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Abstract 

In this paper, we present a BPM (Bézier Patch Mapping) algorithm which generates a strictly 

non-self-overlapping structured quadrilateral grid in a given four-sided planar region. Given four 

pieces of polynomial curves which enclose a simple region in the plane, the algorithm first 

constructs a Bézier patch which interpolates the four curves (as its four boundary curves), while 

the inner control points of its control grid remain unknown. In this paper, we show that, for the 

bijective condition to be satisfied, it is sufficient that the interior points satisfy a set of quadratic 

inequality equations. Exploiting this key result, we formulate the mapping algorithm as an 

optimization problem where the constraints are the bijective condition of the Bézier Patch 

Mapping, and the objective is to find out the best from all of the non-self-overlapping grids. Thus, 

commercial optimization solvers can be used to find the bijective mapping. If a solution to the 

optimization problems exists, then so does a solution to the mapping problem, and vice-versa. The 

BPM method is simple and intuitive, and some examples presented in this paper demonstrate its 

effectiveness 
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1. Introduction 

Structured quadrilateral grid is often used in the finite element method and the finite 

difference method, for it usually generates smaller analysis errors and provides a structure with 

which one can easily calculate the derivative employed in the finite difference method. When the 

finite element method or the finite difference method works on a four-sided planar region, the 

region should be first mapped into a unit square to get structured quadrilateral grid on the 

four-sided region. Additionally, in computer aided design, designers often use surface trimming 

operation to obtain four-sided trimming surfaces satisfying some requirements. A four-sided 

trimming surface corresponds to a four-sided region in its 2D parameter field. The 2D four-sided 

parameter region also needs to be re-parameterized to a unit square for further process of the 

trimming surface. This is equivalent to generating a structured quadrilateral grid in the 2D 

four-sided parameter region. 

Currently, there are mainly two classes of methods for generating structured quadrilateral 

grids in a planar four-sided region, the partial differential equation (PDE) method [1-5], and the 

boundary-conforming mapping (BCM) method [6-9]. The PDE method generates a grid by first 

distributing points on the boundary curves and then solving elliptic PDEs in the field. It requires 

delicate numerical solutions and usually runs very slow; moreover, the PDE method can only give 

a discrete grid, for only numerical methods can be used to solve elliptic PDEs and solutions only 

at discrete points in the four-sided region can be obtained. The BCM method requires no 

algorithmic computation like the PDE method, thus it is fast and free of any numerical instability 

problem. Basically, a BCM is a continuous mapping from a square to a planar four-sided region R. 

By sampling the square into a rectangular grid and then mapping it into R, one obtains a 

quadrilateral grid of R.  

However, although simple and robust, BCM methods suffer from a common deficiency − it is 

difficult to ensure that the generated grid is free of self-overlapping. Self-overlapping means some 

quadrilateral elements in the grid may overlap with each other, which makes the grid useless to 

downstream applications (See Fig. 1). Generating non-self-overlapping structured quadrilateral 

grid by a BCM method is equivalent to constructing a continuous bijective mapping. But checking 

whether a continuous mapping is bijective is difficult because it requires the solution of a 
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Fig. 1. Self-overlapping structured quadrilateral 
grid. Self-overlapping means some quadrilateral 
elements in the grid overlap with each other. 

non-linear equation, which can be solved only by numerical methods in general.  

Additionally, a more complicated 

problem is grid generation in an n-sided 

planar region [10]. It can be solved either 

by segmenting the n-sided planar region 

into a series of four-sided regions, and 

generating grid on each four-sided region; 

or, by directly constructing an n-sided 

continuous mapping on the n-sided region, 

such as Gregory patch mapping. However, 

the same problem, namely, how to check a continuous mapping is bijective, still remains. 

