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Abstract. We present a simple, efficient, and stable method for
computing—with any desired precision—the medial axis of sim-
ply connected planar domains. The domain boundaries are as-
sumed to be given as polynomial spline curves. Our approach
combines known results from the field of geometric approxima-
tion theory with a new algorithm from the field of computational
geometry. Challenging steps are (1) the approximation of the
boundary spline such that the medial axis is geometrically stable,
and (2) the efficient decomposition of the domain into base cases
where the medial axis can be computed directly and exactly. We
solve these problems via spiral biarc approximation and a ran-
domized divide & conquer algorithm.
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1 Introduction

The medial axis has been introduced by H. Blum [5] as a concept
for efficient shape description. Meanwhile it has proven useful
in many scientific areas, and its fast and stable computationis
of vital interest. However, even inR2, the task of computing
the correct medial axis of a given free-form shape is a highly
nontrivial one. See Fig. 1 for a first example.

The efficiency and quality of the axis’ computation critically
depend on the available boundary representation of the input
shape. Algorithms for polygonal boundaries [10, 22, 26, 34]
work at satisfactory runtimes, but do not produce stable me-
dial axis approximations for the original shape without expensive
pruning. The same is true for point sample representations [4, 6],
which also (and even more) tend to increase the data volume.

On the other hand, implementations that work directly on
curved boundaries suffer from high numeric complexity and the
arising robustness problems. Also, they usually are inherently
slow, as many existing efficient algorithms do not apply to com-
plicated curved objects; see e.g. [13] for a short overview of rele-
vant previous work until 2002. As interest in computing the me-
dial axis has found renewal in recent years, let us briefly further
comment on this challenging problem.

There exist two principal problems—apart from stability
issues—that need to be addressed when computing a medial axis.
One of them is determining the combinatorial structure (i.e., the
topology) of the medial axis. This problem has been well solved,

Figure 1: Medial axis of a planar free-form shape. The shape was
approximated by 9440 arcs within 0.65 seconds, and the compu-
tation of the medial axis took less than 1 second. All computa-
tions were done on standard PCs.

from both a theoretical and practical point of view, only forpoint
sample and polygonal inputs. For curved boundary objects, most
theoretically fast algorithms compute the entire Voronoi diagram,
leaving the need of pruning away unwanted and incorrect fea-
tures. Complicated merging, or insertion, steps have to be per-
formed, depending on whether the algorithm was based on divide
& conquer [25, 34], or on incremental insertion [3, 31]. As such
steps process previously computed parts of the medial axis,they
are numerically involved and subject to errors if not implemented
with care [19].

Algorithms based on domain decomposition [11] avoid these
drawbacks. They lead to a divide & conquer construction [12,18]
as well, but their merging steps are trivial, as effort is shifted to
the process of splitting into independent subproblems. In other
words, they allow for separating combinatorial calculations from
geometric calculations in the medial axis computation. Theal-
gorithm we are going to describe in this paper is of this type.

Even when the topology of the medial axis is assumed to be
known, the (usually hard) problem of computing its bisectors re-
mains. Quite a lot of work has been devoted to this geometric
aspect of the medial axis. See, for example, [17] who focus on



rational boundary curves, and [15] where curvature properties are
utilized for treating cubic boundary splines. A popular approach
is local tracing [14, 32], where the medial axis is calculated by
tracing either the shape boundary or the axis bisectors. In par-
ticular, so-called predictor/corrector methods [8, 15] have been
proposed for approximating the medial axis in a piecewise man-
ner.

All these approaches described above are rather theoretical
work—a practical one is given in [16]. They compute the medial
axis by first approximating the boundary spline curve by circu-
lar biarcs and then applying the VRONI-package developed by
M. Held [22]. VRONI can compute the medial axis of a collec-
tion of N points and line segments in (practically)O(N log N)
time; circular arcs are accepted, too, and are converted into a
polygonal description. The implemented algorithm is basically
incremental insertion, and is capable of constructing the entire
Voronoi diagram. Although the computation is done very fast
in terms of the input size,N , the resulting two-step approxima-
tion [16] blows up the data volume significantly.1 Also, no guar-
antee for the stability of the medial axis approximation canbe
given.

In the present paper, we describe a simple and fast method that
is less data consuming (and thus is efficient also in this sense),
and that comes with a stability guarantee. We use an approxi-
mation of the shape boundary by biarcs as well, though in a tai-
lored manner. Our algorithm then works directly (and exactly)
on shapes bounded by circular arcs. This bears two major ad-
vantages: (1) For a fixed accuracy of the approximation, the data
volume drops fromN to n = O(N2/3) compared to using a
polygonal description. (2) The biarc approximation schemecan
be tuned to preserve monotonicity of curvature of the original
shape, which makes the computed medial axis converge to the
exact one. Note that the medial axis of a shape with piecewise
circular boundary is composed of conic arcs, and thus has the
same analytic complexity as for polygonal domains.

We adopt the shape decomposition approach [11] to achieve
simplicity and numerical robustness of the algorithm. As de-
composition is by inscribed maximal disks, it is naturally suited
to shapes with piecewise circular boundaries. The resulting
randomized divide & conquer algorithm runs in expected time
O(n log n) if mild assumptions on the graph diameter of the me-
dial axis are met. A high-level description, including a formal
runtime and data volume analysis, and a proof of convergence
(medial axis stability) are given in [1]. The theoretical founda-
tions being laid, the paper at hands concentrates on practical and
experimental aspects of the algorithm.

