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Abstract 

The swept volume of a moving solid is a powerful computational and visualization concept. It provides an excellent aid 
for path and accessibility planning in robotics and for simulating various manufacturing operations. It has proven 
difficult to evaluate the boundary of the volume swept by a solid bounded by trimmed parametric surfaces undergoing 
an arbitrary analytic motion. Hence prior solutions use one or several of the following simplifications: (1) approximate 
the volume by the union of a finite set of solid instances sampled along the motion; (2) approximate the curved solid by 
a polyhedron, (3) approximate the motion by a sequence of simpler motions. The approach proposed here is based on 
the third type of simplification: it uses a polyscrew (continuous, piecewise-screw) approximation of the motion. This 
approach leads to a simple algorithm that generates candidate faces, computes the two-cells of their arrangement, and 
uses a new point-in-sweep test to select the correct cells whose union forms the boundary of the swept volume. 
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1.  Introduction 
In this paper, we focus on the computation of the close approximation of the boundary of the volume swept by a free-form 

solid moving along a piecewise screw motion (Fig. 1). We say that a solid is free-form (as opposite to polygonal) when its 
boundary comprises smooth curved surfaces (for example trimmed bi-cubic or higher order parametric patches). The swept 
volume of a moving object provides a powerful computational and visualization tool in various applications. For example, it is 
used in NC machining simulation [El Mounayri98, Sambandan89, Weinert04, Chiou04] to model the volume removed by a 
cutter. It provides a valuable aid in the determination of collisions between the moving object and static obstacles [Keiffe91].  

