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A B S T R A C T   

Heart failure (HF) diagnosis, typically visually performed by serial electrocardiography, may be supported by 
machine-learning approaches. Repeated structuring & learning procedure (RS&LP) is a constructive algorithm 
able to automatically create artificial neural networks (ANN); it relies on three parameters, namely maximal 
number of hidden layers (MNL), initializations (MNI) and confirmations (MNC), arbitrarily set by the user. The 
aim of this study is to evaluate RS&LP robustness to varying values of parameters and to identify an optimized 
combination of parameter values for HF diagnosis. To this aim, the Leiden University Medical Center HF data
base was used. The database is constituted by 129 serial ECG pairs acquired in patients who experienced 
myocardial infarction; 48 patients developed HF at follow-up (cases), while 81 remained clinically stable 
(controls). Overall, 15 ANNs were created by considering 13 serial ECG features as inputs (extracted from each 
serial ECG pair), 2 classes as outputs (cases/controls), and varying values of MNL (1, 2, 3, 4 and 10), MNI (50, 
250, 500, 1000 and 1500) and MNC (2, 5, 10, 20 and 50). The area under the curve (AUC) of the receiver 
operating characteristic did not significantly vary with varying parameter values (P ≥ 0.09). The optimized 
combination of parameter values, identified as the one showing the highest AUC, was obtained for MNL = 3, 
MNI = 500 and MNC = 50 (AUC = 86 %; ANN structure: 3 hidden layers of 14, 14 and 13 neurons, respectively). 
Thus, RS&LP is robust, and the optimized ANN represents a potentially useful clinical tool for a reliable auto
matic HF diagnosis.   

1. Introduction 

Heart failure (HF) is a common and potentially fatal heart disease 
that currently affects about 2 % of the adult population, with peaks up to 
10 % in subjects over 65 years old; the risk of death at one year from the 
first diagnosis is about 35 % [1,2]. According to guidelines of the Eu
ropean Society of Cardiology, HF is a clinical syndrome characterized by 
breathlessness, ankle swelling and fatigue. These symptoms are usually 
associated with clinical evidence, such as elevated jugular venous 
pressure, pulmonary crackles, and peripheral edema. These symptoms 
and clinical evidences are caused by a structural and/or functional 
cardiac abnormality, resulting in a reduced cardiac output and/or 

elevated intracardiac pressures at rest or during stress [3]. This broad 
definition reflects the complexity of the disease that has about seventeen 
primary aetiologies. However, more than two-thirds of HF cases can be 
attributed to four underlying conditions: ischemic heart disease, chronic 
obstructive pulmonary disease, hypertensive heart disease and rheu
matic heart disease [4]. 

While the primary cause of HF may be extracardiac, presence of one 
or more underlying cardiac abnormalities is central for HF diagnosis. 
According to the current definition, HF is present when symptoms occur; 
however, some asymptomatic patients may present structural or func
tional cardiac abnormalities that are precursors of HF. Timely recogni
tion and treatment of these precursors may help to contrast HF natural 
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repeated structuring & learning procedure; Se, sensitivity; Sp, specificity; TCT, testing computational time; VCG, vectorcardiogram. 
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development [5] and lead to positive outcomes [3]. Presence of several 
HF precursors implies changes in the electrical properties of the heart 
and, thus, variations of the electrocardiogram (ECG) with respect to 
normal. The ECG is the recording of the electrical activity of the heart; 
by its nature, it is a pseudo-periodic signal consisting in the repetition of 
a pattern showing a sequence of typical waves, which are: the P wave, 
reflecting atrial depolarization; the QRS complex, reflecting ventricular 
depolarization and hiding atrial repolarization; and the T wave, 
reflecting ventricular repolarization. Thus, morphological and temporal 
ECG features represent physiological phenomena occurring within the 
heart and may indicate the presence of cardiac abnormalities. HF 
occurrence is unlikely in patients with a completely normal ECG; how
ever, most ECG abnormalities are not HF specific [3]. 