Section 2 details the method we use for approximating a given
polynomial spline curve by spiral biarcs. A careful description
of our medial axis algorithm follows in Section 3. Continuing
preliminary work in [2], a variant of the algorithm is workedout
that performs the best concerning speed while ensuring robust-
ness in the presence of geometric degeneracies. This includes

1We recently learned that an advanced version of VRONI is under implemen-
tation, which will be able to process circular arc inputs directly. A sweepline
algorithm for computing the Voronoi diagram of a set of circles has been pre-
sented in [24].

(but is not restricted to) the proper classification and treatment of
base cases, in order to establish correctness and to gain running
speed, for both smooth and non-smooth circular boundary spline
inputs. Implementation details, experimental data, and selected
examples are presented in Section 4. Finally, Section 5 offers
some concluding remarks.

2 Approximating the shape

Biarc approximation of free-form curves has been studied by
many authors, see e.g. [23, 27, 33] and the references cited
therein. In order to make this paper self-contained, we present
the algorithms which we use for approximating general free-form
domains with domains bounded by arc splines.

2.1 Biarcs

A biarc (a0, a1) is obtained by joining two circular arcsa0 and
a1 in a way such that they possess a common unit tangent vec-
tor at their jointJ . For any given set ofG1 Hermite data, which
consists of two endpointsP0, P1 and associated unit tangent vec-
torsv0, v1, there exists a one–parameter family of interpolating
biarcs.

The possible jointsJ form a circle, which is called the joint
circle, cf. Fig. 2. This circle passes through the endpointsP0

andP1 and it spans the same oriented angles with the tangent
vectorsv0 andv1, respectively (see Fig. 2 and e.g. [33]). Its
center is found by intersecting the perpendicular bisectorof the
line segment(P0, P1) with the perpendicular bisector of the line
segment(P0 + v0, P1 + v1).
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P1

J

v0
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Figure 2: A planar curveq(t) (grey),G1 Hermite
data(P0, v0) and(P1, v1), joint circle (dashed) with
oriented angles (light grey), and the spiral biarc.

The biarc is uniquely determined once a jointJ on the joint
circle is selected. Various possible choices have been proposed in
the literature [27, 33]. In view of the medial axis computation we
need a representation of the given shape boundary that preserves
the curvature extrema. We, therefore, focus on so-called spiral
biarcs.

2.2 Spiral biarcs

Meek and Walton [28] propose a biarc construction scheme that
guarantees that the arc spline approximation of a smooth spiral
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(i.e., of a curve with monotonic curvature) is again a spiral. As-
sume that theG1 Hermite data are sampled from a spiral curve,
and letk0 andk1 denote its curvatures atP0 andP1, respectively,
where we assume thatk0 > k1 > 0. We choose the arca0 as a
segment of the osculating circle of the spiral atP0, hence the
joint J is obtained by intersecting the joint circle with the oscu-
lating circle. The second arca1 passes throughJ andP1 and
matches the tangentv1. According to [28], radii and curvatures
satisfyr0 < r1 < 1/k1.

Let P2 andv2 be a further given set of Hermite data, sampled
from the same spiral, with curvaturesk1 > k2 > 0. The first
arc of the following biarc is chosen as a segment of the osculat-
ing circle atP1, hence its radius satisfies1/k1 > r1. It follows
that, when using spiral biarcs, one obtains an approximation by
a curve with piecewise constant, but monotonic, curvature.The
approximation order of spiral biarcs is three.

In order to apply this method to a polynomial spline curve, it
is necessary to split the curve at points with stationary curvature,
which we will refer to asapicesthroughout this paper (since the
notion of vertices will be used with a different meaning), and
at points with curvature discontinuities. In the cubic case, the
apices can be found by numerically solving polynomials of de-
gree5, and the curvature discontinuities are located at knots with
multiplicity ≥ 2.

The method for computing a spiral biarc is summarized in Al-
gorithm 1.

Algorithm 1 spiralbiarc(P0,P1,v0,v1,k0)
{Construct a spiral biarc}

1: b1 ← bisector ofP0 andP1

2: b2 ← bisector ofP0 + v0 andP1 + v1

3: CJ ← b1 ∩ b2 {center of joint circle}
4: rJ ← ‖CJ − P0‖ {radius of joint circle}
5: r0 ← 1/k0 {radius ofa0}
6: C0 ← P0 + r0 · v⊥0 {center ofa0}
7: J ← (circle (CJ , rJ) ∩ circle (C0, r0)) \ {P0} {joint}
8: a0 ← (C0, r0, P0, J) {first arc}
9: C1 ← line (J, C0) ∩ line (P1, P1 + v⊥1 ) {center ofa1}

10: r1 ← ‖P1 − C1‖ {radius ofa1}
11: a1 ← (C1, r1, J, P1) {second arc}
12: return (a0, a1)

2.3 Adaptive bisection

Assume we have a spline curve segmentq(t), t ∈ [t0, t1] without
apices. In order to produce a spiral biarc approximation, where
the maximum error is bounded by a given thresholdε, we use
adaptive bisection:

1. Create the biarc(a0, a1) for the given segment.

2. Evaluate the approximation error using Algorithm 2.

3. If the error is too large, then split the segment into halves
and apply the algorithm to the two subsegments, else stop.

