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Abstract: 

A comprehensive analysis of medical images is important, as it assists in early screening and clinical treatment as well as 

subsequent rehabilitation. In general, the contour information can elaborately describe the shape and size of lesions in a 

medical image, which accurately reflects specific and valuable properties that facilitate the identification of abnormalities, 

so contour extraction is meaningful. However, the traditional method usually depends on the output of image segmentation, 

which causes blurred edges and loss of details. To address these issues, an effective attention-based network for contour 

extraction is proposed, where a model mixed with U-Net and an attention network is utilized to extract image features, and 

a multilayer perceptron (MLP) is employed to classify those features to obtain a clear contour. Compared with the existing 

methods, the experimental results on three datasets (Herlev, Drosophila, and ISIC-2017) show that the accuracy reaches 

approximately 93–98% by using the proposed network, and the number of parameters is 46.4% less than the deep active 

contour network (DACN). Such performances are impressive when considering accuracy and the number of parameters as 
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the key concerns. Therefore, this study reduces the model computation with almost no loss of accuracy, which can satisfy 

clinical requirements for medical image analysis.    
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1. Introduction 

With the development of imaging technology, large numbers of medical images are produced from various mechanisms, 

such as computed tomography (CT), X-rays, magnetic resonance imaging (MRI), and microscopy imaging [1]. 

Undoubtedly, a comprehensive analysis of medical images is important, as it assists in early screening and clinical treatment 

as well as subsequent rehabilitation [2]. When physicians and specialists observe an image with abnormalities, for instance, 

an MRI of the brain in patients with multiple sclerosis, they will search a large collection of MRIs and retrieve those cases 

with tomographic levels that contain abnormalities showing similar size, shape, and location [3]. This is a visual manner 

used to understand the diseases, so traditionally, physicians and specialists determine the conditions of patients through 

their own experiences in observing the size, shape, and location of abnormalities on the medical image [4]. This subjective 

solution is manual, which costs considerable time and effort. Hence, to reduce the heavy workload for visual inspection, 

an automatic algorithm is desired. Considering that the contour information can elaborately describe the shape and size of 

lesions in a medical image, which accurately reflects specific and valuable properties that facilitate the determination of 

abnormalities, the contour extraction of medical images is meaningful [5]. 

Typically, two methods have been applied to achieve contour extraction: the traditional image segmentation algorithm and 

the deep learning method. Traditional algorithms are usually highly interpretable because they are developed by modeling 

the mathematical processes underlying specific problems or conditions [6]. Therefore, the whole calculation procedure is 
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interpretable. For example, Li et al. [7] utilized a multithreshold optimization method to solve the problems of fuzzy 

features and nonconvergent thresholds in the image denoising of details during fine segmentation. In another work, Mathur 

et al. [8] offered an approach to improve the Sobel edge detector and evaluated it on the MRI image, as the Sobel operator 

has been extensively employed in the edge detection algorithm, where it creates an image emphasizing edges. This property 

helps in determining the location of a brain tumor in an MRI image.  

However, medical images have the characteristics of unclear lesion edges, uneven gray levels, and interfering objects, 

which can influence the performances of traditional algorithms [9]. In this regard, the deep learning method is good at 

extracting contours more precisely [10]. For instance, He et al. [11] proposed a mask region-convolutional neural network 

(R-CNN) based on a faster R-CNN, in which the region of interest (ROI)-align replaces the ROI-pooling to improve the 

segmentation accuracy. Zunair and Hamza [12] introduced a sharp U-Net architecture by designing connections between 

the encoder and decoder subnetworks through a depthwise convolution of the encoder feature maps with a sharpening 

spatial filter. Therefore, the gap issue between the encoder and decoder features is addressed, and the segmentation accuracy 

of edges is improved. To overcome the cluttered lines in traditional contour detection, Rampun et al. [13] presented a 

multilevel edge detection network named holistically nested edge detection (HED). But, it has a limitation in that it only 

focuses on the main component of the image, while the edge is not clear. Ding et al. [14] applied a generative adversarial 

network (GAN) for contour extraction, in which the contour of the target object is produced by the generator, and the 

authenticity is determined by a discriminator that obtains the contour information. Nonetheless, this approach lacks spatial 

consistency, resulting in the contour becoming incoherent and broken. To this end, Deng et al. [15] proposed a contour 

enhancement module to make the network efficiently learn the shape information.  