 
Figure 1: A solid in screw motion interpolating two key-poses showing several instances of a generator curve G along the 
motion (left). The face E generated by sweeping a subset of G along the screw motion (center). The boundary of the swept 
volume made of the trimmed portions of faces of the initial and final instances and of the extrusions of generators (right). 
In this section, below, we explain the limitations and drawbacks of existing algorithms for generating boundaries of swept 
volumes and stress the research contributions presented in this paper over prior art. 
The volume swept by a moving solid is completely specified by a representation of the object and of its motion. It is defined 
as the infinite union of the instances of the solids defined by poses taken during the motion. Unfortunately, such implicit 
representations are ill-suited for further processing in solid modeling systems, which require the ability of efficiently testing 
whether a candidate point lies in the swept volume and of producing a representation of the surfaces that bound the volume 
suitable for computing intersections with rays, curves, or other surfaces, as required for rendering, interference detection, or 
Boolean operations. Hence, numerous researchers have developed techniques for computing more explicit, although usually 
approximate, models of the swept volume. We review them below. 
Spatial occupancy models divide space into voxels (usually aligned along a uniform grid). Binary voxel models may be 
derived by testing a sample point of each voxels for containment in the swept volume. For general motions, such a test is 
delicate and computationally expensive, because it involves computing geometric intersections between the boundary of the 
stationary solid and the path traveled by the candidate point when subject to the inverse motion. Hence, in practice, the motion 
is sampled and for each pose of the solid along the motion, the solid instance is rasterized (possibly using graphics hardware to 
perform a 3D rasterization) to classify all the sample point of each voxel. Voxels whose sample point belongs to at lease one 
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instance are assumed to be in the swept volume. Such volumetric models are valuable for a variety of applications. 
Unfortunately, unless prohibitively dense grids of voxels and small time steps are used, these models remain crude 
approximations of the true swept volume. They may miss small topological or morphological features. They also lack the 
surface continuity that may be necessary for many design, analysis, manufacturing, and simulation applications. 
To improve on this time-and-space sampling approach and produce a more accurate model, one may decide to only sample the 
motion (not the space) and to express the swept volume as the union of a finite set of continuous instances of the solid. 
Computing the union of a large number of instances is not only computationally expensive, but numerically delicate because 
consecutive instances are nearly aligned, leading to ill-conditioned surface/surface intersection problems where the two 
surfaces are nearly tangent to each other along the intersection curve. Furthermore, this approach usually produces scalloped 
approximations of the smooth envelope surfaces that are swept by the sharp convex edges of the moving solid. 
To alleviate the aliasing of the voxelized and finite union methods, one must generate a finite set of smooth surfaces, which, 
when combined with the surfaces bounding the initial and final instances, are guaranteed to contain the boundary of the swept 
volume. These smooth (envelope) surfaces are swept by characteristic points on the boundary of the moving solid. At any 
given time t during the motion, the characteristic points are fully defined as pointsets that satisfy equality or inequality 
equations. These equations simply cancel the dot-product between surface normal and the instantaneous velocity vector. The 
boundary of the swept volume is a subset of the union of these characteristic points gathered for all times t during the motion. 
Hence, since t is a parameter in these dot-product equations, we have a time-parameterized implicit definition of a superset of 
the boundary of the swept volume. Unfortunately, such implicit definitions cannot be directly processed by contemporary 
CAD/CAM systems. A natural solution is to convert these implicit equations into parametric representations of surfaces swept 
by these characteristic points as the slide on the surface and move with the object over time.  
To summarize, previously proposed sampling solutions produce non-smooth approximations or require numerically delicate 
and computationally prohibitive Boolean on a large number of instances, while previously proposed implicit formulations are 
impractical for further processing in application systems. 
One of the research contribution proposed in this paper is precisely focused on this problem of computing smooth parametric 
patches that accurately approximate these swept surfaces. Note that we must address two problems. The first one is to turn the 
standard implicit (dot-product) formulation of the characteristic points into a set of parametric curves. The second one is to 
establish a parametric correspondence between the time-evolving instances of these curves, which in general slide along the 
surface and may change topology.  
The first problem (structure the characteristic points into parameterized curves) has been addressed previously for a variety of 
motion types and surface types. At any given time t, the desired curves bound the portion of the boundary where the 
instantaneous velocity vectors points outwards of the solid instance. We introduce here a practical solution for computing the 
characteristic curves on bi-parametric surfaces. In particular, we present a method that generates an approximation of the 
characteristic curve on each bi-parametric patch. We provide the system of differential equations, which we solve to 
compute sample points along the characteristic curves as geometric intersections of parametric lines and curves in the 
parameter space of the bi-parametric surface. 
The second problem (correspondence through time) is more delicate, because for general motions, the characteristic curve is 
not fixed on the moving object, but evolves (i.e. slides along the surface of the solid) with time. Several authors generate the 
characteristic curves for successive time samples and then attempt to interpolate them by a piecewise linear or higher order 
surface. This process is unreliable, because the characteristic curves for two consecutive time samples may be drastically 
different. In fact, they may have different numbers of components. Even if a one-to-one matching between components can be 
established, the shapes and placement of the components may be drastically different. We eliminate this problem by restricting 
the nature of the motion to be a polyscrew (i.e. a smooth piecewise screw motion). Indeed, during a screw motion segment, the 
characteristic curve is identical (i.e., rigidly attached to the moving solid) on all instances, hence the mapping between the 
instances of the curves at consecutive time samples is the identity. The choice of using piecewise screw approximations of an 
arbitrary motion is justified by the fact that the instantaneous approximation of any motion is a screw (an instantaneous 3D 
motion cannot be modeled as a pure rotation or a pure translation) and by the fact that smooth polyscrew (piecewise-screw) 
motion that interpolates a given sequence of key-poses may be trivially obtained by subdivision in realtime [Powell05]. 
With this approach, we can apply the “generate, split, and test” paradigm used in solid modeling for boundary evaluation to 
the computation of the boundaries of swept volume. We believe that this has not been done previously. This paradigm 
simplifies the implementation and leverages commercially available code for computing intersections of surfaces and curves. 
In our approach, we generate a sufficient set of candidate surfaces as explained above, then, to trim them to the portion on 
the boundary of the swept volume, we divide them into cells along their curves of intersection with other surfaces, finally, we 
classify the cells to discard those in the interior of the swept volume and to retain those on the boundary of the swept volume. 
We use a commercial system to compute the surface/surface intersections robustly and efficiently. 
Since, during the computation of the boundary of the swept volume, the boundary is not known, we cannot use it for testing 
whether the given point lies in the interior of the swept volume. However, the candidate set is split into cells, such that each 
cell is either on the boundary of the swept volume or entirely in its interior. One may be tempted to conclude that cells that 
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cannot be reached from infinity without crossing another cell are necessarily interior. Unfortunately, the assumption is wrong, 
since the boundary of the swept volume may comprise several shells, some of which are bounding interior cavities. For 
example, consider a torus T swept by a ball of radius r initially positioned at (2r,0,0) as it rotates 360 degrees around the z-
axis. Now, let W be the volume swept by T as T is rotated around the x-axis. W is a ball of radius 3r that has an interior 
spherical cavity of radius r. Hence, previously proposed approaches based on this assumption are wrong. Algorithms for 
correctly classifying a point against a swept volume are challenging. We introduce here a simple solution, which is practical 
for the case of screw motions. For the classification of the cells against the swept volume, we use a novel screw-shooting 
technique, which builds upon the classic “ray-shooting” approach for point-membership classification used in graphics and 
modeling. To classify a cell, we trace a helix from a point of the cell and test whether the helix intersects the initial instance of 
the solid. This helix-solid intersection test is well supported in commercial CAD systems. 
To summarize, the research contributions reported here are: 
- The formulation of the swept volume boundary computation as a “generate, split, and test” paradigm 
- The equations identifying the characteristic curves on bi-parametric patches under screw motion 
- A practical technique for constructing parametric patches that approximate the envelop surfaces 
- An efficient algorithm for testing whether a point or cell lies on the boundary of the swept volume 
- A formulation that makes it possible to use commercial packages for computing the needed intersections 

