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Abstract

This paper introduces the Efficient Decoupled Masked Autoencoder (EDMAE), a novel self-supervised method for
recognizing standard views in pediatric echocardiography. EDMAE introduces a new proxy task based on the encoder-
decoder structure. The EDMAE encoder is composed of a teacher and a student encoder. The teacher encoder
extracts the potential representation of the masked image blocks, while the student encoder extracts the potential
representation of the visible image blocks. The loss is calculated between the feature maps output by the two encoders
to ensure consistency in the latent representations they extract. EDMAE uses pure convolution operations instead
of the ViT structure in the MAE encoder. This improves training efficiency and convergence speed. EDMAE is
pre-trained on a large-scale private dataset of pediatric echocardiography using self-supervised learning, and then
fine-tuned for standard view recognition. The proposed method achieves high classification accuracy in 27 standard
views of pediatric echocardiography. To further verify the effectiveness of the proposed method, the authors perform
another downstream task of cardiac ultrasound segmentation on the public dataset CAMUS. The experimental results
demonstrate that the proposed method outperforms some popular supervised and recent self-supervised methods, and
is more competitive on different downstream tasks.
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1. Introduction

Congenital heart diseases (CHDs) are the most preva-
lent types of birth defects, affecting approximately 0.9%
of live births. Unfortunately, they also represent the pri-
mary cause of death among children between the ages of 0
and 5 [1]. Each year, around 100,000-150,000 newborns
in China are diagnosed with CHD, and the incidence of
CHD has been steadily rising since the full implementa-
tion of the second-child policy in 2016. Therefore, early
and precise diagnosis of CHD holds significant clinical
importance.

Transthoracic echocardiography (TTE) is a cost-
effective, non-invasive, and radiation-free imaging tech-
nique that enables real-time and dynamic visualization of
the heart. TTE has become an essential tool for the diag-
nosis and treatment of CHD due to its ability to rapidly
detect various cardiac abnormalities [2]. TTE involves
standard view acquisition, dynamic image scanning, and
measurement. Among these steps, the precise acquisition
of standard views is a prerequisite for subsequent mea-
surement of biological features and the final diagnosis of
CHD.

Nevertheless, the complex and variable anatomy and
spatial configuration of congenital heart disease make
accurate diagnosis through TTE challenging and time-
consuming, necessitating experienced cardiac specialists
to carefully interpret each ultrasound image. The Ameri-
can Society of Echocardiography recommends the use of
standard imaging techniques for 2D, M-mode, and color
Doppler echocardiography [3]. This entails acquiring im-
ages following a reproducible protocol. Specifically, the
acquisition of images in a particular view is necessary to
facilitate the measurement of specific structures and min-
imize inter- and intra-observer variability [4].

Hence, the application of deep learning techniques for
the automatic intelligent recognition of standard views in
pediatric echocardiography becomes imperative. This ap-
proach not only forms the basis for intelligent CHD diag-
nosis but also offers standardized training for primary car-
diac ultrasonographers to perform view sweeping, thereby
providing valuable clinical applications.

Deep learning has rapidly been applied to the medical
field due to the continuous development of artificial in-
telligence. UNet [5], for instance, has been proposed for
medical image segmentation. Deep learning being data-

driven requires a large amount of annotated data to fit
the target function. Annotating a large amount of data
is expensive, particularly in the medical field where the
number of images is small, and accurate data annota-
tion is challenging. This study collected a large num-
ber of children’s echocardiograms, and annotating each
image was costly and time-consuming. Furthermore, al-
though pre-training on a large-scale dataset can improve
the network’s performance to some degree, natural im-
age to medical image transfer often yields poor results.
Self-supervised learning has become increasingly popular
in recent years because it can reduce the cost of annotat-
ing large-scale datasets by using custom pseudo-labeling
to supervise training and learned latent representation for
multiple downstream tasks [6]. The masked autoencoder,
as a powerful self-supervised method, has recently been
rapidly applied to medical image analysis [7, 8, 9, 10, 11].
Autoencoders were introduced into medical image anal-
ysis by Zhou et al. [7], and they were verified on mul-
tiple medical datasets and tasks. Tian et al.. [8] used a
memory-enhanced multi-level cross-attention masked au-
toencoder for unsupervised anomaly detection in medi-
cal images. Xiao et al. [9] conducted in-depth research
on the masked autoencoder for multi-label thoracic dis-
ease classification and achieved advanced performance on
chest X-ray images. Additionally, some researchers [10]
replaced the ViT [12] used by MAE [13] with Swin Trans-
former [14] to adapt to small medical datasets, while oth-
ers [11] applied the masked autoencoder to medical mul-
timodal data.