In this study we focused on the automatic early diagnosis of HF 
through serial ECG changes. Serial ECG changes consist in ECG differ
ences observed when comparing two ECGs, one newly and one previ
ously acquired from the same subject [6–8]. In daily clinical practice, 
serial electrocardiography is usually done by visual inspection. Never
theless, its complexity has recently suggested machine-learning ap
proaches [9–11]. Serial electrocardiographic analysis supported by the 
machine-learning algorithm called Repeated structuring & learning 
procedure (RS&LP) has provided important preliminary results in the 
detection of newly emerging or aggravating cardiac pathology [10,11], 
and represents an important example of how machine-learning ap
proaches could support advances in clinics and healthcare. In order to 
provide examples of possible RS&LP clinical applications, the procedure 
was also used to detect newly emerged HF [11]. Being proposed just as 
an example, the application relied on an arbitrary and unoptimized 
setting of parameters; optimization of the parameter setting, however, 
becomes necessary when proposing RS&LP as a useful tool for HF 
diagnosis in the clinical practice. 

Thus, the aim of the present study is to evaluate the robustness of the 
RS&LP to varying values of it’s a-priory arbitrarily parameters and to 
identify a best combination of parameters for automatic HF diagnosis. 

2. Related works 

Several works have previously presented machine learning ap
proaches for automatic HF detection [12]. Used clinical data are het
erogeneous and include electrocardiographic data, echocardiographic 
data, electronic health records data and data from other sources (e.g., 
post-mortem clinical analysis) [12]. Only few studies presented machine 
learning approaches for HF detection from ECG analysis [13–18]; pro
posed techniques include deep fully-connected neural networks [17], 
convolutional neural networks [13,19,20], long-short term memory 
[18], random forest classifiers [16] and support vector machine [14,15]. 
Most works considered directly the cardiac signals (ECG [13–16,19,20] 
or heart-rate series [18]) as input of the classifiers; only one study 
considered both demographic and electrocardiographic features [17]. 
Two studies [17,19] were performed on a huge amount of data 
(>50,000 patients); the others were performed on smaller datasets (less 
than 100 patients) selected from open access databases [13–16,18,20]. 
Some works aimed to discriminate HF patients from subjects showing 
normal sinus rhythm [13–18] and show their major limitation in not 
considering possible comorbidities, which represent clinical con
founders and, thus, may jeopardize HF diagnosis. Only two works 
[19,20] considered the presence of other pathologies such as diabetes 
mellitus, hypercholesterolemia, renal disease, hypertension, coronary 
artery disease and myocardial infarction. In one study [19] the other 
pathologies were considered as comorbidities that could affect both HF 
patients as well as patients constituting the control group. In another 
study [20] pathologies other than HF were affecting the patients 
constituting the control group only. 

3. Materials and methods 

3.1. Repeated structuring & learning procedure 

RS&LP is a recently presented constructive algorithm for automatic 
creation of a supervised and fully connected artificial neural network 
(ANN) [11]. In its general formulation, the procedure takes as input a set 
of data features (one input neuron for each feature), constructs the ANN 
according to the algorithm described below and classifies the data (one 
output neuron for each considered class, except for binary classifications 
for which only one output neuron is required). RS&LP creates the ANN 
by using a learning dataset composed of a training dataset and a vali
dation dataset. Class weights, each defined as the inverse of the corre
sponding class prevalence, are considered [21] to compensate for 
potential disproportions among distributions of cases over the output 
classes. Each neuron is characterized by a sigmoid activation function; 
weights and bias, ranging between − 1 and +1, are randomly initialized. 

