
position 1) to reach the position where the workpiece needs 
to be placed, ready to place the target workpiece. Finally, 
after the target workpiece is placed, the robotic arm returns 
to the initial position. The action sequence of the robotic arm 
is shown in Table 1. 

Table 1  Action sequence of the robotic arm 

Robotic 
arm action 

steps 

Gesture 
sequence 
number 

Name of arm and brain 
action 

Robotic arm action 

1 3 Fist clenching Initialization 

2 1 Wrist introversion Position 1 

3 2 Wrist extroversion Position 2 

4 3 Fist clenching Position 3 

5 4 Hand opening Position 4 

6 5 Finger kneading 
Entering EEG 

recognition mode 

7 —— Left hand motor imagery Grab the workpiece 

8 4 Hand opening Position 4 

9 3 Fist clenching Position 3 

10 2 Wrist extroversion Position 2 

11 1 Wrist introversion Position 1 

12 5 Finger kneading 
Entering EEG 

recognition mode 

13 —— Right hand motor imagery Put down the workpiece 

14 3 Fist clenching 
Back to the original 

position 

 

4  Experimental Verification and Result 
Analysis 
 

To verify the effectiveness of the brain-muscle mixed 
signals robotic arm control system, 10 subjects in the 
syndrome set were tested and verified. The subjects ranged 
in age from 22 to 33 years old and had no medical history. 
Informed consent was signed with each subject before the 
experiment. The experimental environment was quiet 
without absolute noise. The subjects sat in a comfortable 
seat with a horizontal distance of 70~80cm from the 
computer screen. To ensure the quality of data collection, 
alcohol cotton was used to clean the muscle and skin surface 
of the subjects before the experiment, and conductive paste 
was used to reduce the impedance between arm skin, scalp, 
and electrode. Firstly, each subject was informed of the 
procedure of the experimental paradigm. After all the 
electrodes were placed, the right hand was placed naturally 
on the table. Then, according to the prompts on the computer 
screen, the subjects performed the corresponding unilateral 
arm movements and left and right hand motor imagery 
training, and generated the training template. Among them, 
one unilateral arm six movements, and 10 left and right hand 
motor imagery was required. Finally, the subject can control 
the robotic arm in real-time. Experimental verification is 
shown in Figure 6. 
 



Robotic Arm Control System Based on Brain-Muscle Mixed Signals 

 
 

·9· 

 

Figure 6  Brain-muscle mixed signals robotic arm control 
experiment 
 

4.1  Signal Processing Result  

The EEG and EMG signals of the subjects were processed 
according to the algorithm flow in section 2.2. Now the 
signal processing flow of subject 1 is selected for detailed 
analysis. 

4.1.1 EMG Signal Processing 

(1) EMG signal preprocessing 

The effective frequency components of the EMG signal is 
distributed in the range of 0~500Hz, and the main energy is 
concentrated in the range of 10~200Hz, therefore, 
10~200Hz bandpass filtering was performed on the original 
EMG signal, after removing the DC component, filtering, 
artifact removal, baseline correction and denoising, various 
noise interference in EMG signal can be effectively 
removed. Results of EMG signals of 6 gestures after 
preprocessing are shown in Figure 7. 
 

 

Figure 7  Preprocessing results of EMG signals of arm 
movements 

 

(2) Feature extraction of EMG signal 
The pretreated EMG signal was extracted and the FBP 

values of 5 non-rest movements (T1: Wrist Introversion, T2: 
Wrist Extroversion, T3: Fist Clenching, T4: Hand Opening, 
T5: Finger Kneading) were calculated, as shown in Table 2. 
The smaller the FBP value is, the smaller the influence of 
data group change on the change of feature is, and this 
feature has better consistency to the motion. The four 
characteristics of the EMG signal: MAV, ZC, ARC, and fMD, 
are selected as the feature vectors of the EMG signal by 
integrating the types of features and FBP values. 

 

Table 2  FBP value of EMG signal characteristics 

 T1 T2 T3 T4 T5 S FBP 

MAV 0.0503 0.0578 0.0967 0.0963 0.0856 0.0196 0.2531 

ZC 0.2205 0.1336 0.1945 0.2056 0.1646 0.0311 0.1691 

WL 0.1504 0.2145 0.6211 0.2145 0.4519 0.1781 0.5388 

SSC 0.8608 0.2694 0.5795 0.3749 0.7795 0.2267 0.3957 

RMS 0.3789 0.1754 0.5029 0.5318 0.3897 0.1256 0.3174 

WMP 0.3879 0.2646 0.0314 0.5376 0.9658 0.3119 0.7130 

LogD 0.3669 0.3872 0.5247 0.5423 0.8741 0.1818 0.3372 

ARC 0.6769 0.6523 0.7499 0.6355 0.5966 0.0510 0.0771 

Cep 0.4720 0.0391 0.1517 0.9427 0.3547 0.3141 0.8012 

fMD 0.2375 0.2440 0.2189 0.2580 0.2152 0.0159 0.0678 

 

(3) Recognition and classification of EMG signal 
The four kinds of EMG signal features were imported into 

three commonly used classifiers, namely LDA (linear 
discriminant analysis [40]), SVM, and NN (neural network), 
respectively, and the classification results obtained are 
shown in Table 3. As can be seen from Table 3, the LDA 
method can identify EMG movements, but the recognition 
accuracy is relatively low, indicating that EMG feature 
samples are linearly inseparable. The overall recognition 
effect of the SVM method is better than that of LDA, and 
the highest recognition rate reaches 95.29%. The 
recognition rate based on NN is above 90%, and the highest 
recognition rate is 97.01%. The overall effect is better than 
that of LDA and SVM. 