Self-supervised pre-training for images involves learn-
ing from degradation, which entails removing specific in-
formation from the image signal and requiring the al-
gorithm to restore it. However, this degradation-based
method faces a significant bottleneck, which is the conflict
between degradation intensity and semantic consistency.
Visual representation learning relies wholly on degrada-
tion since there is no supervised signal, and the degra-
dation must be strong enough. Nonetheless, when the
degradation is strong enough, it is not guaranteed that the
images before and after degradation have semantic con-
sistency. To address this issue, we propose an efficient
decoupled masked autoencoder (EDMAE). The EDMAE
has two identical encoders: the teacher encoder, which
takes visible image blocks as input and can backpropa-
gate to update weights, and the student encoder, which
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takes a mask as input and cannot backpropagate, updating
weights from the teacher encoder. Their latent represen-
tations are the feature maps they output, and their align-
ment is maintained by calculating the loss between the
representations of visible image blocks and mask image
blocks. This approach ensures the encoder’s representa-
tions from any part of the image are consistent, which can
compel the encoder to learn more latent representation in-
formation. Consequently, the encoder is decoupled from
the decoder, preventing the decoder from learning repre-
sentation information and allowing it to concentrate on the
reconstruction task. Additionally, our proposed method
relies on pure convolutional operations [15], which are
lighter and have faster training and convergence speeds
than the ViT used by the MAE and BEiT [16]. The pro-
posed method, similar to MAE, utilizes asymmetric en-
coders and decoders to decrease the time and memory us-
age required for pre-training.

We pre-trained the proposed method on a large-scale
unlabeled dataset of pediatric cardiac ultrasound images
constructed in this study. We then validated it on pri-
vate pediatric cardiac ultrasound standard view recogni-
tion. Furthermore, we conducted experiments on the pub-
lic dataset CAMUS to verify that the proposed method
can extract effective representations from the pre-trained
ultrasound cardiac dataset.

The paper is structured as follows: The Introduction
section provides the research background, motivation, re-
search questions, and objectives of the study. The Re-
lated Works section reviews the existing literature on self-
supervised learning and its applications in medical image
analysis. The Proposed Method section describes our pro-
posed method, including its main architecture, the self-
supervised pre-training process, and the downstream task
fine-tuning process. The Experiment section presents the
results of our comparative and ablation experiments. The
Discussion section evaluates the advantages and disad-
vantages of our model and outlines future plans. Finally,
the Conclusion section summarizes our proposed method
and its performance results.

The main contributions of this paper are as follows.

1. We propose an efficient decoupled mask autoencoder
(EDMAE) that decouples the encoder and decoder.
This enforces the encoder to learn high-quality latent
representations.

2. The proposed method uses an asymmetric encoder-
decoder structure. DenseNet is used as the en-
coder, while a lightweight CNN is used as the de-
coder. This approach enhances the method’s effi-
ciency, with lower computational costs and faster
convergence speed.

3. We utilized the proposed method for self-supervised
pre-training on a large-scale private dataset of chil-
dren’s hearts that we collected. We then fine-tuned it
on two downstream tasks. The experimental results
demonstrate the superiority of the proposed method.

2. Related Works

2.1. Self-supervised learning

Self-supervised learning can be categorized into two
main types: generative and contrastive. Contrastive learn-
ing (CL) is a discriminative method that brings similar
samples closer together while pushing different samples
farther apart. In 2020, the introduction of MoCo [17]
brought contrastive learning to a new stage by using a
dynamic dictionary library, avoiding the memory bottle-
neck problem faced by SimCLR [18]. MoCo achieved ac-
curacy levels close to those obtained through supervised
training.

Generative learning is another form of self-supervised
learning. Since the introduction of Generative Adversar-
ial Networks (GANs) [19] in 2014, generative models
have made significant progress. Recently, Masked Im-
age Modeling (MIM) has become a popular generative
self-supervised algorithm with the introduction of MAE,
SimMIM [20], and BEiT. These methods learn feature
representations by compressing input data into an encod-
ing and then reconstructing the input. Recently, several
works have been proposed to improve this method, such
as CAE [21] and TACO [22].

2.2. Self-supervised learning in medical image analysis

In the field of medical image analysis, data with high-
quality annotations are very scarce. Therefore, self-
supervised methods have been quickly introduced in this
area. Sowrirajan et al. [23] used the contrastive self-
supervised method MoCo for self-supervised pre-training
on a chest X-ray dataset, and then fine-tuned on CheXpert
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with labeled data. They found that self-supervised pre-
training on medical datasets was better than supervised
ImageNet pre-trained models. Navarro et al. [24]’s work
showed that self-supervised methods outperform previous
supervised algorithms in multi-organ segmentation tasks.