ANN construction (Fig. 1) occurs on the basis of an iterative pro
cedure composed of three main phases, namely structuring phase, 
learning phase, and confirmation phase. The procedure starts from an 
original ANN composed of the input layer, one hidden layer constituted 
by one neuron, and the output layer. During the structuring phase, the 
original ANN is upgraded into several different candidate ANNs ob
tained by adding a neuron to an existing hidden layer or to a new hidden 
layer. Each candidate ANN must respect two structural rules: the num
ber of layers cannot exceed the “maximal number of hidden layers” 
(MNL, the numerical value of which is initially set by the user); and the 
number of neurons in a layer cannot be larger than the number of 
neurons in the previous layer. The learning phase consists of training 
and validation subphases, both including several epochs during which 
training and validation errors are computed. Training is performed using 
the scaled-conjugate-gradients algorithm [22], a training algorithm 
presenting reliable performance in terms of computational effort, clas
sification accuracy, even if applied to small datasets [23–25].Validation 
relies on the early stopping criterion to avoid overfitting [26]. When the 
learning phase starts, weights and biases of the neurons added during 
the structuring phase in each candidate ANN are initialized. Initializa
tion is acceptable only if it implies a decrement of the training error after 
only one epoch. Thus, if initialization of a new neuron is not immedi
ately acceptable, the neuron is re-initialized. The number of initializa
tions of a new neuron cannot exceed the “maximal number of 
initializations” (MNI, the numerical value of which is initially set by the 
user). All candidate ANNs with an acceptable initialization are learnt. 
During the confirmation phase, the validation errors of all learnt 
candidate ANNs are compared with the validation error of the original 
ANN. If the validation error of one or more candidate ANNs is less or 
equal to the validation error of the original ANN, the candidate ANN 
with the smallest validation error becomes the new original ANN; if the 
validation error of all candidate ANNs are larger than the validation 
error of the original ANN, the original ANN remains as such. Then, the 
procedure starts anew by using the updated original ANN. RS&LP ends 
when there are no acceptable candidate ANNs, when a candidate ANN 
reached the “maximum number of confirmations” (MNC; the numerical 
value of which is initially set by the user), or when there are no mis
classifications in the learning dataset. When one of the above-listed 
stopping criteria occurs, the original ANN is considered as the final 
ANN. The pseudocode ot the RS&LP is reported in Fig. 2; further details 
on the RS&LP can be found in [11]. 

To compensate for random initializations of neurons possibly leading 
to different final ANNs, RS&LP is run 100 times so that 100 final ANNs 
were obtained. Among them, the ANN with the largest area under the 
curve of the receiver operating characteristic on the learning dataset is 
considered to be the best ANN. For convenience, ANN structure is rep
resented in terms of [N1, N2,…,NL], where Ni is the number of neurons 
in the ith layer, with i = 1,2…,NL, with NL being the number of layers in 
the ANN and total number of neurons (NTOT). 
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3.2. Heart failure detection by the repeated structuring & learning 
procedure 

In this study, RS&LP was applied to serial electrocardiography for 
the detection of newly emerging HF. In this application the input set of 

data features consisted of 13 serial ECG features measured on the me
dian beat of the vectorcardiogram (VCG) that is the orthonormal rep
resentation of the standard 12-lead ECG [27]. Given their associations 
with electrophysiological phenomena [11,27], the following 13 serial 
ECG features were considered: QRS-duration difference (ms), QT- 

Fig. 1. Flowchart of the repeated structuring & learning procedure (RS&LP).  
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interval difference (ms), difference in maximal QRS-vector magnitude 
(µV), difference in maximal T-vector magnitude (µV), QRS-integral 
vector magnitude difference (mV⋅ms), T-integral vector magnitude dif
ference (mV⋅ms), QRS-complexity difference (%), T-wave complexity 
difference (%), magnitude of the ventricular-gradient difference vector 
(mV⋅ms), magnitude of the QRS-T spatial-angle difference (◦), heart-rate 
difference (bpm), magnitude of J-vector difference vector (µV) and T- 
wave symmetry difference (%). Number of neurons in the ANN input 
layer was 13 (as the number of input features); number of neurons in the 
ANN output layer was 1 (binary ouptut indicating presence or absence of 
HF). 

Suboptimized ANN for detection of newly emerged HF was con
structed, trained and tested on the HF database (HFDB) [11,28] that was 
retrospectively derived from the clinical ECG database of the Leiden 
University Medical Center (Leiden, The Netherlands). All retrospective 
evaluations reported here were undertaken in compliance with the 
ethical principles of Helsinki Declaration and approved by the Leiden 
University Medical Center Medical Ethics Committee. The HFDB con
tains 129 10-second 12-lead ECG pairs acquired in patients who had 
experienced a myocardial infarction. All patients were clinically stable 
at the moment of their baseline ECG recording, which was a routine ECG 
performed at least six months after the acute event. The 81 patients who 
remained clinically stable and did not develop HF during the follow-up 

were selected as control patients; their follow-up ECG was a routine ECG 
performed approximately-one year after the acute myocardial infarc
tion. The remaining 48 patients who developed HF during follow-up 
were selected as case patients; their follow-up ECG was a routine ECG 
performed at HF initial occurrence. 