In addition, selecting a suitable contour representation method is vital, as different contour representations have an 

influence on computational complexity and the results [16]. In this regard, Huang et al. [17] employed a snake model for 

contour extraction. It is an active contour representation method that deploys a deformable parametric curve to define an 
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energy function that weighs the internal and external forces. When the energy is minimal, the curve will fit the contour of 

objects and be smooth, i.e., the active contour converges to the edge of the target. Nevertheless, it requires an initial contour 

line to start the iteration, meaning that it is sensitive to the initial profile setting. Then, Soora et al. [18] modified the active 

contour model to be differentiable and combined it with a deep neural network. Meanwhile, a new loss function 

incorporating external forces and regional information was used, which enhanced the segmentation robustness. 

Inspired by previous studies, it is necessary to solve blurred lesion edges and neglected lesion details such that the accuracy 

of contour extraction can be further enhanced. To this aim, an attention-based network for contour extraction of medical 

images is proposed in this paper. In particular, the main contributions are summarized below: 

(1) An attention-based network that combines U-Net and a convolutional block attention module (CBAM) is applied to 

address edge blurring and interference. This network combines the feature extraction capability of U-Net with the attention 

capability of CBAM, so it facilitates removing interferences and improving accuracy. An experiment on the Drosophila 

dataset shows that the sensitivity is enhanced by 6.3% compared to U-Net only. 

(2) A multilayer perceptron (MLP) is adopted to define an implicit function, which implies the probability that the current 

position is far from the target. It assists in refining the edge of the upstream output feature map to enhance accuracy. The 

experiment on the Drosophila dataset reveals that the accuracy is improved by 0.3% compared to U-Net only. 

(3) During the process of extracting the feature map as a contour, the manual setting of the threshold has an influence on 

the result. To avoid manual setting, a one-hot coding method is considered, which can be integrated into the neural network 

and compared to the adaptive setting of the threshold. 

(4) The marching squares algorithm is good at extracting the contour, but the output points are not related. Hence, the 

union-find method and single-linked list to connect all points into a curve are exploited to recover these chain relations. 

The remainder of this paper is organized as follows: Section 2 reviews the related works concerning contour extraction. 

Section 3 presents the proposed network through three subsections: feature extraction, MLP, and contour extraction. Section 
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4 analyzes the performance evaluation and assesses the results from the experiments using three datasets (Herlev, 

Drosophila, and ISIC-2017). Finally, Section 5 describes the conclusion of this paper. 

 

2. Related Works  

Typically, a convolutional neural network (CNN) becomes difficult to train when it is deepened, as the deeper framework 

usually causes the gradient to disappear. To this end, He et al. [19] used ResNet to solve this issue. ResNet is based on 

residual blocks that deploy connections to skip several layers in a network. When network degradation appears, it will 

manifest as transformation rather than direct gradient disappearance. This framework is flexible and can be further extended 

by different numbers of layers [20]. Moreover, the encoder and decoder of ResNet can be embedded in other networks, 

such as U-Net, so it is appropriate for improving the object recognition performance in medical images [21].    

U-Net is a pixel-based approach that has been extensively employed in medical image segmentation [22]. It has a U-shaped 

symmetric structure that consists of a feature extraction module and a feature fusion module. The feature extraction module 

adopts eight convolutions and downsampling on the input image to obtain the features. On the other hand, the feature 

fusion module is a reverse operation that aims to recover the image from the features. To achieve this, two convolutions 

and upsampling are needed, and then this procedure is repeated four times such that the output feature map obtained by the 

U-Net is the same as the input resolution. In addition, to reduce the loss of features due to downsampling, U-Net utilizes 

skip connections in each upsampling layer to fuse the corresponding downsampling feature maps, so the segmentation 

accuracy can be improved as the network gradually converges to the target region [23]. Although U-Net is available for 

image segmentation with a clear boundary, it exhibits the same resolutions on the input and output feature maps. Hence, 

the traditional U-Net is unsuitable for solving the interference problem in medical images [24]. In this regard, the 

combination of U-Net and attention modules is more appropriate, such as the channel spatial sequence attention module 