Additionally, generative self-supervised algorithms
have been proposed for medical image analysis. Ly et al.
[25] proposed the Double Loss Adaptive Masked Autoen-
coder (DAMA) for multi-immunofluorescence brain im-
age analysis, and their method achieved excellent results
on multiple tasks. Quan et al. [26] proposed a Global Con-
trastive Masked Autoencoder for processing pathological
images, which achieved competitive results compared to
other methods. Furthermore, there are many new research
findings [7, 8, 9, 10, 11].

2.3. Autoencoder

Autoencoder (AE) is an self-supervised learning algo-
rithm that learns representations of input information by
using the input itself as the learning target [27]. Classic
autoencoders include PCA and k-means [28]. Since the
introduction of Masked Autoencoder (MAE) and BEiT in
2021, autoencoders have become increasingly popular in
computer vision self-supervised learning. Recently, they
have been increasingly applied in medical image analy-
sis [9, 25, 26, 29].

3. Proposed Method

3.1. Masked Autoencoder

The MAE algorithm employs a random masking tech-
nique to obscure certain patches of the input image, which
it then reconstructs by filling in the missing pixels. This
approach is based on two fundamental design principles:
(1) an asymmetric encoder-decoder architecture that han-
dles visible patches differently than mask tokens. The en-
coder encodes only visible patches and disregards mask
tokens, whereas the decoder utilizes the encoder’s out-
put (i.e., a latent representation) and mask tokens to re-
construct the image. (2) Using a higher mask ratio has
demonstrated promising outcomes. Specifically, a mask
rate of 75% has been shown to produce favorable re-
sults. The MAE algorithm operates in several steps.
First, it divides the input image into patches and applies
a masking operation. Next, it feeds only the vSisible

patches into the encoder, along with the mask tokens.
The encoder’s output and the mask tokens are then used
as input to the lightweight decoder, which reconstructs
the entire image. The loss function used is the mean
squared error (MSE) loss, which is only computed for the
masked patches. MAE has demonstrated robust transfer-
ability and achieved the highest accuracy of 87.8% on the
ImageNet-1K dataset. Moreover, due to its simplicity, it
is highly scalable, making it an attractive option for large-
scale image processing applications.

In an asymmetric encoder-decoder architecture, the en-
coder and decoder have different numbers of layers or dif-
ferent numbers of neurons in each layer. The encoder
of the proposed method is DenseNet, while the decoder
adopts a lightweight CNN. This can provide several ben-
efits over a symmetric architecture where the encoder and
decoder have the same structure: (1) It can help to re-
duce the computational complexity of the network. By
using a smaller decoder than encoder, the network can
be trained to extract the most important features of the
input data while discarding less important information.
This can lead to faster training times and better perfor-
mance on test data. (2) It can help to reduce the compu-
tational complexity of the network. By using a smaller
decoder than encoder, the network can be trained to ex-
tract the most important features of the input data while
discarding less important information. This can lead to
faster training times and better performance on test data.
(3) By learning a more complex representation of the in-
put data, the network is better able to generalize to new
and unseen data. This can lead to better performance on
many tasks. (4) By having a larger encoder network and
a smaller decoder network, the network is able to learn
a more complex representation of the input data. This
can lead to better performance on tasks such as image or
speech recognition. In addition, the anatomical structures
of the children’s echocardiograms we collected are rel-
atively fixed, which means that these images have high
redundancy. Therefore, using a higher mask rate for the
images can enable the model to learn better potential rep-
resentations.

Since the MAE model did not completely separate the
encoder and decoder, the decoder in MAE still learned
latent representations. Therefore, the proposed DEMAE
model attempts to decouple the encoder and decoder by
using two identical encoders. One of the encoders, called
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the teacher encoder, takes visible images as input and can
be back-propagated to update weights. The other encoder,
called the student encoder, takes masks as input and can-
not be back-propagated, with weights updated from the
teacher encoder. The feature maps output by the encoders
are their latent representations, and their consistency is
maintained by calculating the loss between the representa-
tions of visible images and masks. Therefore, the encoder
can learn more latent representations from any part of the
image. In addition, unlike MAE, the proposed DEMAE
model is based on pure convolutional operations, which
have faster training and convergence speeds. The con-
volutional neural network used is DenseNet, which has
strong fitting ability as well as appropriate parameter and
computational complexity.