In the remainder of the paper, we define our terminology (2), review the construction and smoothing of screw motions (3), 
overview the underlying principles upon which our approach is based (4), explain how to compute the characteristic curves on 
smooth surfaces (5) and on sharp edges (6), explain how to extrude them into surfaces (7), how to subdivide them into cells 
(8), and how to classify each cell (9). Then we discuss the details of the particular implementation we have produced (10). 

2.  Poses, motions, and swept volumes 
To define the swept volume, we first define a pose and a motion. A pose corresponds to a rigid body transformation, which 

is a combination of a rotation with a translation. Let W be a solid and let P be a pose. Often P is represented by a 3×4 matrix [I 
J K O], whose column vectors define the images by P of the three basis vectors and of the origin of the global coordinate 
system. Hence the three vectors (I,J,K) form the ortho-normal basis of the local coordinate system and point O is its origin. By 
W@P we denote the instance of W transformed by P. Hence, P is a bijection that maps each point (x,y,z) of W onto the point 
O+xI+yJ+zK of W@P. A motion may be defined by a pose-valued function P(t) of time-parameter t. We use the notation P(.) 
when referring to the family of poses for all values of t in a given domain. Hence, W@P(.) describes a motion of W, i.e., an 
animation. In this paper, we study motion segments that each interpolate two poses, an initial pose A and a final pose B. To 
simplify discussion and without loss of generality, we re-parameterize time so, that during the motion, t∈[0,1] with P(0)=A 
and P(1)=B. To further simplify notation, the pose at time t of such an interpolating motion segment (hereafter simply called 
motion) will be denoted P(t,A,B). As W is moved by P(t,A,B), its instance at time t will be denoted by W@P(t,A,B). W@A 
and W@B are called the initial and final instances. A moving object may be represented by a hyper-solid H in four-
dimensional space, such that a slice of H by a hyper-plane of constant t corresponds to W@P(t,A,B). The 3D volume swept by 
W during this motion is the normal projection of this hyper-solid into the three-dimensional space t=0. It will be denoted 
S(W,A,B). Note that S(W,A,B) is the infinite union of  the W@P(t,A,B) instances for all values of t ∈[0,1].  

3.  Screw motions 
Two arbitrary key-poses may be interpolated by a variety of motions. If no restriction are imposed on the type of motion, it 

may prove expensive to compute a boundary representation of S(W,A,B) [Abdel-Malek98, Blackmore97, Blackmore99, 
Hu94a, Hu94b, Parida94, Martin90, Rossignac84, Kim04]. Many systems resort to a graphic superposition of the instances of 
W@P(t,A,B) for a finite set of samples of t or restrict the domain to polyhedra [Schroeder94, Rossignac01].  

For more rigorous applications such as machining, the true boundary of the volume swept by a free-form solid may be 
required. To provide such a functionality, we propose a method for computing a representation of the precise boundary 
∂S(W,A,B) of S(W,A,B) when W is a free-form solid and when P(t,A,B) is a screw motion, exploiting the properties of screw 
motions to simplify the underlying algorithm and to reduce its computational cost. We chose to focus on screw motions 
[Ohwovoriole81] for their simplicity, uniqueness, independence of coordinate system, and computational advantages, which 
are reviewed below. Screw motions extend the commonly used rotations and translations, while retaining their representational 
conciseness and specific geometric properties. Screw motions have been used in numerous applications, including collision 
prediction in manufacturing, robotics, or animation [Redon00, Redon01, Kim03, Buss05], and free-form shape deformations 
[Llamas03, Llamas05].  