(CSSAM) proposed by Song et al. [25]. It is based on U-Net and an embedded CBAM in skip connections to achieve a 
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higher-precision segmentation of welding engineering drawing contours. CBAM is a block attention-based model that 

combines spatial and channel domains [26]. In the spatial domain, two feature maps are acquired by compressing the 

channels with maximum pooling and average pooling and then performing a convolution to obtain the result. This 

procedure is similar to a spatial transformer network (STN) [27]. Simultaneously, in the channel domain, the attention 

function is implemented by squeezing and excitation, such as the squeeze-and-excitation network (SENET) [28]. As found, 

CBAM considers both spatial and channel attention and possesses a symmetry-like structure. Thus, the input and output 

dimensions remain constant. Such effects are beneficial to embed into any module to solve the interference problem in a 

medical image. However, the attention boundary using CBAM is usually blurred, so directly applying it in contour 

extraction is improper [29]. To this end, Wang et al. [30] proposed the VGG-style base network (VSBN) as the backbone 

and embedded the CBAM module after each convolution block. Its novelties include the utilization of salt-and-pepper 

noise in data argumentation and good performance in the diagnosis of coronavirus disease 2019 (COVID-19). Similarly, 

Zhang et al. [31] designed an attention network based on CBAM and fine-tuned it to find COVID-19 relevant regions 

accurately. This framework can be interpreted by gradient-weighted class activation mapping (Grad-CAM), and 18 

approaches for data augmentation were employed to avoid overfitting.       

In addition, the marching squares algorithm is a graphics approach that extracts contours from the image [32]. If the input 

is a binary image, this algorithm will include 16 cases. Then, these cases are stored in a preestablished look-up table to 

enhance the efficiency of producing the edges from the point array. Based on this step, by performing the operations for 

each pixel, all point and edge sets can be acquired and used to extract contours from the image. If the input is a gray image, 

the algorithm interpolates between adjacent points to calculate the exact contour position. Similar to the marching cubes, 

the marching squares algorithm generates contour lines based on values and processes each pixel independently. Hence, 

when the input volume is enormous, it can be implemented in parallel to accelerate the processing [33].        

Furthermore, the MLP simulates the operation of neurons by setting multiple layers and employing a full-connection 
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framework. Generally, it has fewer parameters, and the output layer is one or more neurons that can classify the features. 

Consequently, the MLP can be regarded as a fine-tuning method in the network [34]. Saito et al. [35] designed a PIFu 

network for a three-dimensional image reconstruction of the human body, where the CNN obtains a heatmap of the main 

subject, the MLP represents the isometric surface, and the marching cubes algorithm finds the boundary lines and constructs 

the model. Recently, several studies combined U-Net and the MLP to develop a low-complexity and low-parameter 

framework. For instance, Valanarasu and Patel [36] adopted UNeXt, a U-Net-like framework, and embedded a tokenized 

MLP block for medical image segmentation. In another work, Tu et al. [37] proposed a MAXIM architecture for the image 

processing task, in which the encoder and decoder are designed according to the U-Net, and a multiaxis gated MLP serves 

as an efficient and flexible general-purpose vision backbone. In [38], TransClaw U-Net was developed by Yao et al., in 

which the encoder adopted a similar approach to the transformers and embedded an MLP for medical image segmentation. 

In addition, Peng et al. [39] utilized the combination of U-Net and an MLP to solve the temperature field reconstruction, 

which demonstrated the generalization performance of the model.          

This paper develops a segmentation network for two-dimensional medical images, which improves the efficiency of 

training and prediction by transforming the task of contour extraction into a binary classification issue. Specifically, the 

novelties include an improved U-Net framework that reduces the feature loss caused by the downsampling step. Then, 

combined with the attention module, the lack of global and local information in the U-Net network is solved, which 

enhances the segmentation accuracy and enables faster convergence accordingly. In addition, to avoid the hyperparameter 

setting in the contour extraction and reduce human interference, the foreground and background prediction method is 

applied, and the segmentation results are extracted as the contours through the level-set algorithm, which mitigates the 

iterative process of the snake model. Finally, to demonstrate the performance effectiveness of the proposed network, 

evaluations through three datasets are performed based on various metrics, and comparisons with different approaches are 

also provided.      
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3. Methodology 

The proposed attention-based network is depicted in Fig. 1, which includes three parts: feature extraction, the MLP, and 

contour extraction. The input is a red–green–blue (RGB) medical image. Then, feature extraction is achieved by an 

improved U-Net, where one is the encoding network with downsampling and the other is the decoding network with 

upsampling. Compared to the traditional U-Net, this variant deploys the attention module before each upsampling layer. 