3.2. Overall structure of EDMAE
The proposed method consists of two inputs, namely

the visible and invisible parts of the input image, as shown
in Fig.1. A convolutional neural network in a proxy task
predicts the invisible part from the visible part, forcing
the encoder to learn the latent representation of the im-
age. The proposed method uses two encoders with con-
volutional neural networks called DenseNet [15]. One en-
coder is updated through backpropagation and is called
the teacher encoder, while the other encoder’s backprop-
agation is blocked and cannot update its weights. It is
called the student encoder, which shares weights with the
teacher encoder. The decoder and encoder use the same
network to predict masked image blocks. The proposed
method computes losses in two places, one is between the
feature maps output by the two encoders, and the other
is between the reconstructed image output by the decoder
and the original image. In the proposed method, the mo-
mentum update rule is used to update the weights of the
student encoder, which is given by the following formula:

Ps = Ps ∗ m + Pt ∗ (1 − m) (1)

where Ps represents the weight of the student encoder, Pt
represents the weight of the teacher encoder, and m rep-
resents the momentum.

3.3. Self-supervised pretraining
The proposed self-supervised pretraining method is for-

mally an optimization problem, which is a task of solving

CNN Encoder

(Teacher)

CNN Encoder

(Student)

CNN Decoder

Feature 

Map

Feature 

Map

loss

Feature 

Map

dot 

product

dot 

product

=

Figure 1: The overall architecture of EDMAE.

static linear inverse problems through a deep neural net-
work. z ∈ RL serves as input, and by optimizing the pa-
rameters θ of the untrained neural network fθ, it generates
an output fθ(z) that is consistent with the measurement
values y ∈ RM .

θ∗ = argmin
θ
∥y − F( fθ(z))∥22 (2)

where F ∈ RM×N is the forward model. In this paper,
y is the masked image, and F is the masking operation.
The output of the optimized network x∗ = fθ∗ (z) produces
remarkably high-quality reconstructed images.

The proposed self-supervised training method follows
the workflow described below. Initially, visible image
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(a) original (b) masked

(c) unmasked (d) reconstruction

Figure 2: The original image, the image masked by 75%, the unmasked
part of the image, and the reconstructed image.

blocks are fed into the encoder to extract their representa-
tions. Next, predictions are made in the encoding repre-
sentation space, ensuring that the masked image blocks’
representations are consistent with those predicted from
the visible image blocks. Finally, the decoder takes in
the representations of the masked image blocks to predict
the masked image blocks. Since previous research [13]
has shown that a 75% masking rate produces optimal rep-
resentations in autoencoders, this paper will use a 75%
masking rate by default. As shown in Fig.2., the original
image, the image masked by 75%, the unmasked part of
the image, and the reconstructed image are shown in the
figure.

The loss calculated between the feature maps output by
the two encoders is called feature alignment. The advan-
tage of this approach is that it can ensure that the represen-
tation of the mask image block is consistent with the rep-
resentation obtained from the prediction of the visible im-

age block, ensuring that the image before and after degra-
dation has semantic consistency. It can be represented by
the following expression:

y1 = F(xm) (3)

y2 = F∗(xum) (4)

loss = MS E(y1, y2) =
1
M

m∑
0

(y1 − y2)2 (5)

Among them, xm represents the masked image, xum

represents the unmasked image, and MSE represents the
mean squared error loss function (MSE Loss, L2 Loss).

3.4. Downstream task
After completing self-supervised pre-training, all that

is needed is to replace the decoder of the proposed method
with a task-specific head that caters to the downstream
task’s characteristics.

For the task of standard view recognition in pediatric
cardiac ultrasound, the labels consist of multiple fixed cat-
egories, making it an image classification task. Therefore,
the decoder needs to be replaced with a linear layer, and
cross-entropy is used as the loss function to fine-tune the
entire network.

For the task of cardiac ultrasound segmentation, a seg-
mentation task head is required. In this paper, we use the
decoder of our own implementation of DenseUNet as the
segmentation head. Specifically, the feature maps output
by the encoder are used as the input to the segmentation
task head, which outputs the segmentation results. The
Focal loss is used to compute the loss between the seg-
mentation results and the ground truth labels.

4. Experiment

4.1. Dataset
Our dataset is divided into a private dataset of chil-

dren’s cardiac ultrasound views and a public dataset CA-
MUS [34]. We collected a private dataset from the De-
partment of Pediatric Cardiology, Shanghai Children’s
Medical Center, School of Medicine, Shanghai Jiao tong
University, Shanghai, China. Our study has been ap-
proved by the ethics committee of the center (Approval
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Table 1: Comparative Experiments on Private Datasets.