All ECGs were processed by the custom-made LEADS software [29] 
that computes the VCG and measures, among others, all the ECG fea
tures needed for this study. Eventually, the 13 serial ECG features 
mentioned above were computed by subtracting baseline ECG feature 
values from the corresponding follow-up ECG feature values. No 
normalization was performed because not consistent with of what nor
mally done in clinics. 

The HFDB was equally divided into a learning dataset and a testing 
dataset. The learning dataset was used for ANN creation by RS&LP; the 
testing dataset was used to assess classification performance. The 
learning dataset was further divided into a training dataset (80 % of the 
learning dataset) and a validation dataset (20 % of the learning dataset). 
The prevalence of cases and controls was maintained in all datasets. The 
distribution of case patients and control patients over the datasets is 
reported in Table 1. 

3.3. Robustness analysis 

In previous examples of RS&LP applications [10,11,30] values of 
MNL, MNI and MNC were arbitrarly set at 3, 500 and 10, respectively. 
Here, numerical setting of these parameters was varied to evaluate 
clinical performance of each ANN in the testing dataset. Value of each 
parameter was varied while keeping the values of the other two con
stant. Specifically, the following three tests were performed:  

• Test 1 was performed to determine RS&LP robustness to varying 
value of MNL. Considered values of MNL were 1, 2, 3, 4 and 10, while 
values of MNI and MNC were kept constant at 500 and 10, 
respectively.  

• Test 2 was performed to determine RS&LP robustness to varying 
value of MNI. Considered values of MNI were 50, 250, 500, 1000 and 
1500, while values of MNL and MNC were kept constant at 3 and 10, 
respectively.  

• Test 3 was performed to determine RS&LP robustness to varying 
value of MNC. Considered values of MNC were 2, 5, 10, 20 and 50, 
while values of MNL and MNI were kept constant at 3 and 500, 
respectively. 

3.4. Statistical analysis 

For each test, the best ANN was characterized by computing the area 
under the curve (AUC) of the receiver operating characteristic (ROC) 
and the associated 95 % confidence intervals (CI) in the testing dataset. 
ROCs obtained with all combinations of parameter values were 
compared using the DeLong’s tests [31], setting a level of statistical 
significance (P) equal to 0.05. Finally, the operating point (OP), iden
tified as the ROC point in which sensitivity (Se – represented in the 
vertical axes of ROC) equals specificiy (Sp – represented in the hori
zontal axes of ROC), was used to calculate number of true positives (TP, 

Fig. 2. Pseudocode of the repeated structuring & learning procedure (RS&LP).  

Table 1 
Division of the HFDB, constituted by case patients and control patients, into 
learning and testing datasets, and further division of the learning dataset into 
training and validation datasets.   

Learning (50 %) Testing 
(50 %) 

Total 
(100 %) 

Training 
(80 %) 

Validation 
(20 %) 

Total 
(100 %) 

Case patients 18 6 24 24 48 
Control patients 34 7 41 40 81 
Total 52 13 65 64 129  
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number of patients affected by HF classified as cases), true negatives 
(TN, number of patients not affected by HF classified as controls), false 
positives (FP, number of patients not affected by HF classified as cases) 
and false negatives (FN, number of patients affected by HF classified as 
controls). According with these definitions, values of accuracy (Acc), Se 
(equal to the vertical coordinate of OP on the ROC) and Sp (equal to the 
horizontal coordinate of OP on the ROC) were computed as follow: 

Se =
TP

TP + FN
(1)  

Sp =
TN

TN + FP
(2)  

Acc =
TP + TN

TP + TN + FP + FN
(3) 

For each test, the numerical value of the analyzed parameter was 
selected considering those used to create the ANN having the highest 
AUC. The best paramenters configuration was finally identified by 
combining the selected values of MNL (from Test 1), MNI (from Test 2) 
and MNC (form Test 3). 