Alternatively, other techniques—such as the method proposed
in [23]—can be used. We choose the simple bisection algorithm
because of its simplicity and the runtime complexity ofO(n)
with respect to the number of output elements, then arcs.

In order to evaluate the approximation error between the spiral
biarc (a0, a1) and the given curve, we measure the normal dis-
tances with respect to the circular arcs in sampled points onq(t).
Since the jointJ is not located on the curve, we first match each
circular arc to its corresponding segment ofq(t), t ∈ [t0, t1].
This is done by projectingJ to the curveq(t), whereC0 is used
as the center of projection. The parameter valuetJ of the pro-
jected jointJq is found by solving a polynomial equation of de-
greed, whered is the degree of the spline curve. If there exist
multiple solutions within the given interval, then the error is set
to∞, otherwise we estimate the one-sided Hausdorff distance.

a1

C0

C1

J Jq

q(t)

a0

Figure 3: Estimating the normal distances between
the curve and the approximating spiral biarc.

The method for estimating the approximation error is summa-
rized in Algorithm 2.

Algorithm 2 errorbiarc(C0,r0,C1,r1,q(t),[t0, t1])
{Distance of biarc and curve}

1: D0 ← 0, D1 ← 0 {initialization}
2: tJ ← line(J, C0) ∩ q(t), t ∈ [t0, t1] {projectJ onto curve}
3: if tJ is uniquethen
4: for i = 0 to s do {s . . . number of sampled points}
5: D0 ← max(D0, | ‖q (t0 + i(tJ − t0)/s)− C0‖ − r0|)
6: D1 ← max(D1, | ‖q (tJ + i(t1 − tJ )/s)− C1‖ − r1|)
7: end for
8: return max(D0, D1)
9: end if

10: return ∞

The sampling-based approach leads to a slight underestimation
of the error. In practice it performs quite well and it is veryfast.2

2The following alternative for bounding the error could be used. One can di-
rectly compute the points on the curve which have extremal distances to the given
curve, by solving the piecewise polynomial equationsq̇(t) · (q(t) − Ci) = 0,
i = 0, 1, wheret varies within[t0, tJ ] and [tJ , t1] for the first and the second
arc, respectively. In the case of cubic splines, this leads to quintic equations. The
maximum distance then can be computed as the maximum of the distances at
these finitely many points. Instead of this exact approach, it is also possible to
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2.4 Approximation properties

Circular arcs segments approximate a given curve segment with
approximation order three. Similarly, an approximating spiral
biarc spline withn circular arcs possesses the same approxima-
tion order, and therefore the errorε improves asΘ(n−3); cf.
[27, 28].

Given a sequence of approximating curves that converge to the
(exact) boundary of a given planar domain, the medial axes ofthe
approximate domains do not necessarily converge to the medial
axis of the given domain. For instance, this is obvious in thecase
of approximation by polygons, where each vertex creates itsown
branch of the medial axis.

The case of approximation by spiral biarcs, however, is differ-
ent, and has been analyzed in [1]. Since the curvature maxima
are preserved by the spiral biarc approximation, the numberof
leaves of the approximate medial axis is equal to the number of
leaves of the exact medial axis. Consequently, the approxima-
tion does not create any additional branches of the medial axis.
Moreover, we have geometric convergence as follows.

Assume that the Hausdorff distance between the exact and the
approximate domain boundary is at mostε. For any pointp on the
exact medial axis which is sufficiently far away from the leaves
(where the required distance tends to zero asε→ 0), it is possible
to derive a bound on the distancedp to the nearest point on the
medial axis of the approximate domain, namely,

dp ≤
4

1− cos(ξp/2)
· ε

Here,ξp ∈ [0, π] is the maximum angle between any two rays
that connect the center of the maximal inscribed circle which is
centered atp with any two of its tangency points. Consequently,
except for the vicinity of the leaves, the medial axis inherits the
approximation order 3 of the boundary approximation by spiral
biarcs. The global error—including the leaves—can be shownto
behave asΘ(n−1). See [1] for more information.

If only nodes with valency three are present, then the spiral
biarc approximation preserves the topology of the medial axis,
provided that the error of the boundary approximation is suffi-
ciently small. In the case of nodes of higher valency, these nodes
may split in various ways into neighbouring nodes of lower va-
lency.

3 Computing the medial axis

In this section, we develop a variant (and provide a detailedim-
plementation) of the randomized divide & conquer algorithm
in [1] which performs at high speed and is relatively robust
against degenerate inputs. The algorithm computes the exact
medial axis of a shape given in (any) piecewise circular bound-
ary representation. Together with the advantages from the spiral
biarcs approximation, this means that the computed axis con-
verges towards the axis of the original shape with increasing

derive an upper bound on the distance by analyzing the B-spline coefficients of
‖q(t) − Ci‖2.

approximation quality. The expected runtime isO(n log n) un-
der the assumption that the graph diameter of the medial axis
is Θ(n). This condition does not mean a real restriction in prac-
tice. The number of branching points of the medial axis is in-
dependent from the input sizen (the number of circular arcs)
which, in turn, grows arbitrarily with the user-defined accuracy
of the output.

3.1 Overall algorithm

The algorithm is based on the fact that decomposing a given
shape with an inscribed disk leaves two (or more) subdomains
whose medial axes can be computed independently. This obser-
vation has been extensively made use of in [11]. It holds for
simply connected planar shapes of any form, and is particularly
suited for our purposes because we deal with piecewise circular
boundaries already.