 A polyscrew (i.e. piecewise-screw motion) [Powell05] can be specified in terms of a sequence of user-controlled key-poses. 
Each pair of consecutive key-poses, A and B, is interpolated by a screw-motion segment P(.,A,B) [Zefran98]. Linear (and even 
polynomial) mappings between the time parameter of each screw motion and the global time may be used to control the 
overall animation speed and acceleration. A minimal angle screw segment is uniquely defined by its two key-poses (except for 
ambiguities created when two consecutive poses correspond to a 180 degrees rotation) and is coordinate system independent. 
Furthermore, the motion is independent of construction steps through which the key-poses were specified. A polyscrew is a 
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continuous motion, but usually exhibits derivative discontinuities at the key-poses. To reduce these discontinuities, one may 
increase the sampling (number of key-poses) or perform polyscrew smoothing [Powell05] through an interpolating 
“Split&Tweak” subdivision process [Rossignac04], which introduces additional key-poses converging to a smooth motion 
which interpolates the initial control poses. Throughout this paper, we assume that a sufficiently dense set of key-poses has 
been obtained (either through sampling or smoothing) and focus on the computation of the volume swept by the solid as it 
moves along a screw motion segment that interpolates two such consecutive poses.  

A screw motion segment P(t,A,B) is a constrained combination of two simultaneous motions: a linear translation by 
distance td along a vector s and a rotation by tb around a constant axis (screw axis) parallel to s and passing through an axis 
point p. Note that these two transformations (rotation and translation) commute. Since a screw motion segment is defined by 
the four parameters: direction s, axis point p, total displacement d and total angle b, we denote it by M(s,p,d,b). Note that an 
infinite number of pairs (A,B) of poses define the same screw motion segment M(s,p,d,b). Also note that M(s,p,d,0) is a pure 
translation and that M(s,p,0,b) is a pure rotation. Hence a screw motion generalizes these two simple motions.  

A simple and efficient algorithm for computing the screw motion segment parameters (s, p, d and b) from a pair of initial 
and final poses (A, B) was described by Rossignac and Kim [Rossignac01] (Fig. 2). Let the matrices of the starting and ending 
poses be [ IA JA KA OA] and [ IB JB KB OB]. To obtain the parameters of the interpolating screw, let I:=IB–IA, J:=JB–JA, K:=KB–
KA, and O:=OB–OA. At least one of the three cross-products I×J, J×K, and K×I is not a null vector. Without loss of generality, 
assume that I×J is the longest of the three (otherwise rotate the symbols). Compute s:=I×J and normalize it with s:=s/||s||. 
Compute b as the angle between s×IA and s×IB. Compute d as the dot product O•s. Finally, compute 
p:=(OB+OA+(s×O)/tan(b/2))/2. This construction ensures that d is positive and that b is between 0 and 180 degrees. 

 
Figure 2: Construction of the screw motion parameters s, p, d and b from the initial and final poses A and B. 

The velocity v(q) of a point q that is subject to a screw motion M(s,p,d,b) is the vector sum of a displacement by d along s 
and a displacement by a quantity br along the vector t that is tangent to the circle which is the planar projection along s of the 
helix upon which q travels. The quantity r is the radius of that circle, i.e., r=||hq||, where h = p + (pq • s) s is the closest 
projection of q onto the screw axis. Thus, we have v(q)= ds + brt. The vector rt is orthogonal to both s and hq and has for 
magnitude ||hq||. Consequently, rt = s × hq and v(q) = ds + bs × hq. 

4.  Overview of the proposed approach 
Our approach for computing ∂S(W,A,B) and our contributions are based on the following series of observations expanded 

in the remainder of the paper. Note that (except for the last point in bullet G), these observations have been published and used 
previously. We review them here to justify the validity of the proposed approach. 

A. The velocity v(q) of a point q of W is constant with respect to the object's local coordinate system. To be more precise, 
the velocity vector v(q) may be computed using the screw motion parameters for a point q on one instance of W. We can 
express its coordinates in the global coordinate system. These coordinates will of course change with time as W moves 
along the motion. We can also express the coordinates of vector v(q) in the local coordinate system of W, by simply 
computing its dot products with the basis vectors of that local coordinate system. These local coordinates remain 
constant throughout each screw segment of the motion. The simplicity, accuracy, and performance of the proposed 
approach are all based on this crucial observation. The trajectory of a point q in the global coordinate system is a helix 
arc defined as the set {q@P(t,A,B) with t ∈[0,1]}. 

B. Consider a point q of the smooth portion of ∂W. Let n(q) be the normal to ∂W at q. We say that q is an ingress points 
when n(q)•v(q)<0, a grazing point when n(q)•v(q)=0,  and an egress point when n(q)•v(q)>0 (see Fig. 3). Now consider 
a point q on a sharp convex edge e of ∂W. We say that q is a motion silhouette (or simply silhouette) point (with respect 
to the motion direction) if in an infinitely small neighborhood around q one of the faces incident on e contains egress 
points and the other ingress points. The generator G(W,A,B) is the set of the grazing and silhouette points of ∂W. In 
general, it is composed of loops of curves that separate the egress from the ingress points. Occasionally, it may contain 
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two-dimensional regions or isolated points with tangential velocity. Since the velocity of a point is constant in the local 
coordinate system, G(W,A,B) remains fixed in the coordinate system of the solid throughout the motion. 