3.5. Computational efficency 

Computational efficiency of the RS&LP was evaluated in terms of 
computational time required to create the ANN over the learning dataset 
(LCT), and to classify data over the testing dataset (TCT). Processing was 
performed using MATLAB R2019b, running on an Intel(R) Core(TM) i7- 
2600 (RAM = 12 GB). 

4. Results 

Performance of ANNs obtained by performing the tests are reported 
in Table 2. Results of Test 1 indicate that, although the number of hidden 
layers increased with increasing MNL, it never became higher than 6, 
obtained for MNL equal to 10. NTOT also tended to increase with MNL, 
going from 26 (MNL = 1) to 63 (MNL = 10). The AUC values ranged 
from 77 % to 83 %, even though differences among the ROCs did not 
reach statistical significance (P > 0.05). ROCs relating to Test 1 are 
depicted in Fig. 3(a). The maximum value of AUC was 83 %, obtained for 
MNL = 3, thus representing the optimized MNL value in correspondence 
of which values of Acc, Se and Sp in OPSe=Sp were all 75 %. 

Results of Test 2 show that NTOT varied from 28 (MNI = 1500) to 50 
(MNI = 1000) without showing a clear trend. AUC values ranged from 
68 % to 83 %, even though differences among ROCs did not reach sta
tistical significance (P > 0.05). ROCs relating to Test 2 are depicted in 
Fig. 3(b). The maximum value of AUC was 83 %, obtained for MNI =

500, thus representing the optimized MNI value in correspondence of 
which values of Acc, Se and Sp in OPSe=Sp were all 75 %. 

Results relative to Test 3 indicate that NTOT increased from 3 (MNC 
= 2) to 41 (MNC = 50) with increasing MNC. AUC values were quite 
stable, ranging from 78 % to 86 % (P > 0.05). ROCs relative to Test 3 are 
depicted in Fig. 3(c). The maximum value of AUC was 86 %, obtained 
only for MNC = 50, thus representing the optimized MNC value in 
correspondence of which values of Acc, Se and Sp in OPSe=Sp were all 75 
%. 

Table 2 also reports LCT values associated to all tests and combina
tions of parameter values; LCT value ranged from 2 h:44 min:28 s (Test 2 
with MNL = 3, MNI = 50 and MNC = 10) to 212 h:44 min:11 s (Test 3 
with MNL = 3, MNI = 500 and MNC = 50). TCT was 9 ms in all cases. 

Considering the results of all tests, the best combination of parameter 
values is MNL = 3, MNI = 500 and MNC = 50. Thus, the ANN associated 
with this combination, having architecture equal to [14,13,13], AUC 
equal to 86 %, CI equal to 20 %, and Acc, Se and Sp all equal to 75 % (in 
OPSe=Sp), LCT equal to 212 h:44 min:11 s, and CTC equal to 9 ms 
(Table 2; Fig. 4) represents the best ANN for the automatic diagnosis of 
newly emerged HF. 

5. Discussion 

This study evaluated the robustness of the RS&LP to varying values 
of parameters and identified the best combination of MNL, MNI, and 
MNC values for the automatic diagnosis of newly emerged HF from se
rial electrocardiography. The simultaneous availability of the previously 
proposed RS&LP and of the here-identified best combination of 
parameter values represents the main contribution of this work since 
makes RS&LP a tool immediately usable in clinics for HF diagnosis. 
Indeed, RS&LP may be used to diagnose different pathologies; however, 
to perform reliably, it needs to be associated with an optimal combi
nation of parameter values specifically identified for that pathology. 

As known, clinical interpretability of automatic decision support 
systems is essential in healthcare. To ensure interpretability of the re
sults, our procedure for automatic HF diagnosis relies on intra-subject 
serial changes of ECG features and not on raw ECG data. Indeed, ac
cording to serial electrocardiography, absence of ECG changes indicates 
clinical stability of a patient, while occurrence of ECG changes may 
indicate emerging pathologies. By using the 13 serial ECG features, our 
machine-learning approach mimics and potentiates the decision pro
cedure normally adopted by physicians, who visually compare two serial 
ECG tracings in search of clinically significant differences. 