In this paper, we develop a bijective boundary-conforming mapping method, that is, Bézier 

Patch Mapping (BPM) method, to generate strictly non-self-overlapping grid in a planar four-sided 

region R, whose boundaries are polynomial curves. First, the four boundary polynomial curves are 

converted into Bézier curves; their four control polygons connect sequentially, forming the 

boundary of a Bézier patch. Second, by setting the initial values of the inner control points, we get 

an initial Bézier patch, which can be considered as a mapping from the unit square to the 

four-sided region R. Third, by solving a optimization problem with constraints, which takes the 

inner control points as unknowns, the inner control points can be adjusted to the optimal state, 

leading to the optimal non-self-overlapping Bézier Patch Mapping (BPM). Here, the constraints of 

the optimization problem are the bijective conditions of BPM, which ensure that the generated 

grid is non-self-overlapping; furthermore, the objective function improves the quality of the 

generated grid. Thus, not only is the non-self-overlapping property of the mapping guaranteed, but 

also the overall quality of the generated grid is maximized simultaneously. 

This paper is arranged as follows. In section 2, we describe the overview of the BPM method 

and the constraints on the given four boundary curves. In section 3, the bijective conditions of 

BPM are deduced and the initial inner control points are constructed. In section 4, the problem on 

generating and improving the structured quadrilateral grid is formulated as an optimization 

problem with constraints. Some examples are presented in section 5, and section 6 concludes the 

paper. 
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2. Overview of BPM method and constraints on four boundary 

curves 

 

2.1 Overview of BPM method 

 

As illustrated in Fig. 2, four pieces of planar curves which connect sequentially form a simple 

and closed curve, thus enclosing a four-sided planar region R. One pair of opposite curves, P0 and 

P1, has the same degree m, and the other pair of curves, Q0 and Q1, has the degree n: 

( )
( )

[ ]
( )
( )

[ ]
( )
( )

[ ]
( )
( )

[ ]0 1 0 1
0 0 0 1 1 1 0 0 0 1

0 1 0 1

:  :  :  :  
x f t x f t x e t x e t

P , t a ,b ;P , t a ,b ;Q , t c ,d ;Q , t c ,d .
y g t y g t y h t y h t

⎧ ⎧ ⎧ ⎧= = = =⎪ ⎪ ⎪ ⎪∈ ∈ ∈⎨ ⎨ ⎨ ⎨
= = = =⎪ ⎪ ⎪ ⎪⎩ ⎩ ⎩ ⎩

1 1∈  (1) 

The boundary-conforming mapping (BCM) method seeks a continuous map from the unit 

square to the four-sided planar region R, which generates a structured quadrilateral grid over the 

region R, by sampling the unit square into a rectangular grid and then mapping it into R. 

Conventionally, the BCM method calculates a Coons patch interpolating the four given curves P0, 

P1, Q0 and Q1 by transfinite interpolation [11, 12], and the parameter grid of the Coons patch is 

taken as the structured grid over R. The bijectiveness of the Coons patch mapping is equivalent to 

the regularity of the Coons patch, which ensures that there is no self-overlapping in the generated 

structured grid. However, as stated above, it is impossible to determine the regularity of the Coons 

patch theoretically when its degree is even modestly high. Therefore, all of the BCM methods only 

try to reduce the self-overlapping region as small as possible, using some kinds of numerical 

energy minimization method, rather than to strictly guarantee the non-self-overlapping property 

[11, 12]. 

Q0 

Q1 

P0 P1 
R 

Unit square 
Boundary-conforming mapping

Fig. 2. A boundary-conforming mapping maps from a unit square to a 4-sided region R. 

u 
v 

v 
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Thus, developing a BCM method which can generate non-self-overlapping structured grid 

theoretically becomes one important issue in grid generation. In this paper, based on the 

convex-hull properties of a Bernstein polynomial, we present the Bézier Patch Mapping (BPM) 

method to generate non-self-overlapping structured quadrilateral grids. Specifically, BPM method 

constructs a regular Bézier patch interpolating the four given boundary curves, which maps the 

unit square to the four-sided region R and generates a non-self-overlapping structured 

quadrilateral grid on it. 

If the four given boundary curves are in power polynomial form, BPM method first converts 

the four power polynomials into Bernstein form, resulting in four Bézier curves: one pair of 

(m+1)-order curves, and the other pair of (n+1)-order curves (cf. Fig.3). Their control polygons 

connect sequentially and construct the boundary ring of the control grid of the Bézier patch, which 

maps the unit square to the given four-sided planar region R (cf. Fig. 2). The inner control points 

of the Bézier patch remain unknown. In fact, the essence of the BPM method is to generate the 

regular Bézier patch by selecting the inner control points. 