In a nutshell, the algorithm proceeds as follows. Itsdivide
stepcalculates a random dividing disk and checks whether the
induced decomposition is progressive, i.e., whether the resulting
subdomains are combinatorially smaller (containing less arcs)
than the domain itself. In the negative case, the disk is recom-
puted deterministically to fulfill this requirement. Each subdo-
main is then treated recursively, until one of the base casesis
reached and the medial axis is calculated directly. Theconquer
steponly concatenates the already computed medial axes for the
subdomains, as they fit together at the centers of the dividing
disks.

Thus, the expensive and critical computations are delegated to
the divide step. In the conquer step, the subsolutions are simply
glued together without the need of any merging or adjustment
operations. This reduces the effect of error accumulation,and
keeps numerical imprecision, if it occurs at all, locally restricted.

In the remainder of this section, letA denote the piecewise
circular approximation of the original shape, and let∂A stand
for its boundary. The algorithm will accept any circular arcspline
for ∂A, and thus will also work if∂A is polygonal.

Before proceeding to a detailed descriptions of the algo-
rithm’s steps, let us recall the formal definition of a medialaxis.
Let MAT be the set of all maximal disks that can be inscribed
into the shapeA. A disk D is calledmaximalif there exists no
other diskD′ ⊂ A such thatD′ ⊇ D. The medial axis ofA is
defined as

M(A) := {P | ∃D ∈MAT : P is center ofD} .

M(A) defines a tree (in the graph-theoretical sense) because the
underlying shapeA is simply connected.

3.2 Divide step

The divide step carefully chooses a maximal diskD and splits
the shape boundary∂A into two or more chains, depending on
the number of tangency points ofD. The resulting subshapes are
completed with circular arcs which haveD as their supporting
circle. We call such arcsartificial arcs. Every maximal disk is,
via its tangency points, uniquely assigned to two or more arcs
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Figure 4: Constructing a disk that is tangent to two arcs.

on ∂A. A possible way to pick a random maximal disk [1] is
to choose a random arca on ∂A and to construct the disk that
is tangent toa at a fixed pointP , e.g., its midpoint or one of its
endpoints.

Given the set of arcsai, i = 1 . . . n, that represent∂A in clock-
wise order, this is accomplished by iteratively constructing disks
that are tangent toa at the pointP and to some other arcak.
If the resulting disk still intersects or overlaps an arcal with
1 ≤ k ≤ l ≤ n, then a new disk (which is smaller than the
preceding one) tangent toal is computed, until we obtain a valid
maximal diskD. (For step by step details of themaximaldisk
procedure see Algorithm 3). As we have to check alln arcs of
the boundary, we obtain anO(n) time complexity for the com-
putation of a single maximal disk.

Algorithm 3 maximaldisk(a,∂A)
{Compute a maximal disk ona in A}

1: if a has a reflex endpointthen
2: P ← reflex endpoint
3: else
4: P ←midpoint ofa
5: end if
6: D ← halfplane tangent atP
7: k ← number of arcs on∂A
8: for i = 1 . . . k do
9: ai ← ith arc of∂A

10: if a 6= ai ∧D ∩ ai 6= ∅ then
11: D ← disk atP tangent toai

12: end if
13: end for
14: return D

P
a

a1

a2

a3

D

The central part of this calculation is the geometric construc-
tion of a disk which is tangent to an arca at a fixed pointP ,
and which is arbitrarily tangent to another arcak. See Fig. 4 for

an illustration. The pointcD, which is the center of the desired
maximal disk, is the matter of interest. This point must lie on the
line l throughca, the center ofa, andP . If we move from the
pointP a distance of lengthrak

(the radius ofak) towardsca, we
arrive at the pointc′ak

. Together withcak
andcD this point forms

an isosceles triangle. This fact can be exploited to construct cD.
We compute the perpendicular bisector betweencak

andc′ak
and

intersect it withl, which gives the pointcD. This construction
can, with slight modificiations, be applied to pairs of arcs in arbi-
trary position. If we replace the circular arcak by a line segment,
the problem can be reduced to the intersection of the linel with
an angle bisector of the line perpendicular tol throughP and the
supporting line of the segment.

This disk construction is, together with intersection and over-
lap checks, the most frequent and numerically most complex step
in the entire medial axis algorithm. Thus the main atomic opera-
tions are computing intersections of circles and lines.

3.3 Base cases

Let us proceed to the classification and analysis of appropri-
ate termination conditions for the divide step. In this classifi-
cation, we will assume that the medial axis contains no multi-
branchings, i.e., nodes with a degree greater than three. Ifsuch
a node does occur, then the medial axis can still be split by
using the maximal disk centered at this node. The algorithm
maximaldisk∗ for doing this is described in Section 3.5. In-
deed, using this algorithm, it is even possible to reduce thenum-
ber of base cases further. (For example, case (c) below is void,
being split into three occurances of case (b).)

If we consider aG1 boundary as precondition, then we can
decompose any shape bounded by circular arcs and line segments
into only four base cases; see Fig. 5. This is simply accomplished
by dividing iteratively until the number of non-artifical arcs drops
below four.

Let us argue that the cases in Fig. 5 cover all possibilities.Ob-
serve first that no consecutive artificial arcs may occur, because
for smooth boundaries we construct every maximal disk at the
midpoint of an arca.