C. The extruded set E(W,A,B) is the sweep G(W,A,B)@P(t,A,B). Each one of its faces is the extrusion of a curve R(u) of 
G(W,A,B)) and hence may be expressed in parametric form F(t,u).  

D. The candidate set C(W,A,B), defined as ∂(W@A) ∪ ∂(W@B) ∪ E(W,A,B) may be decomposed into a geometric 
complex [Rossignac89] K of two-dimensional cells (faces) by using surface/surface intersection tools available in 
commercial CAD systems. Note that C(W,A,B) contains the boundary of S(W,A,B), which is the union of a set J of the 
cells of K. 

E. Because C(W,A,B)⊂S(W,A,B), the unwanted cells in the set I=K–J are interior to S(W,A,B). Hence the cells that form 
∂S(W,A,B) may be generated by identifying and discarding all cells of K that are in the interior of S(W,A,B). 

F. To test whether a cell Q lies in the interior of S(W,A,B) it suffices to generate an arbitrarily chosen witness point q in Q 
and to test whether the back helix segment, q@P(t,B,A) for t∈[0,1] intersects ∂W@A (Fig. 3). 

 

 
Figure 3: In two dimensions, the boundary (thick curve) ∂S(W,A,B) of the swept region is composed of the egress points 
(green) of ∂W@A, of the ingress points (red) of ∂W@B, of the extrusions of silhouette vertices (blue) and of grazing points. 
We know that cell Q is inside S(W,A,B) because the back helix (magenta) starting at a witness point q of Q intersects the 
interior of W@A. 

Note that one could formulate S(W,A,B) as the regularized union of face-sweeps, each computed as the volume swept by a 
different face of ∂W. However, most of the faces bounding the individual face-sweeps are interior to S(W,A,B) and are 
trimmed away during the union. The approach we propose here avoids the unnecessary cost of generating and then trimming 
most of these faces. 

Our swept-boundary evaluation algorithm performs the five steps listed below. We discuss the underlying derivations and 
their implementation in the following sections and show results at the end of the paper.  

(1) We construct the curves of the generator G by trimming convex edges to their silhouette portion and by fitting spline 
curves through series of consecutive grazing points in each face of W. 

(2) We extrude each curve of G along P(t,A,B) obtaining a parametric face of the extruded set E. 
(3) We consider the set C of faces of E, of ∂W@B, and of ∂W@A. We decompose each face F of C into maximally 

connected cells bounded by the intersection curves between F and the other faces of C. 
(4) We discard each cell Q for which the helix q@P(.,A,B) from an arbitrary witness point q in Q intersects W@B.  
(5) We combine the remaining cells to produce ∂S(W,A,B) 

5.  Grazing points, characteristic curves, and envelopes 
Consider the general case of a time-evolving (i.e. deforming) smooth surface, U(t). At any moment t, its characteristic 

curve is the limit of U(t)∩U(t+ε) as ε tends towards zero. The envelope of the family U(.) is the union of the continuous set of 
these characteristic curves. Note that in general, the shape of these characteristic curves changes with time. Analytical 
formulation of envelopes has been studied for a variety of families of shapes. These include the canal surfaces of families of 
spheres [Monge1850, Rossignac85].  

We are concerned with rigid bodies. The characteristic curves of rigid bodies under a continuous motion are the maximally 
connected one-dimensional sets of the grazing points. Their nature depends on the type of motion and on the nature of the 
surfaces that bound the moving object. The envelopes swept by these characteristic curves may be formulated using envelope 
theory [Wang86], differential equations [Blackmore92b, Blackmore99, Ganter93], and Jacobian Rank Deficiency 
[AbdelMalek97, AbdelMalek98]. Together with the boundaries of the initial and final instances, these envelopes form a set 
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that is guaranteed to contain the boundary of the volume swept by a smooth solid. Several practical techniques were 
introduced to compute such envelopes and to trim them to the boundaries of swept volumes of moving objects [Blackmore92, 
Blackmore99, AbdelMalek98, Yang04]. They are reviewed by Blackmore et al. [Blackmore97].  

During general motions, the topology and shape of the characteristic curves changes over time. For screw motions however, 
they remain fixed on the object, and hence may be pre-computed.  