Method Overall Accuracy (%) Mean Precision (%) Mean Recall (%) Mean Specificity (%) Mean F1 (%)
mobileNetV3-L [30] 98.17 89.68 90.10 99.57 89.06
ResNet50 [31] 98.34 91.80 92.30 99.65 91.58
Swin-T-B [10] 98.35 92.12 92.46 99.65 91.68
DenseNet121 [15] 98.35 92.29 92.66 99.66 91.73
MoCoV2 [32] 98.36 92.34 92.89 99.66 91.85
MAE [13] 98.38 92.77 93.03 99.68 92.54
ConvMAE [33] 98.45 92.82 93.51 99.70 92.97
ours 98.48 93.20 94.62 99.73 93.63

No.: SCMCIRB-K2022183-1). The private children’s
cardiac ultrasound view data is divided into two parts,
one of which has 17,755 unlabeled children’s cardiac ul-
trasound view data for self-supervised pre-training. The
other part is the labeled children’s echocardiography stan-
dard view data with 1026 images for fine-tuning. The data
used for fine-tuning includes 616 training sets, 205 valida-
tion sets and 205 test sets, which cover 27 standard views
of children’s echocardiography, 1 other blood flow spec-
trum and 1 other views. The CAMUS dataset contains
two-chamber and four-chamber acquisitions from 500 pa-
tients, as well as reference measurements from one cardi-
ologist for the full dataset and three cardiologists for 50
patients.

4.2. Training Details
We designed our model based on the machine learning

framework PyTorch1.12.1 using Python3.8. In particular,
we also use PyTorch-Lightning1.6.5, an efficient and con-
venient framework based on PyTorch. In addition, some
of our comparison experiments and ablation experiments
use the backbone network provided in Torchvision0.13.1.

We trained the proposed model on a GPU server
with an Intel Core i9-10900X CPU, two 10GB Nvidia
RTX3080 GPUs, 32GB RAM, and 20GB VRAM.

We set the batch size of data according to different net-
works to ensure maximum memory utilization. The num-
ber of threads of the data reading program is 16. The ini-
tial learning rate is 1e-3. The learning rate dynamic ad-
justment strategy is ReduceLROnPlateau. The optimizer
is AdamW [35]. The training epoch number is 100. Train
with automatic mixed precision.

The loss function used for pre-training is the mean
square error (MSE) loss function. The loss function for
downstream classification tasks is the cross-entropy loss
function. The loss function for downstream segmentation
tasks is Focal Loss [36], which can reduce the weight
of easily classified samples and increase the weight of
difficult-to-classify samples. Its formula is as follows:

FL(pt) = −αt(1 − pt)γ log (pt) (6)

p∈[0,1] is the model’s estimated probability of the la-
beled class, γ is an adjustable focusing parameter, and α
is a balancing parameter. We set γ to 2 and α to 0.25.

4.3. Evaluation Metrics

To evaluate the performance of the proposed EDMAE,
we use some commonly used metrics to assess the accu-
racy of the model. For classification tasks, we use Over-
all Accuracy (OA), Precision, Recall, Specificity, and F1-
Score (F1) . These evaluation metrics are calculated based
on a confusion matrix, where TP represents the number of
True Positive samples, TN represents the number of True
Negative samples, FP represents the number of False Pos-
itive samples, and FN represents the number of False Neg-
ative samples.

Overall Accuracy (OA) is used to measure the overall
accuracy of the model’s predicted results:

OA =
T P + T N

T P + T N + FP + FN
(7)

F1 Score represents a comprehensive consideration of
Precision and Recall:
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Precision =
T P

T P + FP
(8)

S peci f icity =
T N

FP + T N
(9)

Recall =
T P

T P + FN
(10)

F1 = 2
Precision × Recall
Precision + Recall

=
2T P

2T P + FP + FN
(11)

For the task of cardiac ultrasound segmentation, we
adopt three metrics: Dice coefficient (DC), Hausdorff dis-
tance (HD), and area under the curve (AUC).