The subsequent ablation experiments demonstrate that the attention module effectively removes the interference 

information from the images. Here, the output feature map has a C-dimensional representation for each pixel, which 

describes the global context information [25]. In addition, a combination of U-Net and CBAM is available to fuse local 

and global context information, which helps to produce precise segmentation accuracy [40]. However, the downsampling 

process of U-Net loses considerable feature information, and the edge details are ignored, so it is necessary to involve the 

MLP on each pixel of the feature map. The MLP performs a binary classification task and acquires two-dimensional 

information representing the probabilities of the target and nontarget. Therefore, a binary image is obtained by comparing 

these probabilities, and this mechanism can simplify the manual setting of thresholds. Finally, the marching squares 

algorithm is applied to extract the contour of the binary image and chain all points into a curve. Consequently, contour 

extraction of the image is accomplished. The following subsections describe the above stages in detail.  

 

Fig. 1. Contour extraction of medical images using the proposed attention-based network. 
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3.1 Feature extraction 

The feature extraction contains encoding and decoding. The feature encoding utilizes the pretrained ResNet18 model [19], 

which reduces the losses from the U-Net downsampling process through skip connections, so the network converges. The 

feature decoding is similar to the feature decoding of U-Net, while the novelty is that CBAM is embedded before each 

upsampling layer. It is helpful to solve the grayscale unevenness presented in the medical image and reduce unwanted holes 

in the output. As mentioned, CBAM is a network embedded with an attention mechanism that includes channel attention 

and spatial attention [26]. Mathematically, the channel attention is expressed as (1) and (2):       

𝑓𝑎(𝑥) = 𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑥)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑥)) (1) 

𝑀𝑐(𝐹) = 𝐹 ∗ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑓𝑎(𝐹)) (2) 

where Mc(F) denotes the channel attention generated by the average pooling and maximum pooling. The variable F refers 

to the output of the upsampling module. The two MLPs in (1) are shared MLPs, and the same weights are employed in 

these MLPs. 

The spatial attention 𝑀𝑠(𝐹) is denoted as (3) and (4), where A⊕B refers to the concatenations of A and B by channels: 

𝑓𝑐(𝑥) = 𝐶𝑜𝑛𝑣(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑥) ⊕ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑥)) (3) 

𝑀𝑠(𝐹) = 𝐹 ∗ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑓𝑐(𝐹)) (4) 

Now, the CBAM is obtained by combining channel attention and spatial attention, as presented in (5):  

𝑀(𝐹) = 𝑀𝑠(𝑀𝑐(𝐺(𝐹))) + 𝐹 (5) 

where 

𝐺(𝐹) = 𝐶𝑜𝑛𝑣2(𝐶𝑜𝑛𝑣1(𝐹)) (6) 

CBAM first employs two convolutions to the input to obtain G(F), and then performs channel attention and spatial attention, 

which aim to compensate for the lack of position perception using U-Net. In this regard, the fusion of CBAM and U-Net 

effectively senses the contour location and accurately extracts the contour. It also assists in removing the interference near 

the lesion to improve the segmentation performance. After multiple convolutions and downsampling, the low-level feature 

details that are valuable for recovering the original image can be achieved. Nonetheless, the feature details include both 
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target lesions and noise. Hence, the attention module is employed to reduce the impact of noise such that the contour 

extraction accuracy can be enhanced. Undoubtedly, a more accurate feature map facilitates the decision, such as the MLP, 

which can determine the lesion location and shape through this information. Consequently, after downsampling and 

upsampling, the feature descriptions fuse global and local information to provide the model with a larger field of perception.    