First, we review the computation of the characteristic curve for a planar face in screw motion by M(s,p,d,b) [Weld90, 
Rossignac01]. Consider a face F of ∂W@A with a normal direction n. When n×s=0, no characteristic curve exists on F. Hence, 
we will now assume that n is not parallel to s. A point q of F is grazing if n•v(q)=0, which yields dn•s=bn•(s×qh) and 

b(s×n) • hq = ds • n [1] 
Note that points q that satisfy equation [1] lie on plane U having normal n×s and passing through p. Hence, the characteristic 

curve is the line segment L=F∩U. It may be efficiently computed as a plane/face intersection. We avoid the cost of this 
process when the four vertices of a rectangle that contains F all lie on the same side of U. The characteristic curve is shown 
(the left of Fig. 4) for a polyhedron in screw motion. 

 
Figure 4: The characteristic curves are drawn in magenta on the planar faces (left) and on curved faces of a solid  (right). 
Both screw motions have a vertical axis (not shown for the motion on the right, which has a small rotation angle b). 

Now, let us turn to the computation of the characteristic curves on curved surfaces. A closed form solution for the restricted 
set of natural quadric surfaces undergoing an instantaneous screw motion was proposed by Hu and Ling [Hu94, Hu94b]. 
They have further combined this technique with the local approximation of an arbitrary motion by an instantaneous screw 
motion. At each time step, they compute an instantaneous screw motion approximation from the velocities and positions of 
three vertices, then they use the approximating screw motion to compute the characteristic curves on the faces and edges of the 
object in its current position, and finally produce a polygonal surface that interpolates two consecutive characteristic curves. 
This interpolation may prove delicate, since characteristic curves may have different topologies. The resulting polygonal 
surface is then trimmed to the part that bounds the swept volume by computing a series of cross-sections, performing a 2D 
selection of bounding curves, and then interpolating the resulting 2D contour by a triangular surface. The result is a polyhedral 
approximation of the boundary of S(W,A,B). To complement this prior art, we propose an approach for computing the grazing 
points on polynomial parametric patches undergoing a screw motion segment and for interpolating them with a spline curve 
(the right of Fig. 4). 

When the face F is curved, the normal n varies with q and thus will be denoted n(q). The set of points q with velocity 
orthogonal to n(q) is the surface defined by n(q)•v(q)=0. Developing this equation yields  

b(n(q)×s)•qp = dn(q)•s [2] 
Consider a parametric surface F(u,v). For example, F(u,v) may be a bi-cubic Bezier or a bi-quintic polynomial patch. We 

treat it as a family of iso-parameter curves, Cv(u). We also define the field tv(u) of surface tangent bi-normal to Cv and the field 
C’v(u) of tangents to Cv. For a given value of v, we substitute q by Cv(u) and n(q) by tv(u)×C’v(u) in [2] and solve for u, 
obtaining zero or more solutions ui and hence corresponding grazing points Cv(ui). We repeat this for a dense set of v values 
and then switch the role of u and v and do this again. Hence, we have decomposed the parameter space of F into square cells, 
each bounded by two horizontal (constant u) and two vertical (constant v) edges. We split cells into 4 quadrants recursively 
until none of their edges contain more than one grazing point (Fig. 5) or until a prescribed resolution is reached. To split a cell, 
we create mid-parameter curve segments in u and v and solve [2] to compute the grazing points they contain. Then, we order 
the grazing points along the characteristic curves by following them in parameter space from one cell to an adjacent cell, in a 
manner similar to the surface/surface intersection solution proposed for the set of natural quadrics and tori [Rossignac85]. We 
fit a spline curve in 3D through each run of ordered points and use it as an approximation of the corresponding characteristic 
curve. If face F is a trimmed subset of a complete patch, we use the trimming curves in the parametric domain to trim the 
characteristic curve.  
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Figure 5: Each cell in the parametric domain of a patch is split recursively until no edge of a cell contains more than one 
grazing point. 

6. Silhouette edges 
In this section, we focus on the identification of the silhouette portions of the sharp edges of a solid in screw motion. Before 

we define sharp edges, consider an infinitely small tube T around the interior of an edge E of W. Let N=(T∩∂W)–E. We say 
that the connected components of N are the face-borders incident upon E. Because W is a solid, E has an even number, 2k, of 
borders. E is manifold when k=1 and non-manifold otherwise. It is possible to treat a non-manifold edge with k pairs of 
incident face-borders as k coincident manifold edges [Rossignac99] by matching face-borders into pairs of compatible 
orientation. Hence, we will now assume that such a matching has been performed and that all edges have exactly two incident 
face-borders. Note that although unusual, these two face-borders may belong to the same face. 