DC =
2 × |A ∩ B|
|A| + |B|

=
2T P

2T P + FN + FP
(12)

HD = max {dAB, dBA}

= max {max
a∈A

min
b∈B

d(a,b),max
b∈B

min
a∈A

d(a,b)}
(13)

4.4. Experimental results on the private dataset
The proposed method was evaluated on a private

dataset created for this study. We compared the proposed
method with several mainstream classification networks,
namely MobileNetV3-large [30], ResNet50 [31], Swin-
Transformer-base [10], and DenseNet121 [15]. These
networks were selected from the TorchVision built-in
model module and were pre-trained on ImageNet-1k.
Additionally, we compared our method with some re-
cent self-supervised methods, including MoCoV2 [32],
MAE [13], and ConvMAE [33]. Table 1 shows that the
proposed method outperforms other methods in the ma-
jority of metrics. The F1 Score is 0.66% higher than Con-
vMAE, Precision is 0.38% higher than ConvMAE, Recall
is 1.11% higher than ConvMAE, and Specificity is 0.03%
higher than ConvMAE. Overall, the proposed method is
highly competitive.

Our dataset consists of 29 categories, which include
low parasternal fifive-chamber view (LPS5C), paraster-
nal view of the pulmonary artery (PSPA), parasternal
short-axis view (PSAX), parasternal short-axis view at
the level of the mitral valve (short axis at mid, sax-
mid), parasternal long-axis view of the left ventricle
(PSLV), suprasternal long-axis view of the entire aortic
arch (supAO), Long axis view of subcostal inferior vena
cava (subIVC), subcostal four-chamber view (sub4C),

subcostal five-chamber view (sub5C), subcostal sagittal
view of the atrium septum (subSAS), subcostal short-axis
view through the right ventricular outflflow tract (sub-
RVOT), apical four-chamber view (A4C), apical fifive-
chamber view (A5C), low parasternal four-chamber view
(LPS4C), transverse section of subxiphoid inferior vena
cava and descending aorta (subIVCDAo), other views
(others), M-mode echocardiographic recording of the aor-
tic (M-AO), M-mode echocardiography recording of the
left ventricle(M-LV), M-mode echocardiography record-
ing of the tricuspid valve (M-TV), Doppler recording
from the abdominal aorta (DP-ABAO), Doppler recording
from the mitral valve (DP-MV), Doppler recording from
the tricuspid valve (DP-MV), Doppler recording from the
ascending aorta (DP-AAO), Doppler recording from the
pulmonary valve (DP-PV), Doppler recording from the
descending aorta (DP-DAO), Doppler recording from the
tissue doppler imaging (DP-TDI), other Doppler record-
ings (DP-OTHER), Doppler recording from the pul-
monary valve regurgitation (DP-PVR), Doppler record-
ing from the tricuspid valve regurgitation (DP-TVR) and
Doppler recording from the tricuspid valve regurgitation
(DP-TVR). As can be seen from Table 3 and Fig.3., the
proposed method performs well in classifying most of the
views, especially for sub4C, sub5C, and subSAS, which
have the best recognition results. However, the recogni-
tion performance for other views and DP-OTHER is poor.

4.5. Experimental results on the public dataset CAMUS
To further demonstrate the superiority of the pro-

posed method, a comparison was made with five other
methods on the public dataset CAMUS, including MFP-
Net [39], Joint-net [37], TransUNet [38], PLANNet [40],
and DenseUNet implemented by ourselves. As shown in
Table 2, the proposed method outperformed other models
in all metrics, with a DC 0.39% higher than the advanced
PLANet and lower HD.

As shown in Fig.4., we compared the segmentation re-
sults of our proposed method with those of other meth-
ods. Our proposed method can achieve good segmen-
tation results on ultrasound images of multiple scales.
DenseUNet’s segmentation performance is poor, with un-
even segmentation edges in large-scale object segmen-
tation and unsatisfactory segmentation results for small-
scale objects. However, our DenseUNet model, which un-
derwent self-supervised pretraining, performs much bet-
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Table 2: Experimental results on the public dataset CAMUS.
Method DC (%) HD (mm) AUC (%)
Joint-net [37] 91.05 ± 0.27 3.41 ± 0.86 97.14 ± 0.25
DenseUNet [15] 91.88 ± 0.26 3.34 ± 0.82 97.26 ± 0.24
TransUNet [38] 91.89 ± 0.38 3.25 ± 1.01 97.39 ± 0.24
MFP-Net [39] 92.23 ± 0.29 3.40 ± 0.97 97.28 ± 0.23
PLANet [40] 92.61 ± 0.40 3.10 ± 0.93 97.58 ± 0.23
ours 93.09 ± 0.22 3.02 ± 0.81 97.84 ± 0.22
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Figure 3: The confusion matrix of the test results of the proposed method
on a private dataset.

ter in segmentation compared to the DenseUNet model
without self-supervised pretraining.