 

Q0(u) 

P0(v) 
P1(v) R 

 

 

Fig. 3. The boundary curves P0 and P1 are converted into (n+1)-order Bézier curves, while Q0

and Q1 (m+1)-order Bézier curves. Their control polygons connect sequentially, forming the 
boundary ring of the control grid of a (m+1)×(n+1)-order Bézier patch. BPM method adjusts 
the inner control points to generate a regular Bézier patch. 

Q1(u) 
v 

u 
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2.2 Boundary constrains 

 

In order to generate a regular Bézier patch taking the four given curves as its boundary 

curves, the four given curves should satisfy some constraints. Suppose the four given curves are in 

Bernstein form, (a power basis polynomial can be converted into a Bernstein polynomial using the 

basis transformation formula [13, 14]), that is, four Bézier curves, ( )0 uQ , , ( )1 uQ [ ]0 1u ,∈ , and 

( )0 vP , , ( )1 vP [ ]0 1v ,∈  (cf. Fig. 3). They must satisfy the following four boundary constraints: 

1) Each of the four curves is non-self-intersecting; 

2) The opposite curves have same degrees m and n respectively; 

3) Consistence condition (cf. Fig.4): The four corner angles, each formed by the two edges 

adjacent to a corner, are less than 180 degree, respectively. It implies the four corner 

normal vectors, that is, ( ) ( )00 1 00 0' '= ×n Q P , ( ) ( )10 1 11 0' '= ×n Q P , ( ) ( )11 0 11' '= ×n Q P 1

1

,∈  

 and 

, have the same direction; ( ) ( )01 0 00' '= ×n Q P

4) The four curves are all regular curves. That is, the tangent vector at any point of each 

curve is not null vector. 

Constraints 1) and 2) are intuitive, and 

Constraint 3) is depicted in Fig. 4. However, 

Constraint 4) is somewhat complicated. We 

only give some sufficient geometric 

conditions for generating the regular Bézier 

curves here, and the reader can refer to Ref. 

[15] for details. 

Suppose the given Bézier curve is: 

 (2) ( ) ( ) [ ]0 0 1n n
i iit B t ,t

=
= ∑r P .

Its derivative vector curve is: 

 ; (3) ( ) ( ) ( ) ( ) ( )1 11 1
1 1 1 10 0

n nn n
i i i i i i i i i ii i' t n B t n x x ,y y ,z z B t− −− −
+ + + += =

= − = − − −∑ ∑r P P

And the square of the scaled norm of the derivative vector curve is: 

u
v

R 

Q0 A2 A3

P0 P1 

A4A1

Q1 

Fig. 4. Boundary constraint 3: the four corner 
angles A1, A2, A3 and A4 are less than 
180 degree, respectively. 
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Here, , and ( ) ( )1 n in i
i

n
B t t t

i
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠ ( )

!
! !

n

i

n
i n i

⎛ ⎞ =⎜ ⎟ −⎝ ⎠
 is the binomial coefficient. 

From formulae (3) and (4), according to the convex hull property of Bézier curves and 

Bernstein polynomials, some conditions can be deduced to guarantee the regularity of a Bézier 

curve. For example,  

Condition 1): Let { }{ }0 1i i i ix , y ,z i , , ,n= =P L  be the control points of the Bézier curve (2),  

and let 

 { } { } { }0 1 0 1 0 1  Zn nX x ,x , ,x , Y y , y , , y , z ,z , ,z= = =L L nL

1−L

. (5) 

If one of the three sequences is strictly monotone, the Bézier curve (2) is regular. 

Condition 2): If , the Bézier curve (2) is 

regular. Here,  are the control points of the Bézier curve (2). 