Consider a point q in the interior segment of an edge E. Let t denote the tangent to E at q. Let nL and nR denote the limits of 
the outward pointing normals to points on the two face-borders (L and R) as they converge to q.  Furthermore, assume that the 
binormal b=nL×t points towards the interior of face-border L. We say that E is convex at q if  b•nR>0, flat if b•nR=0, and 
concave if b•nR<0. We assume that all sharp curves of ∂W have been split into edges at points where the number of face-
borders or the convex/flat/concave classification changes.  

Note that concave edges cannot contribute to ∂S(W,A,B) and that grazing points and characteristic curves that happen to 
coincide with flat edges are computed using the technique described in the previous section.  

Let v(q) denote the velocity of q. We say that q is a silhouette point if  (v(q)•nR)(v(q)•nL)≤0. As q slides along E, its status 
(silhouette or not) changes at places where v(q)•nR=0 or v(q)•nL=0. In each one of these equations, we substitute v(q) with 
ds+bs×hq and the normal nR or nL with the biparametric expression of tv(u)×tu(v), using the (u,v) parameters of q in the 
corresponding patch. We solve the equations, compute the corresponding points and use them to split E into segments that are 
silhouette or not silhouette. The silhouette edges are shown (Fig. 6) for a polyhedron and a curved object in screw motion. 

 

                                
 

Figure 6: The silhouette edges are drawn in cyan on the polyhedron (left) or on the free-form shape (right). Note that the 
concave edges are not included in the silhouette edges. 
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7. Extrusions 
∂S(W,A,B) is a subset of the union of 4 sets: (1) the egress points of ∂W@B, (2) the ingress points of ∂W@A, (3) the faces 

swept by the characteristic curves, and (4) the faces swept by the silhouette edges. 
We split ∂W into its egress and ingress parts using the all the characteristic curves and silhouette edges computed as 

explained above. The algorithm used for splitting the boundary if W is similar to the one, discussed in the following section, 
for computing cells of the arrangement. Then, we apply the B pose to the egress points and the A pose to the ingress points, 
obtaining the first two sets (Fig. 7). 

 
 
 

Figure 7: The boundary of each solid is split along the characteristic curves and silhouette edges into its ingress or egress 
parts, which are placed at the initial and final poses respectively. 

When a characteristic curve or silhouette edge is a straight line segment, its extrusion along a screw motion is a ruled 
surface (Fig. 8, left) for which we can obtain a closed form expression. However, for the sake of simplicity, we ignore these 
special cases and convert them to splines and treat them as general curves when computing the sweep. To extrude a general 
curve G along a screw motion segment, we sweep the control points of its approximation. Each control point travels along a 
helix. We approximate this helix with a spline. Hence, we obtain a two-dimensional array of control points for each extruded 
face. We use this control grid to define a parametric patch that approximates the extruded face (Fig. 8, right). 

 

                                                                                      
 

Figure 8: Extrusion of the characteristic curves or of the silhouette edges. 

8. Subdivision  
To subdivide each extrusion face and each face of ∂W@A and ∂W@B, we use commercially available tools for computing 

intersections of parametric patches. These tools report not only the curves where two faces intersect, but also the curves where 
the boundary of one face intersects another face. We compute all the pair-wise intersections (Fig. 9). The resulting intersection 
curves are represented as trimming curves in the parametric domain of each patch. Then, we combine them with the initial 
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trimming curves of each face and compute the connected component (two-cells) of the complement of the union of these 
curves in the parameter domain. We call these relatively open components the cells of the subdivision of the face. We compute 
the boundaries of these cells by walking along the curves in parametric space, never crossing a curve. A good metaphor to 
understand this process is to think of the intersection curves as streets and to walk all the sidewalks never crossing a street. 
Each walk is a circuit and defines a bounding loop of a cell. Note that it is possible for a cell to have more than one bounding 
loop. We say that it is a cell with one or more holes. 

 
Figure 9: A “staircase” ruled face is swept by the silhouette portion of an edge. It is split in two cells by a curve that is 
composed of its intersection (blue) with a square face and of its intersection (green) with a portion of a nearly cylindrical 
“wall” that follows the staircase. 

Note that a cell either lies entirely on ∂S(W,A,B) or entirely in the interior of S(W,A,B). In the next section, we explain how 
to discard cells that lie in the interior of S(W,A,B). 

9. Trimming 
To test whether a particular cell Q lies inside S(W,A,B), we generate an arbitrary witness point q in the cell by shooting an 

inward ray from the midpoint of one of its edges in the parametric domain. If q lies in the interior of S(W,A,B), we conclude 
that Q does too and hence discard it. Unfortunately, we cannot directly test whether q lies in the interior of S(W,A,B) because 
we do not have an explicit representation of S(W,A,B). Hence, we use a new approach for point-in-sweep testing (Fig. 10), 
which we call helix-shooting, in analogy to the standard ray-shooting approach for point-in-shape testing. 