4.6. Ablation study
The anatomical structures of the heart in the pediatric

echocardiograms we collected are relatively fixed, which
results in high redundancy in these images. Therefore,
employing a higher mask rate for these images can enable
the model to learn better potential representations. Al-
though the MAE has demonstrated that a 75% mask rate
is optimal, we have verified this in the task of standard
view recognition of pediatric echocardiograms, as shown
in Fig. 5.

Image ours PLANet TransUNetDense-
UNet

Figure 4: Experimental results on the public dataset CAMUS. The green
area represents the overlapping part between the prediction and ground
truth, the red area represents the part of ground truth not covered by the
prediction, and the yellow area represents the part of the prediction that
goes beyond the ground truth.

We compared the convergence time of different self-
supervised methods during pre-training on our dataset, as
shown in Table 4.

Feature alignment is an important step in the proposed
method, which aligns the potential representations ex-
tracted from the masked image blocks and visible image
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Table 3: Experimental results on the private dataset (the blue value rep-
resents the best value in this column, and the red value represents the
worst value in this column).

Standard
Views

Accuracy
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

F1
(%)

LPS5C 99.74 99.99 91.66 99.99 95.45
PSPA 99.22 85.00 95.00 99.46 89.44
PSAX 99.74 94.44 99.99 99.73 97.06
subIVCDAo 99.74 90.00 99.99 99.73 94.44
subIVC 98.18 81.66 78.03 99.18 79.76
sub4C 99.99 99.99 99.99 99.99 99.99
sub5C 99.99 99.99 99.99 99.99 99.99
subSAS 99.99 99.99 99.99 99.99 99.99
subRVOT 99.99 99.98 99.98 99.99 99.98
A4C 99.74 93.75 99.99 99.73 96.66
A5C 99.99 99.99 99.99 99.99 99.99
LPS4C 99.74 92.85 99.99 99.73 96.15
sax-mid 99.22 93.74 88.88 99.73 91.17
PSLV 99.22 80.91 99.99 99.19 89.44
supAO 99.99 99.99 99.99 99.99 99.99
Others 96.87 87.08 77.29 98.85 81.82
M-AO 99.99 99.99 99.99 99.99 99.99
M-LV 99.99 99.99 99.99 99.99 99.99
M-TV 99.99 99.99 99.99 99.99 99.99
DP-ABAO 99.99 99.99 99.99 99.99 99.99
DP-MV 99.48 92.85 92.85 99.73 92.85
DP-TV 99.22 93.75 86.60 99.73 89.90
DP-AAO 99.48 91.66 91.66 99.73 91.66
DP-PV 99.22 87.50 92.85 99.46 90.00
DP-DAO 98.96 76.19 90.00 99.20 82.51
DP-TDI 99.99 99.99 99.99 99.99 99.99
DP-PVR 99.48 87.49 89.99 99.74 87.30
DP-TVR 99.74 87.50 99.99 99.74 92.85
DP-OTHER 97.92 86.60 69.32 99.45 76.84
Mean 99.48 93.20 94.62 99.73 93.63

blocks. This means that the representations obtained by
the encoder from any part of the image are consistent,
which can force the encoder to learn better representa-
tions, while the decoder is only responsible for image re-
construction. Without feature alignment, the encoder may
not be fully utilized, which would cause the decoder to
learn more representation information, violating the re-

50 55 60 65 70 75 80 85 90
masking ratio (%)

92.6

92.8

93.0
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M
ea

n 
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)

Figure 5: Effect of various masking rates on the performance of standard
view recognition in pediatric echocardiography.

Table 4: Convergence time of different self-supervised methods.
Methods Mean F1 (%) Convergence time (hour)
MoCoV2 91.85 48
MAE 92.54 72
ConvMAE 92.97 48
ours 93.63 24

quirements of the decoder’s task. In order to verify the
impact of feature alignment on the performance of the
proposed method, we compared the EDMAE with and
without feature alignment, as shown in Table 5.

The encoder utilized in EDMAE is DenseNet, which
possesses a robust fitting ability and suitable parameters
and computational complexity. We compared various en-
coders in EDMAE for verification, which can be seen in
Table 6.