 

3.2 The multilayer perceptron (MLP)  

The proposed network adopts the MLP to classify the extracted features. A preliminary test reveals that to correctly find 

the distinctions between lesions and interferences, the all features method is more suitable than the selected features method, 

as the selected features method is not good at converging correctly. Based on that, the MLP is embedded in each feature 

description, where each feature contains a C-dimensional vector that describes the global information of the pixel. Assume 

that the feature map obtained is UW*H*C, where C denotes the number of feature descriptions (from a preliminary test, 

to provide satisfying results, C = 512). Then, the algorithm for generating a binary map is as follows: 

Algorithm 1. MLP fine-tuning process 

Input: UW*H*C 

Output: MW*H 

1: initialize: Set MW*H 

2: for x = 1, 2, …, W do 

3:    for y = 1, 2, …, H do 

4:       block1*1*2←MLP(U(x, y)) 

5:       if block(1, 1, 0) > block(1, 1, 1) then 

6:          M(x, y)←1 

7:       else 

8:          M(x, y)←0 

9:       end if 

10:    end for 

11: end for 
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As illustrated in Fig. 2, the MLP includes three hidden layers with 512, 256, and 128 elements. It can refine the edge and 

clearly distinguish the target lesion from the background. Then, the task is a binary classification issue, so the output is two 

values that represent the probabilities of foreground and background, indicating how far the current location away from 

the target is. Finally, with the help of the softmax activation function, the two heatmaps are obtained simultaneously. Thus, 

comparing the probabilities of foreground and background, a binary map is acquired. If the foreground probability is larger 

than the background probability, this pixel will be considered an internal region of the lesion.  

 

Fig. 2. The MLP in the proposed network. 

Overall, there are two reasons for the above operations. First, compared with the previous image segmentation algorithm, 

the probability map usually ignores much information. Thus, the probability calculation is performed on the foreground 

and background, which helps to enhance the accuracy. Second, compared with the previous contour extraction algorithm, 

the probabilistic map has not yet accurately distinguished the border and generally requires a manual threshold setting to 

obtain a binary image. Nevertheless, this method is subjective, and the exact threshold depends on the empirical value. 

Hence, the operations applied can avoid setting the hyperparameter and solve the need for a manual threshold setting.  

 

3.3 Contour extraction 
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After acquiring a binary map, the marching squares algorithm is employed, as it is appropriate for two-dimensional contour 

extraction. This algorithm constructs edges based on the adjacent values around the pixels, and linear interpolation is 

performed to yield a smooth curve from an input binary map. When determining a threshold value, the algorithm iterates 

all pixels, and by comparing the current pixel to its three adjacent pixels, 16 cases are provided. Then, these cases can be 

simplified by rotating and mirroring into six, as depicted in Fig. 3. As a result, the number of cases is reduced. In addition, 

a template that describes the edges constructed is used, and a 4-bit hash code is obtained when comparing them in a certain 

direction. Finally, the edges are acquired based on the template, and this operation can be parallel, which decreases time 

consumption and reduces the computational cost accordingly.        

 

Fig. 3. The six basic cases from the marching squares algorithm. 

At this point, each line is separate, as the output points are not related, but certain relations should exist in the two-

dimensional space. Hence, it is meaningful to recover the relations of each line. To this aim, the union-find algorithm and 

a single-linked list are adopted to decide the chain relations. First, for fetching the vertices in the chain, a single-linked list 

is exploited to store the vertices index of the chain in reverse order. Subsequently, the path is output by iterating these 

chains in reverse order, so the contour having the directed lines can be extracted. Finally, to set a direction and chain root 

point for merging the points along this direction, a directional acyclic curve is needed. Therefore, the extractions of simple 

lines containing the rings are achieved by such extensions, recovering the chain relations correspondingly. 
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Fig. 4. The four basic cases when connecting two points in a map. 

As an illustration, the green dots shown in Fig. 4 represent two vertices (x and y) that are assumed to be connected, and 

seven cases of connections exist, where six of them can be simplified into four. When both x and y are chain roots and one 

of the chains has only one vertex, as drawn in (a) and (b) of Fig. 4, a point that is in a single point chain to another that is 

in a long chain (in red arrow) can be connected. If x and y are both chain roots and there is only one vertex, the two points 

can be connected directly. In addition, when one of x and y is the root of the chain and both points are in a long chain with 

the same direction, the two points in this direction can be connected, as displayed in (c) and (d) of Fig. 4. When both x and 

y are not the chain roots and their directions are opposite, as presented in (a) of Fig. 5, it is necessary to invert the short 

chain to produce the case in (d) of Fig. 4 and then solve the connection problem in the same way. Finally, when x and y are 

both chain roots and the directions are opposite, as depicted in (b) of Fig. 5, the short chain can be reversed to acquire the 

case in (c) of Fig. 4. Therefore, all cases of chain connections are considered, and a connected curve is generated after this 

step.         