 
 

         
Figure 10: The extrusion face is subdivided into the two cells (left) by the two intersection curves connected (green and blue). 
Then the point-in-swept test is applied to the two cells by shooting helices from a witness point of each cells. The figure (left) 
The helix shot from the upper cell intersects the initial instance (left), which implies that the cell lies in the interior of the 
swept volume and therefore must be discarded. The helix shot from the other cell misses the initial instance, indicating that the 
cell is on the boundary of the swept volume (right). 

Our point-in-sweep test, is based on the observation that q lies in the interior of S(W,A,B) if and only if the back back helix 

: Witness point 
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q@P(.,B,A) intersects the interior of W@A. To justify this result, note that q lies in the interior of S(W,A,B) if W collides 
with q during the motion. In the local coordinate system moving with W, point q follows the backward motion P(.,B,A). 
Hence, we can test for collision in the local coordinate system of W@A by testing whether the back helix arc swept by q hits 
the boundary of W@A. To do this, we approximate the back helix q@P(.,B,A) by a spline curve and use commercially 
available tools for testing whether that helix intersects W@A. 

10. Summary of the algorithm 
We have described above the underlying principles and the details of each step. For clarity, we summarize in this section the 
algorithmic steps of our approach. 

1) Given a solid W, its initial pose A, and its final pose B for a portion of the motion of W, we compute the parameters of 
the screw taking A to B. 

2) For each patch P bounding W, we compute, in the parametric domain of P, a parametric approximation of the 
characteristic curves in P, defined as the set of points where the instantaneous velocity vector is tangent to P. 

3) For each edge E bounding W, we compute the motion silhouettes (edge-segments that separate the ingress and egress 
portions of the incident patches). 

4) We extrude the characteristic curves and edge segments along the screw and obtain a set of candidate parametric 
patches. 

5) We add the boundary of W at pose A and at pose B to the candidate set, which now is guaranteed to contain the 
boundary of the swept volume. 

6) We split each patch of the candidate set into cells using the intersection curves of that patch with all other patches in the 
candidate set. 

7) We discard cells that lie in the interior of the swept volume. To test each cell, we shoot a screw segment from it and 
check whether the segment hits W at pose A. 

10. Implementation details 
We discard cells that are in the interior of the swept volume by shooting a screw segment from an arbitrary point in each cell 
and testing whether the screw hits W at pose A. 

We have implemented the algorithm described here in C using the API of CATIA [CATIA97a, CATIA97c]. The 3D images 
shown in the paper were generated using CATIA viewing facilities [CATIA97b]. The initial free-form shapes were bounded 
by bi-quintic Bezier patches. The original sampling (before recursive refinements) splits the parameter domain of each patch 
into 20x20 squares. We formulated the normal field of these patches as a patch of degree 9 in u and v. We used splines 
(piecewise quintic polynomials) to interpolate the characteristic curves and the helices. To compute grazing points, we need to 
find the roots of a 14th degree polynomial, which we do using Maple [Maple]. The algorithm takes an average of 8 seconds on 
an IBM RS/6000 workstation for each one of the sweeps generated of the simple objects used for illustration in the paper.  

Fig. 11 shows the egress points and ingress points as well as the extrusion faces for the free-from objects of Fig. 1. Fig. 12 
illustrates the application of the algorithm to a NC simulation. It shows the initial and final poses of a square-shaped cutter, 
and the swept volume generated between the two poses. Since the swept volume is represented by a valid boundary model, it 
can be used as an argument of a Boolean operation to compute the material removed by the cutter. 

 
 

Figure 11:. The egress points and ingress points of the curved object of Figure 1 (left). The extrusion faces by sweeping the 
characteristic curves and the motion silhouette edges (right). 
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Figure 12: From left to right: The initial and final poses of the square cutter and the material. The volume swept by the cutter 
in screw motion. The material removed by the cutter computed as a Boolean intersection . 

12.  Summary and conclusion  
We present an algorithm for computing the boundary of the volume swept by a free-form solid in screw motion. The 

algorithm exploits the fact that the characteristic curves and the motion silhouette edges are fixed on the moving solid. It 
extrudes these curves to produce a set of faces, which, along with the faces of the initial and final instances, are subdivided at 
their intersections into cells. Each cell is tested by shooting a helix segment from an arbitrary point in the cell. If the helix 
segment hits the final instance, the cell is discarded. Our implementation supports solids bounded by parametric patches and 
approximates extruded faces by parametric patches and helices by parametric splines. It uses the tools provided in CATIA for 
computing intersections. 
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