As the mainstream classification heads in classifica-
tion tasks are fully connected layers and rarely use other
classification heads, this article will not compare differ-
ent classification heads. However, there are many types
of segmentation heads, and this paper uses the segmen-
tation head of the most classic and simple UNet. We
selected some mainstream segmentation heads for com-
parison, including the segmentation heads of FCN [41],
DeepLabV3+ [42], PSPNet [43], and OCRNet [44], to
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Table 5: Effect of feature alignment on the performance of Recognition of Standard Views of Pediatric Echocardiography.
Feature Alignment Overall Accuracy (%) Mean Precision (%) Mean Recall (%) Mean Specificity (%) Mean F1 (%)

% 98.44 92.78 93.12 99.67 92.62
! 98.48 93.20 94.62 99.73 93.63

Table 6: Effect of various encoders on the performance of Recognition of Standard Views of Pediatric Echocardiography.
Encoder Overall Accuracy (%) Mean Precision (%) Mean Recall (%) Mean Specificity (%) Mean F1 (%)
MobileNetV3 98.39 91.79 93.21 99.67 92.48
ResNet50 98.42 91.81 93.32 99.67 92.55
Swin-T-B 98.44 92.79 93.14 99.68 92.53
ours 98.48 93.20 94.62 99.73 93.63

study their impact on model performance. Their back-
bone networks are all DenseNet pre-trained through self-
supervision. As shown in Table 7, different segmenta-
tion heads have little impact on model performance. Al-
though some indicators of certain segmentation heads sur-
pass the UNet segmentation head we adopted, their cost-
effectiveness is not as good as ours, and it is not the focus
of this paper.

In addition, we compared the impact of loss functions
on model performance. As can be seen from Table 8,
the FocalLoss we selected can balance classes well and
is more competitive than the classical cross-entropy loss
function.

5. Discussion

EDMAE achieved excellent classification and segmen-
tation performance through self-supervised pre-training
on a large-scale dataset of pediatric cardiac ultrasound.
From the experiments described above, it can be seen
that the proposed method has significant advantages over
other methods in downstream tasks such as pediatric car-
diac standard view recognition, with good recognition
performance for most views and only poor recognition for
views with less distinct features. In addition, the proposed
method performs well on the public dataset CAMUS and
outperforms many advanced methods, showing good per-
formance for object segmentation at multiple scales.

There are three primary factors contributing to the
outstanding performance of EDMAE. Firstly, the self-

supervised pre-training data distribution is similar to that
of downstream tasks, allowing models trained on large-
scale data to effectively learn the data distribution. Sec-
ondly, the encoder of EDMAE is decoupled from the de-
coder, which compels the encoder to completely extract
the latent semantic representation. Finally, the encoder
of the proposed method is a pure convolution operation,
which has faster convergence speed and requires less pre-
training data.

Although we strive to decouple the encoder and de-
coder and make them perform their respective duties, this
does not mean that the decoder has not learned potential
representations, or that we may not have allowed the de-
coder to fully focus on reconstructing images. In addi-
tion, this model is designed for pediatric echocardiogra-
phy tasks and has not been validated on other types of ul-
trasound images or other types of medical images. In the
future, we will explore new methods to force the encoder-
decoder to decouple and perform their respective tasks.
In addition, we will extend our approach to multiple ul-
trasound or medical images to promote and validate our
method.

6. Conclusion

In this paper, an efficient decoupled masked autoen-
coder with the strong feature extraction ability is proposed
for standard view recognition on pediatric echocardiogra-
phy. The model pre-trained on a private large-scale chil-
dren’s cardiac ultrasound dataset has shown excellent per-
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Table 7: Effect of different segmentation heads on model performance.
Head DC (%) HD (mm) AUC (%)
FCN [41] 92.96 ± 0.31 3.24 ± 0.84 97.65 ± 0.26
DeepLabV3+ [42] 92.94 ± 0.34 3.31 ± 0.92 97.59 ± 0.28
PSPNet [43] 93.12 ± 0.38 3.02 ± 0.96 97.83 ± 0.22
OCRNet [44] 93.06 ± 0.29 3.02 ± 0.97 97.86 ± 0.24
ours 93.09 ± 0.22 3.02 ± 0.81 97.84 ± 0.22

Table 8: Effect of different loss functions on model performance.
Loss Function DC (%) HD (mm) AUC (%)
Cross Entropy Loss 92.92 ± 0.26 3.24 ± 0.89 97.75 ± 0.24
Focal Loss 93.09 ± 0.22 3.02 ± 0.81 97.84 ± 0.22

formance in the downstream task of children’s heart stan-
dard view recognition, which surpasses some advanced
classification methods. The proposed model also can be
applied in another downstream task, i.e., cardiac ultra-
sound segmentation, which achieves good segmentation
performance. Since the training images are collected from
clinical examination database, the proposed method with
the high recognition rate for standard view recognition
can provide a good technical basis for intelligent diag-
nosis of congenital heart disease. It would become a new
standardized training method for primary-level cardiac ul-
trasound physicians to practice cardiac view scanning.
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