( ) ( )1 1 0 0 1 1 0 1i i j j ,i , , ,n , j , , ,n+ +− − > = − =P P P P L

0 1i ,i , , ,n=P L

 

3. Bijective Bézier patch mapping and initial construction of inner 

control points 

 

3.1 Conditions for bijective Bézier patch mapping 

 

First, the right-handed Cartesian coordinate system ( )x, y,z  should be so established that the 

four-sided region R is on the ( )x, y -plane, and z-axis points to the direction of the corner normal 

vectors. 
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In this paper, the ( ) ( )1m n+ × +1 -order Bézier patch, which interpolates the four given 

boundary curves, is regarded as a mapping from the unit square U to R (cf. Fig. 1), named Bézier 

Patch Mapping (BPM), 

 ( ) ( ) ( )( ) ( ) ( )0 0
= = : m n m n

ij i ji j
u ,v x u,v , y u,v B u B v U R

= =∑ ∑r P a , (6) 

where ( )ij ij ijx , y=P ,  and  are Bernstein basis. Note that the boundary control points, 

namely , and 

( )m
iB u ( )n

jB v

0 0 1j m, j, , j , , ,=P P L n 0 0 1i i ,n, ,i , , ,m=P P L , are just the control points of the four given 

boundary Bézier curves, while the other inner control points remain unknown. 

It is well known that the above mapping is bijective if and only if its Jacobi determinant: 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2 1 2 1 2

2 2 1 2 1 2

0 0 0 0

m m n n
u v m m n n

i ij l kl i ij l kl i k j l
i k j lu v

x x
J u,v det x y y x B u B u B v B v

y y

− −
− −

= = = =

⎛ ⎞⎡ ⎤
= = ∇ ∇ −∇ ∇⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

∑ ∑ ∑∑ , (7) 

is not equal to zero in [ ] [ ]0 1 0 1U , ,= × . Here, 

 1 1

1 1

  0 1 1 0 1

  0 1  0 1 1
i ij i , j ij i ij i , j ij

l kl k ,l kl l kl k ,l kl

x x x , y y y , i , , ,m ; j , , ,n;

x x x , y y y , k , , ,m, l , , ,n .
+ +

+ +

∇ = − ∇ = − = − =

∇ = − ∇ = − = = −

L L

L L
 (8) 

Due to 

 ( ) ( )
( )

( ) ( )
( )2 1 2 1

1 1

1 1

 
2 1 2 1

m n
i k j l

m m n n
i k j l

m m n n
B u B

i k j l
B u B u , B v B v

m
i k j l

− −
+ +

− −

− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠= =

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

v

n −
, (9) 

the Jacobi determinant (7) can be converted into: 

 ( ) ( ) ( ) ( )
2 1 2 1

2 1 2 1

0 0

1 1

2 1 2 1

m n
m n

i ij l kl i ij l kl i k j l
p q i k p j l q

m m n n
i k j l

J u,v x y y x B u B v
m n
i k j l

− −
− −

+ +
= = + = + =

⎡ ⎤− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥= ∇ ∇ −∇ ∇
⎢ ⎥− −⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑ ∑ . (10) 

It is a Bernstein polynomial with two variables, whose control values are: 

 ( )
1 1

0 1 2 1 0 1 2 1
2 1 2 1pq i ij l kl i ij l kl

i k p j l q

m m n n
i k j l

T x y y x ; p , , , m ;q , , , n
m n
i k j l

+ = + =

− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠= ∇ ∇ −∇ ∇ = − =

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

∑ ∑ L L − . (11) 

Obviously, the Jacobi determinant ( )J u,v  not being equal to zero in [ ] [ ]0 1 0 1, ,×  implies 

either ( ) 0J u,v >  or ( ) 0J u,v < , ( ) [ ] [ ]0 1 0 1u,v , ,∈ × . In the following, by exploring the geometric 

meanings of the Jacobi determinant (7), we explain that only the first inequality ( ) 0J u,v >  is 

possible. 