RS&LP robustness was evaluated by performing three tests during 
which one single parameter value was varied. Overall, thirteen different 
combinations of parameter values were considered. The obtained ANN 

Table 2 
Clinical performances of suboptimized artificial neural networks (ANNs) obtained by performing the three robustness tests.  

Test MNL MNI MNC Architecture AUC 
(%) 

CI 
(%) 

Acc 
(%) 

Se 
(%) 

Sp 
(%) 

LCT 
(hh:mm:ss) 

1 1 500 10 [26] 78 66–90 75 75 75 13:16:02 
2 500 10 [22,21] 80 68–92 72 71 73 16:28:12 
3 500 10 [12,12,8] 83* 72–94 75 75 75 18:04:30 
4 500 10 [15,15,10,10] 77 64–89 70 71 70 16:51:55 
10 500 10 [17,13,10,8,8,7] 77 64–89 67 67 68 22:43:46 

2 3 50 10 [15,12,8] 68 54–82 63 63 63 2:44:28 
3 250 10 [26,10,10] 79 66–91 67 67 68 8:27:13 
3 500 10 [12,12,8] 83* 72–94 75 75 75 18:04:30 
3 1000 10 [17,17,16] 80 69–92 72 71 73 32:57:32 
3 1500 10 [14,7,7] 79 67–91 70 71 70 58:05:07 

3 3 500 2 [1,1,1] 82 71–94 75 75 75 3:36:44 
3 500 5 [15,7,7] 85 74–95 75 75 75 6:30:07 
3 500 10 [12,12,8] 83 72–94 75 75 75 18:04:30 
3 500 20 [19,10,9] 78 66–91 70 71 70 39:17:36 
3 500 50 [14,14,13] 86*§ 76–96 75 75 75 212:44:11 

*suboptimized ANN with the highest AUC within a test; §optimized ANN. 
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was validated by using the train/test split validation procedure, guar
anteeing the realization of a unique tested decision support system. 

Results (Table 2) indicate that ANNs constructed by the RS&LP are 
more stable in terms of AUC and CI than in terms of structure. This is an 
expected and desirable finding; indeed, RS&LP was designed to auto
matically create an ANN by recursively alternating structuring and 
learning phases to optimize correctness of output classification, without 

considering a-priori architecture. The best parameter configuration is 
those having MNL, MNI and MNC equal to 3, 500 and 50, respectively. 
This combination of parameters may not be the optimal one, indeed it 
would be it in case of parameter independence. Nevertheless, it associ
ates with a high value of AUC (86 %) and thus guarantees a good clinical 
performance. Additionally, this optimized combination of parameter 
values was associated with the longest LCT (212 h, 44 min and 11 s), 

Fig. 3. Receiver operating characteristics (ROCs) obtained when performing Test 1 (panel a), Test 2 (panel b) and Test 3 (panel c), with a varying maximum number 
of hidden layers (MNL), a varying maximum number of initializations (MNI) and with a varying maximum number of confirmations (MNC), respectively. The 
operating points for which sensitivity equals specificity (OPSe=Sp) are indicated with ‘×’. 
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mostly due to the high values of the parameters, particularly of MNI. 
However, once created with the optimized combination of parameter 
values, the ANN performed testing classification fast (TCT = 9 ms) 
suggesting its possible use in clinical applications, even in real-time 
scenarios. 

The best ANN was identified based on AUC and not on Acc, Se, and 
Sp. Indeed, computation of the latter requires choice of an operating 
point on the ROC, choice that should be left to the clinician and could 
vary depending on the clinical condition, anamnesis, and HF risk class of 
the patient. As an example, we reported Acc, Se, and Sp value relative to 
the commonly used operating point for which Se equals Sp; this value 
was 75 % for the optimized ANN. 