• All possible constellations with3 non-artificial arcs are cov-
ered in the cases (a), (c), and (d), provided no consecutive
artificial arcs are allowed.

• The combination shown in case (b) is the only one which
may occur with2 non-artificial arcs.3

If we do allow reflex and convex vertices on the boundary,
then we have to pay more attention to the choice of the pointP
in Algorithm 3, to keep the number of arising base cases low. If
a randomly chosen arca has some reflex endpoint, we do not
choose its midpoint but rather the reflex endpoint itself asP .

3A base case with twoconsecutivenon-artificial arcs, connected by an ar-
tificial arc while guaranteeing smoothness at all vertices,is only possible in a
degenerate case: All arcs would have to be on the same supporting circle. The
same applies to the hypothetical case of one artificial and one non-artificial arc.
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(a) (b) (c) (d)

Figure 5: Base cases for smooth boundaries.

(e) (f) (g) (h)

(i) (j) (k) (l) (m)

Figure 6: Base cases forG0 boundaries.

Furthermore, the termination conditions have to be slightly ex-
tended. We keep on splitting until all of the following criteria are
satisfied:

1. The number of non-artificial arcs is≤ 3.

2. There exists no non-artificial arc with a reflex vertex.

3. If three non-artificial arcs are consecutive then no convex
vertex occurs. (Note that this last criterion might lead to
redundant cuts, which are dealt with in section 3.5.)

This results in nine additional possible base cases as shownin
Fig. 6. These new cases cover all possible non-smooth varations
of the cases (a), (b), (c), and the degenerate case from footnote 3.
Variations include the turning of a smooth vertex into a convex
one and the replacement of an isolated non-artificial arc with a
reflex vertex. The base case (d) has no non-smooth derivatives
because of splitting rule 3. Additionally, if we consider a reflex
vertex as an arc with length zero, we can maintain the observa-
tion that no consecutive artificial arcs do occur. Together with the
following analytic enumeration of the new base cases it is obvi-
ous that the arguments concerning completeness of the smooth
cases apply to the situation of aG0 boundary as well.

• For smooth case (a) the joint vertex can become convex,
the isolated non-artificial arc can be exchanged by a reflex
vertex, or both. These variations are covered by the cases
(e), (g), and (f).

a

P

D1

D2

c

(a) Base case (h)

a1 a2

a3

Pb

D1

D2D3

c1

c2

c3

(b) Base case (c)

Figure 7: Two base cases in detail.

• The two variations of smooth case (b) are obtained by re-
placing either one or both non-artificial arcs by reflex ver-
tices. See case (h) and case (i) for a realization of this.

• The new base cases (j), (k), and (l) represent all possible
combinatorial variations of smooth case (c) caused by turn-
ing isolated non-artificial arcs into reflex vertices.

• Finally the degenerate case mentioned in footnote 3 allows
one variation by creating a convex vertex from a smooth
one. This constellation is covered by base case (m).

3.4 Conquer step

In the conquer step, the medial axes of the base cases are com-
puted directly, and then are concatenated at centers of maximal
disks which support the respective artifical arcs. At this point,
we know exactly which parts of the (global) medial axis corre-
spond to which parts of the boundary of the shape. As the shape
boundary is piecewise circular, the medial axis consists ofconic
arcs. Each such arc is assigned to two primitives on the boundary
where it is equidistant from. Possible primitives are circular arcs,
line segments, and points (boundary vertices). Different pairs of
primitives result in different types of conics:

• Two circular arcs may define an elliptic or a hyperbolic arc,
depending on the position of the two supporting disks, and
the orientation of the arcs on the boundary.

• A circular arc and a line always define a parabolic arc.

• A circular arc and a point define an elliptic arc if the point
lies inside the arc’s supporting disk, and a hyperbolic arc,
otherwise.

• Two line segments define a straight line.

• A line segment and a point define a parabolic arc.

• Two points again define a straight line.

For illustratory reasons, let us give two examples. Consider
the base case (h) with a labeling as in Fig. 7a. The only two non-
artificial primitives on the boundary, arca and pointP , define the
conic arcc. AsP lies inside the supporting disk ofa, the curvec,
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leading from the center ofD1 to the center ofD2, is an elliptic
arc.

Next, consider base case (c) where a branching of the medial
axis occurs (Fig. 7b). Curvec1 is a hyperbolic arc defined by
a1 anda2. The same holds for the curvesc2 andc3 which stem
from the pairsa2, a3 anda3, a1, respectively. The special feature
of this base case is the branching pointP . A branching point is a
point on the medial axis which is equidistant from at least three
primitives on the boundary. Its assigned maximal disk touches
the boundary at more than two points. Branching points are re-
quired as endpoints for our conic arcs, and thus have to be com-
puted directly. In our example, we have to compute a point which
has the same distance to three arcs. If we replace the arcs by line
segments or (reflex) points, as in the base cases (j), (k), and(l),
we get ten possible combinations of three primitives. What we
are looking for is the disk that is simultaneously tangent toall
three of them.

This problem is known as the Apollonius problem, named af-
ter the ancient Greek geometer who posed this problem about
200 B.C. (discussed among others by [20]). As up to eight circles
may satisfy the tangency conditions to the circles (lines) support-
ing the primitives, we have the problem of singling out the unique
valid disk that touches them at the right portion. We have imple-
mented this task for all triples of primitives, as this is needed in
the computation of all the branching points ocurring in the base
cases (c), (e), (f), (j), (k), and (l).