In order to investigate the geometric meanings of the Jacobi determinant (7), the control 
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points of the Bézier patch (6) should be rewritten as: ( )0ij ij ijx , y ,=P . Thus, the normal vector 

surface of (6) is: 

 ( ) ( ) ( ) ( )
2 1 2 1

2 1 2 1

0 0

1 1

2 1 2 1

m n
m n

u v i ij l kl i k j l
p q i k p j l q

m m n n
i k j l

u,v B u B v
m n
i k j l

− −
− −

+ +
= = + = + =

⎡ ⎤− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥= × = ∇ ×∇
⎢ ⎥− −⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑ ∑n r r P P , (12) 

which is also a Bézier patch. On the other hand, 

 . (13) ( ) ( ) ( ) ( )(0 0 0 0 0 0u v
u v u u v v

u v

x x
u,v x ,y , x ,y , , ,det , ,J u,v

y y
⎛ ⎞⎛ ⎞⎡ ⎤

= × = × = =⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠
n r r )

Therefore, we have the following proposition: 

Proposition 1. The Jacobi determinant (7) is the z-component of the normal vector of the    

Bézier patch (6). 

That is to say, the Bézier patch mapping is bijective iff the corresponding Bézier patch is 

regular. Further, 

Proposition 2. Only ( ) 0J u,v >  can exist in the so established coordinates system. 

First, based on the end-interpolation property of Bézier surfaces, the four corner vectors of 

the normal vector surface (12), that is, ( ) ( ) ( )0 0 0 1 1 1, , , , ,n n n , and ( )1 0,n , are just the four corner 

normal vectors . (cf. Section 2.2). Together with that the z-axis points to the direction 

of the corner normal vectors, the normal vectors (12) or (13) can only point to the positive 

direction of the z-axis. In other words, only

00 01 11 10, , ,n n n n

( ) 0J u,v >  can exist. Otherwise, if , the four 

corner vectors of the normal vector surface (12) (or (13)) would point to the negative direction of 

the z-axis. It contradicts the fact that the z-axis points to the direction of the four corner normal 

vectors.  

( ) 0J u,v <

Finally, based on the convex hull property of the Bernstein polynomial and the above two 

propositions, the following bijective condition of the Bézier patch mapping can be deduced: 

Proposition 3 (Bijective Condition of BPM). If  

00 2 1 0 0 2 1 2 1 2 10 0 1 2 1 0 1 2 1  except that 0 0 0 0 ij m , , n m , nT ,i , , , m , j , , , n , T ,T ,T ,T− − − −≥ = − = − > > > >L L ,  

the Bézier patch mapping (6) is bijective. 

The proof of the above proposition is straightforward. If the condition is true, the Jacobi 
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determinant (7) is greater than zero based on the convex hull property, that is . 

Therefore, the Bézier patch mapping (6) is bijective. The bijective condition implies that the 

normal vectors of the Bézier patch point to the positive direction of the z-axis.  

( ) 0J u,v >

A geometric view of the above proposition is that, if the normal vector (12) points to the 

positive direction of the z-axis, that is, the direction of the corner normal vectors, the BPM (6) is 

bijective. In addition, for convenience of computation, the matrix form of pqT  (see Formula (11)) 

should be constructed, that is: 

 ( )1 21 1 2 22 2pq m n
D A E F B DT T E F

×
= ⊗= −⎡ ⎤⎣ ⎦ ⊗ . (14) 

Here, 1D  and 2D  are the diagonal matrices, 

 1 2
2 1 2 1 2 1 2 1 2 1 2 1

1 1 1 1 1 1
0 1 2 1 0 1 2

m m m n n n
D diag , , , ,D diag , , ,

m n
⎛ ⎞ ⎛− − − − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛

= =⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠ ⎝
L L

1
⎞⎞
⎟⎟
⎠⎠

1
y∇

M

; (15) 

⊗  denotes the kronecker product between the matrices  and ,  and , 1E 1F 2E 2F

 

00 0 00 0 1

1 1

1 0 1

1 1 1
0 0 0 0 0 0 1

 
1 1 1
1 0 1 0

i i ,n l l ,n

i m , i m ,n

m n m n m n m n
x x y

n n
E , F

m n m n m n
x x

m m n m

−

− −

⎡ ⎤− − − −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
∇ ∇ ∇⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥

⎢ ⎥= =
⎢ ⎥

− − −⎢ ⎥⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛
∇ ∇⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜⎢ ⎥− −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝⎣ ⎦

L L

M M M

L 0 1
1
1l m, l m,n

m n
y y

m n −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎞ ⎛ ⎞⎛ ⎞
∇ ∇⎟ ⎜ ⎟⎜ ⎟⎢ ⎥−⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