In general, definition of the ANN architecture is critical, indepen
dently by the method applied to construct it. Indeed, use of too few 
neurons and/or hidden layers may lead to underfitting, whereas use of 
too many neurons and/or hidden layers may lead to overfitting [32]. 
Well defined rules for architecting ANNs have not been drawn up yet 
and definition of the appropriate number of neurons and layers still 
requires several trials and computations. RS&LP does not require an a 
priori definition of the architecture of the ANN to be created; rather, it 
adaptively defines it by continuously optimizing classification correct
ness. ANN growth is encouraged by trying different candidate ANNs 
(thus avoiding underfitting) and discouraged by imposing that candi
date ANNs must improve performance (thus avoiding overfitting). The 
RS&LP underlying hypothesis is that there may exist several ANN ar
chitectures that may lead to the best possible classification; the reached 
optimized architecture depends on random initializations. 

Several constrictive algorithms have been previously presented in 
the literature [33,34] but, to our knowledge, none for clinical or 
healthcare applications. The constructive nature of the RS&LP, that 
uniquely iteratively optimizes ANN architecture and its weights and 
biases, makes it particularly suitable to be applied to both relatively 
small databases, like the one used here or in our previously works 
[10,11], as well as to big data. To further avoid generalization problems 
due to the small size of the available dataset, in the present study the 

constructed ANN was also evaluated on the validation dataset where we 
applied the early-stopping criteria and selected suboptimized ANN as 
the one with the highest AUC among the 100 ANNs created with 
different random neuron initializations. Many clinical databases are 
limited in size and their statistical modelling is often rather conventional 
and miss ANN flexibility to handle non-linear interactions between 
features. Our present and previous applications of RS&LP to the same HF 
database [11] indicate that RS&LP performance (AUC = 86 %) is su
perior to that of logistic regression (AUC = 61 %) and of standard ANN 
method with a-priori fixed architecture (AUC = 83 %). When applied to 
databases of small size, the ANN architecture obtained with the RS&LP 
typically includes a low number of layers, but in case of big data ap
plications, the RS&LP has the potentiality to create more complex ANN 
architectures able to manage different types of clinical data. 

A qualitative comparison of the RS&LP performance against that of 
other machine learning approaches [13–20] aiming to detect HF by 
using cardiac signals is reported in Table 3. The studies differed in terms 
of used algorithm, presence of clinical confounders, samples size of 
analyzed populations and signals in input of the classifier. Many studies 
show very high performance; however, their clinical applicability could 
be limited due to lack of interpretability and explainability (cardiac 
signals [13–16,18–20] instead of features are used as input for the 
classifiers). The need of “Explainable Artificial Intelligence”[35] is a 
priority in clinical/ healthcare applications where machine learning 
approaches should not only perform automatic diagnosis of a pathology, 
but also explain why that classification was provided. Use of features (as 
done in the present study and in [17]) instead of signals as input of the 
classifier is often preferred in these cases. Indeed, if properly selected, 
the features have a physiological meaning that allows clinicians to 
interpret the results provided by the automatic analysis. Additionally, in 
real scenarios patients may be affected by comorbidities so that the 
capability to discriminate HF patients from subjects with normal sinus 
rhythm only [13–18] appears reductive. Anyway, considering the high 
versatility of ANN, future studies will aim to implement the RS&LP for 
the structuring and learning of convolutional and recurrent neural 

Fig. 4. Artificial neural network obtained with the optimized configuration of repeated structuring & learning procedure parameters for automatic diagnosis of 
newly emerged heart failure with [14,14,13] architecture and associated area under the curve (AUC) of 86%. 
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networks and test its performance in more complex clinical scenarios, 
always guaranteeing clinical interpretability. 

It is finally important to observe that, as previously said, here RS&LP 
was optimized to work on serial electrocardiography to mimic and 
potentiate the diagnostic procedure adopted by clinicians while 
ensuring interpretability. However, in some practical cases baseline ECG 
may not be available. In those cases, RS&LP could still be thought as a 
tool to discriminate HF occurrence, but with an architecture and a 
combination of parameter values that should be specific for that appli
cation. Determination of these architecture and combination of param
eter values is beyond the scope of this paper but will be matter of future 
studies. 

6. Conclusion 

Automatic diagnosis of newly emerged heart failure can occur 
through our optimized supervised fully connected artificial neural 
network created using the repeated structuring & learning procedure 
that can thus be proposed as a useful diagnostic tool for the clinical 
practice. 
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