3.5 Preventing redundant cuts

During the division process—especially when dealing with reflex
boundary vertices—situations may occur where a disk obtained
by themaximaldisk algorithm fails to decompose the shape
into (combinatorially) smaller subdomains. As the property for
shapes to shrink is needed to assure a termination of the algo-
rithm, such a situation may lead to an infinite loop. To see an
example, an arca for the construction of the maximal disk may
be chosen that causes base cases of the form (h) to be cut away
from a over and over again. The remaining subdomains have the
same number of non-artificial arcs as the preceding ones, andso
undergo no combinatorial reduction. See Fig. 8a for an illustra-
tion. This unwanted phenomenon can be detected, and subse-
quently be avoided, by a more sophisticated choice of the divid-
ing disk. As a pleasing side effect, this choice will also handle
the intriguing case of multi-branching of the medial axis.

As soon as a non-reducing diskD, as shown in Fig. 8a, is de-
tected, we invoke algorithmmaximaldisk∗, which computes
a diskD∗ that is tangent to the shape boundary at three (or more)
points instead of only two. Similar to the original algorithm
maximaldisk, the procedure traverses all boundary arcs. It
checks, however, which of them yields the third point of tan-
gency of the needed branching point disk. The first two contact
points are known to be on the footarca and on the arca′ chosen
by themaximaldisk algorithm forD. The main feature of the
new construction is the lack of a fixed pointP on any of the arcs.
As is revealed in Fig. 8b, a disk tangent to the three arcsa, a′, and

a

a′

a1

a2

a3

D

(a) Non-reducing diskD
a

a′

a1

a2

a3

D∗

(b) Branching diskD∗

Figure 8: The diskD∗, centered at a branching point, is con-
structed bymaximaldisk∗ after detection of a non-reducing
dividing diskD.

a1 gets constructed first.4 As long as this disk overlaps another
arc (here e.g.a2), a new disk ona, a′, and this very arc is con-
structed. This process terminates with the desired disk centered
at a branching point of the medial axis. Each of the three result-
ing subshapes is lacking at least one non-artificial arc, namely,
one of the tangent primitives. Thus a reduction is guaranteed.

Themaximaldisk∗ algorithm also recognizes and handles
multi-branchings, i.e., nodes of the medial axis with valency four
or more. If a valid branching point diskD is tangent (or, for the
implementation,ε-tangent for a predefined smallε) to m ≥ 4
primitives, then such a multiple branching point occurs. Ev-
ery tangent arc defines a point of tangency forD on the shape
boundary, and the shape is divided intom subshapes which are
all joined together atD. Fig. 9 gives an illustration.

When several reflex vertices agglomerate in a relatively small
area of the shape (perhaps with no separating boundary parts)
then another non-reducable case may occur: a subshape consist-
ing of an arbitrary number of artificial arcs, separated by arcs of
zero length (as they result from reflex boundary vertices). The
medial axis of such a case is a subset of the standard Voronoi
diagram, with the zero length arcs as the defining points. With
a construction very similar to themaximaldisk∗ algorithm,
these cases can be reduced to base cases of the form (l) from
Fig. 6. Two zero length arcs (points) neighboured on the sub-
shape’s boundary are fixed. A third zero length arc is then deter-
mined in the iterative process, such that the disk defined by these
three points does not contain any other point. This disk is a valid
maximal disk, which is tangent to the boundary at three points.

3.6 Putting things together

By combining the procedures introduced above we obtain the
main algorithm for the medial axis computation, as lined out
in Algorithm 4. Its input is the shape approximation,A, rep-
resented by its piecewise circular boundary∂A. The algorithm
dividesA recursively into partial shapes, until they match any of

4Unlike in this example, the first defining arca1 aftera′ does not necessarily
result in an applicable starting disk. Note that an arca1 in unfavorable geometric
position might lead to a disk which has its center on the wrongside of the line
defined by the points of tangency ona anda′.
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(b) Division into five subshapes

Figure 9: A degenerate case where five branches of the medial
axis meet at a single pointcD. The shape is decomposed into
five subshapes. This situation is handled bymaximaldisk∗.

the base cases introduced before. The choice of the disk (con-
structed bymaximaldisk) which is used for the decomposi-
tion is random at first. If a non-reducing disk occurs, then a disk
centered at a branching point is computed by the extended algo-
rithmmaximaldisk∗. If the state of a base case is reached, we
may proceed in two possible ways:

• The medial axis of the base case is computed directly. It
exclusively consists of conic arcs. This is one of the benefits
from the circular boundary representation.

• For certain applications, the curve equations of the axis seg-
ments may be of small or no interest at all, as rather the
topological or combinatorial structure is needed. Through
the use of base cases, which reveal various special features
of the shape and its medial axis (branching points, local cur-
vature maxima, etc.), it is easy to derive useful information
on the axis without calculating the conic arcs right away. By
storing the combinatorics of all base cases, the exact medial
axis can be computed at a later point, and for any required
part of the shape.