L

；(16) 

00 0 00 0 1

2 2

1 0 1

1 1 1
0 0 0 0 0 0 1

 
1 1 1
1 0 1 0

i i ,n l l ,n

i m , i m ,n

m n m n m n m n
y y x

n n
E , F

m n m n m n
y y

m m n m

−

− −

⎡ ⎤− − − −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
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m n
x x

m n −

1
x∇

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎞ ⎛ ⎞⎛ ⎞
∇ ∇⎟ ⎜ ⎟⎜ ⎟⎢ ⎥−⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

L

. (17) 

A is a  order matrix, and B is a (2m m m× + )1 ( )1 2n n n+ ×  order matrix,  

.    (18) 

 

Specifically, the matrix A consists of m identity matrices with order m+1. As shown in (18), 

each identity matrix shifts downwards one row from its previous identity matrix. For example, the 

A= 

 Im+1
 Im+1

 Im+1

 In 

 In 

B=  ,

 In 
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first one locates from the first row to the (m+1)-th row, the second one locates from the second 

row to the (m+2)-th row, and so on. The matrix B consists of n+1 identity matrices with order n. 

Also as shown in (18), each identity matrix shifts rightwards one column from its previous identity 

matrix. For example, the first one occupies from the first column to the n-th column, the second 

one from the second column to the (n+1)-th column, and so on. It should be pointed out that, since 

the diagonal entries of the diagonal matrices 1D  and 2D  are all greater than 0, they can be 

deleted from the Eq. (14), and only the remaining product of matrices needs to be considered. 

 

3.2 Initial construction of inner control points 

 

The BPM method adjusts the inner control points of the control grid to generate a regular   

Bézier patch (therefore, a bijective Bézier patch mapping). Hence, after getting the boundary 

control polygon ring of the control grid, the initial inner control points should be constructed as a 

start for BPM by the following method, which calculates the initial set of inner control points by 

an averaging method.  

 

 

 

Specifically, given a boundary control polygon ring (cf. Fig.5), m being the number of control 

points on each of a pair of opposite boundary polygons, and n for the other pair of opposite 

Fig. 5. Generation of the initial control grid. a. Three line segments are constructed by connecting 
the corresponding points in a pair of opposite boundary polygons. b. The initial control grid is 
formed by orderly connecting the corresponding points in the other pair of boundary polygons 
and the newly constructed control points. 
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P1

x 

y
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Q12 Q15
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Q14Q13
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boundary polygons, the initial inner control points are calculated as follows: 

1) Choose the pair of opposite boundary control polygons which has more control points than the 

other pair, e.g., suppose m>n, we choose the pair of opposite boundary polygons each of 

which has m control points. In the case of m = n, an arbitrary pair is chosen. In Fig. 5a, the 

pair of opposite boundary polygons, Q0 and Q1, is chosen, where 

 { } { }0 01 02 05 1 11 12 15 and Q Q ,Q , ,Q , Q Q ,Q , ,Q= =L L . 

2) Connect each pair of control points in the selected opposite boundary polygons with line 

segment in turn except the two pairs of end points, producing m-2 pieces of line segments. For 

example, three line segments, 2 02 12 3 03 13 4 04 1  L Q Q , L Q Q , L Q Q 4= = = , are generated for the case in 

Fig. 5a. 

3) Divide each of the generated m-2 pieces of line segments into n-1 portions with equal length, 

respectively, generating ( ) ( )2m n− × − 2  points. They are taken as the initial inner control 

points. In the case of Fig. 5, each of the line segments L2, L3, and L4 are divided into three 

equal portions, generating six inner control points (cf. Fig. 5b). 

4) Connect the corresponding control points in the other pair of boundary control polygons and 

the newly generated inner control points orderly, creating the initial m n×  order control grid. 

Such as the example in Fig. 5b, by connecting the corresponding points in the other opposite 

boundary polygons, namely P0 and P1, and the newly generated inner control points orderly, a 

 control grid is presented. 5 4×

The above construction starts at the pair of boundary polygons with more control points. 

However, if the boundary control polygon ring has very complex shape, some user interaction 

may be required to select a reasonable pair of boundary polygons for start. The initial control grid 

so constructed may have self-overlapping. Although not ideal, it is acceptable as a starting point. 