 

Fig. 5. Two extra cases can be converted into one of the basic cases. 
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4. Experiments and Results  

4.1 Datasets 

To thoroughly evaluate the proposed network, three public datasets are assessed in this paper: Drosophila [41], Herlev [42], 

and ISIC-2017 [43]. The Drosophila dataset contains 399 training images and 100 testing images, each with the 

corresponding mask image. In addition, the ROIs of Drosophila embryos are annotated, and other similar cells are located 

within the field of view, which can be regarded as interferences. Hence, the aim is to identify the ROIs and extract the 

contours using the proposed network. The Herlev dataset includes 917 cervical cell images that are categorized into seven 

classes. The ROIs are labeled, but due to the complex and diverse shapes of the cervical cells, the image edge contrast is 

mostly weak. Thus, this challenge helps to assess the segmentation accuracy using the proposed network. Finally, the ISIC-

2017 dataset comprises a large number of dermoscopic images (2000 training images and 600 test images), and each has a 

corresponding label. In particular, this dataset contains various types of melanomas and moles, along with interferences 

such as hairs and lights. Thus, the generalization performance of the proposed network can be validated. Furthermore, the 

three datasets vary in image size, so they are scaled to 256 × 256 in the preprocessing stage. Meanwhile, to ensure the 

robustness of the model, random horizontal and vertical flips with brightness and contrast adjustments (set to ±0.4 in the 

experiments) are performed.      

Regarding the experimental conditions, Python is employed, the optimizer is Adam, the initial learning rate is 0.001, the 

learning rate is adjusted by StepLR, and the encoding of the network is based on a pretrained ResNet18 model. Due to the 

different scales of the datasets, the training strategy is varied for each one to avoid overfitting. In addition, the following 

setting values are applied, as they helpfully enhance the accuracy: for the Drosophila dataset, the learning rate is 0.9 times 

the original rate per 6 epochs; for the Herlev dataset, the learning rate is modified to 0.9 times the original rate per 4 epochs; 

and for the ISIC2017 dataset, the learning rate changes to 0.8 times the original rate per 3 epochs. The network is trained 

on a single NVIDIA GeForce RTX 2080 and Ubuntu, and the batch size is 6.      
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4.2 Evaluation Metrics  

In the experiments, several typical metrics, such as the dice similarity coefficient (DSC), precision, sensitivity, accuracy, 

and Hausdorff distance, are obtained. Note that the predicted mask generated by the proposed network is Pred, and the 

ground truth mask from the dataset is GT. The calculation of each metric is explained below. 

DSC reveals the similarity between the two sets of data. Assume that |X| represents the area of Subject X, and |X ∩ Y| is 

the area of the intersection of subjects X and Y. Then, the definition of DSC is (7):   

𝐷𝑆𝐶 =
|𝑃𝑟𝑒𝑑 ∩ 𝐺𝑇|

|𝑃𝑟𝑒𝑑| + |𝐺𝑇|
× 2 (7) 

Precision indicates the correct percentage of the content predicted by the algorithm. Its calculation is (8): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑃𝑟𝑒𝑑 ∩ 𝐺𝑇|

|𝑃𝑟𝑒𝑑|
 (8) 

Sensitivity, also known as recall, refers to the percentage of correct regions determined by the algorithm. It demonstrates 

the ability of the classifier to discriminate between positive samples, as calculated by (9): 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
|𝑃𝑟𝑒𝑑 ∩ 𝐺𝑇|

|𝐺𝑇|
 (9) 

Accuracy describes the percentage of all samples that are correctly classified. It is flawed in the case of uneven samples, 

so it is mostly applied in combination with other metrics. The calculation is expressed by (10):      

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝑈 − 𝑃𝑟𝑒𝑑 ∪ 𝐺𝑇 + 𝑃𝑟𝑒𝑑 ∩ 𝐺𝑇|

|𝑈|
 (10)  

where U is the area of the whole image obtained by multiplying the width and height. 

Moreover, denote the contour extracted from the prediction map as PredC and the contour of the ground truth as GTC. 