Algorithm 4 medialaxis(A)
{Compute the medial axis ofA}

1: if A is base casethen
2: compute medial axis ofA
3: else
4: a← random arc in∂A
5: D ← maximaldisk(a, ∂A)
6: if D is non-reducing ata′ then
7: D ← maximaldisk∗(a, a′, ∂A)
8: end if
9: k ← # tangent points onD

10: splitA intoA1, . . . ,Ak

11: for i = 1 . . . k do
12: medialaxis(Ai)
13: end for
14: end if

a

a′

A1

A2

D

As is discussed in [1], it is possible to achieve a more bal-
anced decomposition of the shape (and thus a stronger theoretical
bound on the runtime) by using the so-called cut and walk princi-
ples for the determination of a dividing disk. For multi-processor
architectures and parallel processing this might prove useful, on
single CPU architectures, however, using solely random choices
has turned out to be more efficient [2].

As claimed before (see the first paragraph of Section 3), the ex-
pected runtime of our algorithm isO(n log n) under the assump-
tion that the graph diameter of the medial axis isΘ(n). In fact,
to get this asymptotic computation complexity ofO(n log n) it
is not necessary to find a balanced split. Any split into constant
fractions ofn is sufficient, and is also achieved in expectation by
a random split if the medial axis diameter isΘ(n).

4 Details and examples

4.1 Implementation with CGAL

The algorithm presented in the previous section has been im-
plemented in C++ for matters of performance and availabil-
ity of supporting libraries. As many geometrical constructions
and checks are necessary during the course of the algorithm,
the Computational Geometry Algorithms Library (CGAL) [9]
proved to be the most appropriate choice. CGAL is a C++ pack-
age for combinatorial, algorithmic, and geometrical solutions
with an emphasis on flexibility, stability, exactness, and perfor-
mance. It provides simple geometric calculations as intersection,
position, and distance checks and also supports the visual output
with simple GUIs and visualization libraries as Qt [30].

The main benefit of CGAL is, however, the possibility to
choose between various number types which satisfy the de-
manded requirements, and which may be varied with minimal
effort due to CGAL’s template architecture. The implementation
of the medial axis algorithm has been realized in two different
versions:

8



(a) Non-smooth lion shape

(b) Non-smooth Austria shape

Figure 10: Two shapes whose boundaries are not entirely smooth,
but have some convex and reflex corners. The medial axis
reaches the boundary at the convex vertices.

• To achieve an implementation as reliable as possible, the
exact rational number typeGmpq from the GNU Multiple
Precision Arithmetic Library [21] has been chosen in one
version. The main reason for this decision is the represen-
tation of a circle as a quadratic equation in CGAL. An arbi-
trary point on a circle is a solution of this equation, and thus
has irrational coordinates, in general. As float numbers then
are necessarily imprecise, we seek rational points which ex-
actly lie on a circle defined by three rational points. It is
known that such a circle has the following properties:

– The center of the circle has rational coordinates.

– Points with rational coordinates lie dense on the circle.

So it is possible to find a rational point as near to any point
on a circle as desired. This has been implemented in our
program following the instructions from [7]. Due to the very
large integers needed in these calculations, the choice of an
elaborate rational type asGmpq is inevitable for a reliable
implementation.

• If exactness is not the main issue (and, as observed in prac-
tical tests, the results do often not decisively differ) then the

use of a float number type results in faster runtimes. A ver-
sion of the program which uses explicitelydouble numbers
has been implemented for this purpose. As the statistical
evaluation below will show, the gain in runtime is consid-
erable, but computational inaccuracy may possibly result in
incorrect (though locally restricted) partial solutions.

Problems with thedouble implementation arise especially
when dealing with very large circles, which result from three al-
most collinear points defining an arc. Lines which are nearly
parallel also raise a problem, as the resulting intersection point
can often not be properly represented by a float type. If such sit-
uations occur, thedouble implementation reaches its limitations,
and locally incorrect sets of maximal disks are the outcome.

The ideal solution for this problem would be an algorithm
which computes the medial axis with one of both number types,
dependent on which one is needed. In fact, almost all calcula-
tions can be handled bydouble without difficulties. Only in case
of an error, an exact number type, asGmpq, should recompute
the relevant (and by use of our approach, locally restricted) part
of the shape, and provide the correct result. The main problems
in this context are, on one hand, the parallel handling of twosep-
arate kernels (what is hopefully only a matter of clever imple-
mentation), and on the other hand, the recognition of a potential
error as soon as it occurs (what may be the more challenging
issue). Efforts in this direction are among the motivationsfor
future work.

The described algorithms offer several features for the manip-
ulation of both the input and the output. Using some of them is
occasionally necessary to generate appropriate data, others can
be seen as a possibility to experiment with the problem:

• The algorithm for the computation of spiral biarc approx-
imations offers a convenient possibility to vary the param-
eterε that bounds the allowed Hausdorff distance between
the original shape and its circular boundary representation.

• As the approximating boundary is a collection of arcs and
line segments, and does not consist of one single differen-
tiable function, it does make sense to take a closer look at
the connecting vertices between two arcs. The spiral biarcs
approximation generally assures a smooth boundary, but as
the representation is not totally exact, it makes sense to in-
troduce a small error constant. Via this constant it is decided
whether a vertex defines a (convex or reflex) corner of the
shape, or if the shape is considered smooth in the neighbor-
hood of this vertex. The constant can be varied to fit the
quality of the used input data.