From the initial control grid, the BPM method adjusts its inner control points until the final control 

grid is the solution to a constrained optimization problem as described in the following section. 

 

4. Non-self-overlapping structured grid generation and improvement 

 

Based on the analysis in section 3, we are now at the position to compute the bijective Bézier 
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Patch Mapping (BPM) (6), which has ( ) ( )2 1m n 1× − × −  scalar unknowns in  . 

As discussed in the previous section, this is equivalent to making its Jacobi determinant (7) greater 

than 0. Suppose the four boundary curves satisfy the four constraints as presented in section 2.2, 

based on the bijective condition (Proposition 3), the Jacobi determinant (7) is greater than 0, if 

11 12  , , ,P P L 1 1m ,n− −P

00 0 2 1 2 1 0 2 1 2 10  0 1 2 1 0 1 2 1   0 0 0  0pq , n m , m , nT , p , , , m - ,q , , , n - ,except that T ,T ,T ,and T .− − − −≥ = = > > > > L L  

On the other hand, the structured quadrilateral grid generated by bijective BPM should be 

further optimized in order to improve the quality of the grid. In general, a good grid (actually the 

parametric curve grid of the Bézier patch ( )u,vr  (6)) should at least have no self-overlapping, 

and then additionally be as orthogonal as possible. Therefore, we adopt the optimization objective 

function [16, 17]: 

 
[ ] [ ]11 12 1 1

2 2

  0 1 0 1m ,n, , , , ,

arg min dudv
u v− − ×

⎛ ⎞∂ ∂
+⎜⎜ ∂ ∂⎝ ⎠

∫∫
P P P

r r
L

⎟⎟ . (19) 

The reason for adopting the above objective function is twofold. First, as a whole, the 

formula (19) is the membrane model which is a small deflection approximation of the surface area. 

However, if we examine the objective function (19) part by part, we can find out that the function 

[ ] [ ]11 12 1 1

2

  0 1 0 1m ,n, , , , ,

arg min dudv
u− − ×

∂
∂∫∫

P P P

r
L

 is related to the arc-length of the u-directional iso-parameter lines 

of the Bézier patch (6), and it tries to make the u-directional iso-parameter lines as short as 

possible. Similarly, the function
[ ] [ ]11 12 1 1

2

  0 1 0 1m ,n, , , , ,

arg min dudv
v− − ×

∂
∂∫∫

P P P

r
L

 attempts to make the v-directional 

iso-parameter lines as short as possible. 

Second, since 
2 2

2
u v u v
∂ ∂ ∂

+ ≥ •
∂

∂ ∂ ∂
r r r

∂
r ,the objective function (19) has another effect that 

makes the intersecting angle between the u- and v-directional iso-parameter lines as close to the 

right-angle as possible. 

Therefore, the whole problem, that is, non-self-overlapping structured quadrilateral grid 

generation and improvement, can be formulated as: 

 
[ ] [ ]11 12 1 1

2 2

  0 1 0 1

00 0 2 1 2 1 0 2 1 2 1

 :  0  0 1 2 1 0 1 2 1

                    0 0 0  0

m ,n, , , , ,

pq

, n m , m , n

arg min dudv
u v

subject to T , p , , , m - ,q , , , n - ,

except that T ,T ,T ,and T .

− − ×

− − − −

⎛ ⎞∂ ∂
+⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

≥ = =

> > >

∫∫
P P P

r r

 

 

L

L L

>

 (20) 
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This is a constrained optimization problem. The constraints ensure the bijectiveness of the Bézier 

patch mapping, which in theory guarantees that the generated structured quadrilateral grid will 

have no self-overlapping. Furthermore, the objective function tries to find the best grid from all of 

the grids with this property. 

To solve this constrained optimization problem, we employ the Matlab function fmincon 

under its default setting. It starts at an initial solution and finds a constrained minimum of the 

function (20). Here, the initial inner control points constructed by the method in the section 3.2 

can act as the initial solution. Details on the function fmincon can be found in Ref. [18]. Finally, 

we conclude the whole procedure by the following algorithm. 