 

Table 3  Comparison of recognition and classification accuracy 

Recognition rate LDA (%) SVM (%) NN (%) 

Wrist introversion 88.29 91.24 92.45 

Wrist extroversion 89.54 89.67 91.77 

Fist clenching 86.59 91.32 92.49 

Hand opening 87.05 90.68 91.43 

Finger kneading 90.31 95.29 97.01 

Rest 89.13 90.59 93.62 
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4.1.2 EEG Signal Processing 

(1) EEG signal preprocessing 

Since the characteristics of the EEG signal are mainly 
reflected in the low-frequency band, 0~30Hz bandpass 
filtering was carried out on the original EEG signal. At the 
same time, DC component removal, filtering, artifact 

removal, baseline correction, interference removal, and 
other operations were carried out. According to the time 
sequence of the EEG experimental paradigm, the EEG data 
of C3 and C4 were segmented once every 1000ms, and a total 
of 10 groups of data were segmented. The results of EEG 
signals preprocessing are shown in Figure 8.

 

Figure 8  Results of preprocessing of C3 and C4 EEG signals
 

(2) Feature extraction of EEG signal 
Energy (second-order moment) and wavelet packet 

decomposition and reconstruction were used to extract the 
low-frequency average power difference between C3 and C4 
of left and right hand motor imagery EEG signals, which 
were used to distinguish the EEG characteristics of left and 
right hand motor imagery. The experimental data were 
segmented 10 times, 10 groups of left hand motor imagery 
and 10 groups of right hand motor imagery. That is, in C3/C4, 
the left hand and the right hand were 10 times each. The 
average power spectrum of the motor imagery of the left and 
right hands is shown in Figure 9 and Figure 10. As can be 
seen from the figure, there is a significant difference in 
average power between 0 and 1000ms. Therefore, an EEG 
signal within 0~1000ms is selected for wavelet packet 
feature extraction. 

 

Figure 9  Average power of C3 and C4 left hands 
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Figure 10  Average power of C3 and C4 right hands 

 

The average power of the EEG signal was decomposed 
by wavelet, and the low-frequency information in the fifth 
layer (0~15.625Hz) was reconstructed by wavelet 
coefficients. 

Wavelet coefficients were used to reconstruct the fifth 
layer reconstruction information of the difference between 
C3 and C4 average power spectra, and power scale features 
of low-frequency signals were extracted. Figure 11 and 
Figure 12 shows five groups of left hand motor imagery 
features and right hand motor imagery features of the fifth 
layer wavelet reconstruction. Compared with the subjects' 
left and right hand motor imagery, the five groups of 
features have certain differences, which can be used for the 
recognition and classification of left and right hand EEG 
features. 

 

Figure 11  Characteristics of left hand motor imagery 

 

Figure 12  Characteristics of right hand motor imagery 

 

(3) Recognition and classification of EEG signal 
The EEG signal features were imported into three 

commonly used recognition classifiers, namely LDA, NN, 
and SVM, respectively, and the classification results 
obtained are shown in Table 4. As can be seen from Table 4, 
the LDA method can identify EEG movements, but the 
recognition accuracy is relatively low. The overall 
recognition effect of the NN method is better than that of 
LDA, and the highest recognition rate reaches 85.53%. The 
recognition rate based on SVM is above 90%, and the 
highest recognition rate is 91.24%. The overall effect is 
better than that of LDA and NN. 

 

Table 4  Comparison of recognition and classification accuracy 

Recognition 
rate 

Left hand motor 
imagery 

Right hand motor 
imagery 

LDA (%) 78.51 77.34 

SVM (%) 85.53 84.27 

NN (%) 91.24 90.65 

 

4.2  Overall Experimental Results 

 

For the robotic arm control system based on the mixed 
brain-muscle signals proposed in this paper, the 
experimental verification was carried out on 10 subjects. 
After each subject was familiar with the instructions and 
preliminary training, 20 groups of experimental operations 
were carried out respectively, and a total of 200 times of data 
statistics were conducted. The experimental results are 
shown in Table 5, showing the total number of instructions, 
the number of wrong instructions, and the corresponding 
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accuracy rate of the 10 subjects in 7 task commands of wrist 
introversion, wrist extroversion, fist clenching, hand 
opening, finger kneading, left hand motor imagery and right 
hand motor imagery. As can be seen from Table 5, in the 
experimental data results of each subject, the number of 
wrong instructions of each subject is less than 3 (including 
3), and the accuracy of each instruction of other subjects is 

higher than 90% (including 90%) except the accuracy of 
hand opening instruction of S8 of the subject is less than 90% 
(the accuracy is 85%). In terms of the overall experimental 
data results, except the accuracy of the right hand motor 
imagery instruction is lower than 95% (the accuracy is 94%), 
the accuracy of all other instructions is higher than 95% 
(including 95%).