Both are point sets acquired from the marching squares, without containing the duplicated points. The Hausdorff distance 

is adopted to measure the distance between the two point sets. For each point, the distance between it and the closest point 

set is acquired, and then the maximum distance is utilized as Hausdorff distance h by (11):  

ℎ(𝑃𝑟𝑒𝑑𝐶, 𝐺𝑇𝐶) = 𝑚𝑎𝑥
𝑎∈𝑃𝑟𝑒𝑑𝐶

 { 𝑚𝑖𝑛
𝑏∈𝐺𝑇𝐶

 {𝑑(𝑎, 𝑏)}} (11)  

where d(a, b) refers to the distance between points a and b. 
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4.3 Results and Discussion 

First, the experimental results are compared with the U-Net [22], deep active contour network (DACN) [44], and several 

state-of-the-art approaches [45-47]. On the one hand, U-Net has a low number of parameters and computation costs, so it 

is suitable for a lightweight framework. However, it lacks an attention mechanism and is inappropriate for processing 

images with interference. Hence, the traditional U-Net model is listed as one of the comparison methods to validate the 

improvement employing the proposed network. On the other hand, to perform a fair comparison, methods using 

approximate frameworks and with similar experimental conditions are considered. In this regard, DACN is a framework 

that has achieved good results in medical image contour extraction in recent years, as it utilizes a differential active contour 

model to enhance accuracy. Thus, it is chosen in the comparative study. Furthermore, ASCNet [45], Deeplab V3 [46], and 

FocusNetAlpha [47] are selected, as they are appropriate for comparisons.    

 

Fig. 6. The contour extraction results from different cases (Drosophila and Herlev): (a) source; (b) ground truth; (c) U-Net; 

(d) DACN; (e) proposed network. 
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For the results from Drosophila and Herlev, the proposed network is trained on Drosophila with 103 epochs and on Herlev 

with 120 epochs. Then, the contour extraction results from different cases are depicted in Fig. 6, and the details of the 

evaluation metrics are summarized in Tables 1 and 2, where the best metric is shown in bold. On the one hand, the results 

of the metrics reveal that the network is more impressive than U-Net and DACN because it yields a higher DSC, precision, 

sensitivity, and accuracy and a lower Hausdorff distance, meaning that the performances are improved. On the other hand, 

in Fig. 6 (e), more clear contours are observed visually than in Fig. 6 (c) and (d), and their shapes are more similar to the 

source and ground truth in Fig. 6 (a) and (b). As a result, from both a quantitative analysis and visual check, the proposed 

network demonstrates that its contour extraction can be more precise than U-Net and DACN.              

Table 1. Quantitative analysis of different methods on the Drosophila dataset. 

Model Dice Precision Sensitive Accuracy Hausdorff distance 

U-Net [22] 92.60% 94.31% 91.43% 94.56% 28.19 

DACN [44] 96.77% 97.79% 95.83% 97.53% 17.84 

Proposed network 97.76%↑ 98.39%↑ 97.20%↑ 98.24%↑ 7.97↓ 

Table 2. Quantitative analysis of different methods on the Herlev dataset. 

Model Dice Precision Sensitive Accuracy Hausdorff distance 

U-Net [22] 90.42% 90.53% 93.08% 95.88% 36.49 

DACN [44] 94.54% 94.74% 95.08% 97.63% 15.58 

ASCNet [45] 91.50% 91.00% 93.80% -- -- 

Deeplab V3 [46] 91.30% 91.70% 92.60% -- -- 

Proposed network 95.15%↑ 95.78%↑ 95.14%↑ 97.96%↑ 13.08↓ 

In addition, the ISIC-2017 dataset provides the imaging of damaged skin under a microscope, and the skin tissues in various 

locations show larger variations. It includes numerous interferences, such as hairs and lights, and is more complex, so the 
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results exhibit lower performances than the above two datasets, as presented in Table 3. Here, several metrics are satisfying, 

except for the sensitivity and Hausdorff distance. The reason may be due to interferences that are not easy to identify, so 

the lesion areas are not obvious, which could lead to inference failure or the edges inaccurately surrounding the lesion 

areas.   

Table 3. Quantitative analysis of different methods on the ISIC-2017 dataset. 