 

Algorithm 1: Generating Bijective BPM 

1. Take as input the four planar curves enclosing a four-sided region R, which satisfy the 

four boundary constraints (section 2.2); 

2. Construct the initial inner control points (section 3.2); 

3. Construct the matrices T (formula (14)); 

4. Solve the optimization problem with constraints (20) using the MatLab function fmincon; 

the independent variables in the optimization are 11 12 1 1  m ,n, , , − −P P PL , as given in the 

formula (6). 

5. Generate the non-self-overlapping structured quadrilateral grid using the bijective BPM 

(formula 6). 

 

  
a. b. 
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c. 
Fig. 6. Even the initial control grid can generate a satisfactory structured quadrilateral grid. The initial control grid 

satisfies the bijective condition, so the generated structured quadrilateral grid has no self-overlapping. (a). The initial 

control grid; (b). The structured quadrilateral grid; (c). Zoom of part of the structured grid. 

 

5. Examples 

Several test examples are given in Fig. 6 to Fig. 9 to validate the presented BPM grid 

generation algorithm. The example in Fig. 6 demonstrates that, in some special cases, even the 

initial control grid can generate a satisfactory structured quadrilateral grid. The initial control grid 

satisfies the bijective condition, so it guarantees that the generated structured grid has no 

self-overlapping. In Fig. 7 and Fig. 8, the poor configuration of the initial control grid leads to a 

self-overlapping structured quadrilateral grid. By adjusting the inner control points so as to attain 

the solution to the constrained optimization problem (20), a non-self-overlapping structured 

quadrilateral grid can be generated. In the last example, shown in Fig. 9, the very narrow channel 

in the region forces even the four boundary polygons to intersect each other, thus leading to a very 

poor initial control grid, the BPM method is still able to produce a good grid without 

self-overlapping. 
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a. b. 

  
c. d. e. f. 

  

g. h. 
Fig. 7. The poor configuration of the initial control grid (a) leads to the structured quadrilateral grid (b) with 

self-overlapping, the close-ups of which are shown in (e) and (f). By adjusting the inner control points to attain the 

solution to the optimization problem (20), the configuration of the control grid (h) is improved, and self-overlapping is 

eliminated from its corresponding structured quadrilateral grid (g), the close-ups of which are shown in (c) and (d). 
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a. b. c. d. 

  
e. f. 

Fig. 8. The initial control grid (a) leads to the self-overlapping structured quadrilateral grid (b), by 
adjusting the inner control points to attain the solution to the optimization problem (20), the 
obtained control grid (c) generates the non-self-overlapping structured quadrilateral grid (d). (e) is 
the close-up of the self-overlapping portion in (b), and (f) is the close-up of the same portion in 
(d), but without self-overlapping. 
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a. b. 

  
c. d. 

  

e. f. 

  
g. h. 

Fig. 9. Even though the boundary polygons (b) of the 4-sided region (a) with very narrow segment, have 

self-overlapping, and the initial control grid (c) gives a self-overlapping structured quadrilateral grid (d), by 

adjusting the inner control points to attain the solution to the optimization problem (20), a new control grid (h) is 

obtained, which generates the structured grid (g) without self-overlapping. (f) is the close-up of the 

self-overlapping portion in (d), and (e) is the close-up of the same portion in (g), which has no self-overlapping. 

 

The very narrow segment 
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6. Conclusion 

 

The boundary-conforming mapping (BCM) method is often used to generate structured 

quadrilateral grids on planar four-sided regions. However, the bijective boundary-conforming 

mapping is difficult to obtain, because checking whether a map is bijective requires solving a 

highly non-linear system, which can only be done by numerical methods. Therefore, generally 

speaking, the BCM method is not able to ensure the non-self-overlapping property in the generated 

grid. In this paper, based on the convex-hull property of Bernstein basis, we develop a bijective 

Bézier Patch Mapping (BPM) algorithm to generate strictly non-self-overlapping structured 

quadrilateral grid in a planar four-sided region. The BPM method is simple and intuitive, and can 

generate true non-self-overlapping structured quadrilateral grid. Test examples are also given to 

validate the effectiveness and efficiency of the presented algorithm. 
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