 

Table 5  Accuracy rate of robotic arm control instruction 

Subject  Wrist 
introversion 

Wrist 
extroversion 

Fist 
clenching 

Hand 
opening 

Finger 
kneading 

Left hand 
motor imagery 

Right hand 
motor imagery 

S1 

Total number of instructions 20 20 40 20 20 10 10 

Number of wrong instructions 1 1 2 1 1 0 1 

Accuracy rate（%） 95% 95% 95% 95% 95% 100% 90% 

S2 

Total number of instructions 20 20 40 20 20 10 10 

Number of wrong instructions 1 1 2 2 1 0 0 

Accuracy rate（%） 95% 95% 95% 90% 95% 100% 100% 

S3 

Total number of instructions 20 20 40 20 20 10 10 

Number of wrong instructions 0 2 2 1 1 1 0 

Accuracy rate（%） 100% 90% 95% 95% 95% 90% 100% 

S4 

Total number of instructions 20 20 40 20 20 10 10 

Number of wrong instructions 1 1 3 0 0 0 1 

Accuracy rate（%） 95% 95% 92.5% 100% 100% 100% 90% 

S5 

Total number of instructions 20 20 40 20 20 10 10 

Number of wrong instructions 1 1 0 1 1 0 0 

Accuracy rate（%） 95% 95% 100% 95% 95% 100% 100% 

S6 

Total number of instructions 20 20 40 20 20 10 10 

Number of wrong instructions 1 0 2 1 1 1 0 

Accuracy rate（%） 95% 100% 95% 95% 95% 90% 100% 

S7 

Total number of instructions 20 20 40 20 20 10 10 

Number of wrong instructions 0 0 1 1 0 0 1 

Accuracy rate（%） 100% 100% 97.5% 95% 100% 100% 90% 

S8 

Total number of instructions 20 20 40 20 20 10 10 

Number of wrong instructions 1 1 2 3 0 1 1 

Accuracy rate（%） 95% 95% 95% 85% 100% 90% 90% 

S9 

Total number of instructions 20 20 40 20 20 10 10 

Number of wrong instructions 0 1 1 0 1 0 1 

Accuracy rate（%） 100% 95% 97.5% 100% 95% 100% 90% 

S10 

Total number of instructions 20 20 40 20 20 10 10 

Number of wrong instructions 1 0 2 0 1 0 1 

Accuracy rate（%） 95% 100% 95% 100% 95% 100% 90% 

ALL 

Total number of instructions 200 200 400 200 200 100 100 

Number of wrong instructions 7 8 17 10 7 3 6 

Accuracy rate（%） 96.5% 96% 95.75% 95% 96.5% 97% 94% 

 

 

5  Conclusions 

 

In this paper, based on the idea of a hybrid BCI, a hybrid 

EEG and EMG signals control system for the robotic arm is 
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proposed, which combines unilateral arm and left and right 

hand motor imagery. To realize this system, the 

corresponding experimental paradigm of gesture and motor 

imagery is designed according to the task requirements of 

the robotic arm, the hand gesture is set as the motion 

position instruction of the robotic arm, and the left and right 

hand motor imagery is set as the end grasp instruction. To 

face the practical application, the EEG and EMG signals are 

processed by synchronous mode, and according to the 

characteristic of the EEG and EMG signals, different 

algorithm flow is adopted. To ensure the safety and 

reliability of the system, the kneading action of the finger 

kneading is set as the EEG mode switching instruction. The 

experimental results show that the average accuracy of 

robotic arm control command can reach 94%, and the 

subjects have no obvious fatigue phenomenon when 

performing the operation task. The proposed control system 

not only enriches the diversity of hybrid BCI but also 

provides a practical and theoretical basis for BCI technology 

in the field of the robotic arm. 
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Figures

Figure 1

Block diagram of the robotic arm control system with EEG and EMG mixed signals



Figure 2

EEG and EMG signals acquisition and experimental sequence diagram



Figure 3

EMG signal preprocessing process

Figure 4

Time window and incremental window

Figure 5

EMG signal preprocessing process



Figure 6

Brain-muscle mixed signals robotic arm control experiment



Figure 7

Preprocessing results of EMG signals of arm movements



Figure 8

Results of preprocessing of C3 and C4 EEG signals



Figure 9

Average power of C3 and C4 left hands



Figure 10

Average power of C3 and C4 right hands



Figure 11

Characteristics of left hand motor imagery



Figure 12

Characteristics of right hand motor imagery