Model DSC Precision Sensitivity Accuracy Hausdorff distance 

U-Net [22] 78.26% 87.66% 76.83% 91.35% 39.17 

DACN [44] 84.62% 90.76% 84.32% 93.19% 24.46 

FocusNetAlpha [47] 84.04% 80.02% 82.22% 93.49% -- 

Proposed network 84.71%↑ 93.79%↑ 81.60% 93.48% 26.89 

Next, Table 4 shows the complexity comparisons between DACN and the proposed network by considering the number of 

parameters (Params) and floating point operations (FLOPs). The results are calculated automatically using the ptflops 

library (a python module), and the input images are 256 × 256 and C is 256. As seen, the proposed network is simpler to 

implement, as it involves 46.4% fewer Params than DACN. In addition, it is easily trained and benefits acceleration during 

the convergence process. Therefore, it can be said that the network achieves higher efficiency with fewer computational 

resources and less complexity.      

Table 4. Comparisons of complexity between DACN and the proposed network. 

Model Params (M) FLOPs (GMac) 

DACN [44] 48.90 704.90 

Proposed network 26.20↓ 66.10↓ 

Subsequently, to validate the contributions of different components used in the backbone of the network, ablation 

experiments regarding the attention module and the MLP are conducted, as displayed in Fig. 7 and Table 5. In Table 5, the 
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accuracy of the attention module improves by 0.17–0.23%, and the accuracy of the fine-tuning with the MLP is enhanced 

by 0.02–0.29%. Furthermore, as seen in Fig. 7, the absence of either attention or MLP could cause several pieces to be 

improperly determined, so the accuracies are decreased correspondingly. For instance, as highlighted in the red square, 

without the attention module, the bottom subfigure in Fig. 7 (c) yields an error, while the same case in Fig. 7 (e) that uses 

the proposed network can avoid it. Thus, the attention module and the MLP play vital roles in making the size and shape 

of the results similar to the ground truth.  

 

Fig. 7. Ablation experiment results (Drosophila and Herlev): (a) source; (b) ground truth; (c) w/o attention; (d) w/o MLP; 

(e) proposed network. 

Table 5. The accuracies of ablation experiments based on the Herlev and Drosophila datasets. 

Dataset w/o Attention w/o MLP Proposed network 

Herlev  97.73% 97.94% 97.96%↑ 

Drosophila  98.07% 97.95% 98.24%↑ 

Finally, as a flexible solution, the experimental results imply that the network with only U-Net and an MLP can satisfy 
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most medical cases, as the MLP fixes the errors of decisions and conducts a similar behavior as attention. However, the 

MLP is not perfect enough to overcome the interferences in several specific medical images with hairs and lights. Therefore, 

when considering accuracy as a vital concern in the segmentation task, it is preferred to apply a fusion of more appropriate 

modules in the network backbone, such as the proposed network that combines the advantages of U-Net, MLP, and CBAM. 

In addition, the proposed network only adds the attention module before the upsampling process, as adding it to the 

downsampling suppresses much valuable feature information. Based on the above considerations, as an overview, a 

comparison chart to spot the differences between the proposed network and the other methods is illustrated in Fig. 8, where 

the variations are highlighted in red squares.    

 

Fig. 8. A comparison chart of different cases (Drosophila and Herlev): (a) source; (b) ground truth; (c) proposed network; 

(d) DACN; (e) U-Net. 

 

5. Conclusion  

This paper proposes an attention-based network for medical image contour extraction, and the main novelties are that this 
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network combines the advantages of U-Net and CBAM, which are helpful to find the lesion position and shape information 

in a medical image. In addition, an MLP is applied to refine the edges and enhance the boundaries of internal and external 

regions of the lesion, so a high contour extraction accuracy is acquired. Furthermore, five commonly used evaluation 

metrics are detailed and analyzed. Compared with the existing approaches, on the one hand, the inference time of the 

network is reduced, and the model complexity is decreased, while the accuracy is almost unchanged. On the other hand, 

the experiments on the Drosophila and Herlev datasets demonstrate that the network contributes impressive performances 

in contour extraction. Consequently, the proposed network reduces the number of parameters and computation costs with 

almost no loss of accuracy, which satisfies the clinical requirement for medical image analysis. In the future, this framework 

will be improved by a transformer with a superior attention module that further enhances the capabilities to capture medical 

image details.     
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