• The output of the computed circular boundary representa-
tion and its medial axis is realized in two different ways. On
one hand, the popular Qt library from Trolltech [30] is used
for the visualization on screen, supporting various functions
as translation and zoom. On the other hand, it is possible to
write the obtained medial axis directly to PostScript, where
the conic arcs are represented either simply by line segments
or by cubic Bézier curves; cf. footnote 5.
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(a) Initial Bézier curve (snow flake shape)

(b) Approximation details with error magnified by 10

Figure 11: Bézier curve and its biarc approximation.

• There exist various other possible modifications to tune the
input or the ouput, as for example the possibility to con-
vert the input arcs into x-monotone arcs before processing,
or the use of a bound flag for the arc’s radii which causes
arcs defined by almost collinear points to be recognized as
line semgents (which makes sense to avoid numerical errors
especially when working with thedouble kernel).

4.2 Examples

In this section we report on the experimental behavior of oural-
gorithms, and display and interpret the produced output forse-
lected examples. We start with commenting on the biarcs ap-
proximation algorithm.

Depending on the number of spiral biarcs used to represent
a shape boundary, the error between the original shape and its
approximation varies. This deviation from the original shape is
not uniformly distributed along the boundary, as can be seenin
Fig. 11b. For simple and smooth shapes these errors are expected
to be rather small, even for a small number of approximating arcs.
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Figure 12: Relation between accuracy and data volume.

The relation between the achieved accuracy and the data vol-
ume is visualized in Fig. 12 for several example shapes: CAD,
Austria, tree, and snow flake shape. The slopes of the shown
graphs confirm an approximation order of three, as is theoreti-
cally provable for circular splines.

The size of the error, however, does not affect the number of
leaves of the resulting medial axis. This is not true for polygonal
representations, no matter how small is the deviation of thepoly-
gon from the approximated shape. As can be seen in Fig. 13a,
many additional branches show up in the medial axis, which do
not appear in the original shape’s axis, nor in the axis of itsspiral
biarcs approximation (Fig. 13b).

error arcs ∂ fl MA fl b fl MA Gmpq

k · 10−1 2096 0.06 0.18 0.03 12.15
k · 10−2 3736 0.14 0.36 0.04 19.31
k · 10−3 7840 0.32 0.67 0.08 42.54
k · 10−4 16970 0.75 1.53 0.12 90.55
k · 10−5 36674 1.65 3.45 0.24 194.43
k · 10−6 78736 3.59 7.21 0.58 427.36
k · 10−7 169418 7.76 16.25 1.23 918.35
k · 10−8 364528 16.91 36.49 2.81 2169.5
k · 10−9 784972 36.76 83.04 5.89 4607.18

Table 1: Runtimes in seconds for different approximations of the
shape in Fig. 14. The column∂ fl shows the time needed for the
boundary conversion with an error relative to a bounding boxpa-
rameterk. The twoMA columns give the seconds elapsed for the
medial axis construction usingdouble andGmpq, respectively.
(We have averaged over 5 runs). The time needed for the base
cases (columnb fl) is already included.

With growing approximation quality of the boundary, the com-
puted medial axis converges to the exact axis of the original
shape. To rate the influence of the approximation accuracy on
the speed of the implementation, several different boundary rep-
resentations of a particular shape (the tree shape in Fig. 14) have
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(a) Polygon approximation

(b) Spiral biarcs approximation

Figure 13: The calculation of the CAD shape was done with292
primitives in both cases. The medial axis of the polygonal ap-
proximation has additional branches at the convex corners,while
the medial axis of the circular boundary representation is topo-
logically correct and geometrically more accurate.

been generated. The resulting runtimes are shown in detail in
Table 1. (The calculation of the coefficients for the equations of
the conics building the medial axis is included.5) The amount
of elapsed seconds grows in an almost linear fashion with regard
to the number of arcs. Note that, by construction, the number
of branching points of the medial axis stays the same for all ap-
proximations, because the number of leaves is the same as forthe
original free-form shape.

In Fig. 15 and Fig. 16, for several shapes the ratio between
the computation time and the number of arcs is displayed graphi-
cally. Note that the coordinate axes of the graphs are logarithmi-
cally scaled.

The graphs in both figures show that in practice runtimes grow
(almost) linear with the number of arcs used for the approxima-
tion. The snowflake shape (Fig. 11a) and the tree shape (Fig. 14)
evaluated in Fig. 15 branch similarly, so the resulting runtimes
are almost the same.

Out of the two shapes interpreted in Fig. 16, the medial axis of
the Austria shape (Fig. 10b) has more branching points than the

5These coefficients can be stored and assigned to the respective base cases.
For the output to PostScript it has proven more useful to choose cubic Bézier
curves that approximate the conic arcs.

Figure 14: Tree shape and its medial axis.
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Figure 15: Runtimes for snowflake (Fig. 11a) and tree (Fig. 14)
shape. The two dotted lines show linear reference functionsfor
hypothetical runtimes of 125µs per arc (upper) and 60µs per arc
(lower).

CAD lettering (Fig. 13b). This results in a better relative runtime
for the latter shape, shown as offset between the two graphs in
log-log scale.

The configuration used for all tests is a 64 bit installation of
Linux Debian on an Intel Core 2 Duo 6700 architecture with 8
GB RAM. As no parallel processing is implemented yet, only
one core is used so far.
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Figure 16: Runtimes for Austria shape (Fig. 10b) and CAD let-
tering (Fig. 13b). The two dotted lines show linear reference
functions for hypothetical runtimes of 125µs per arc (upper) and
60µs per arc (lower).

5 Conclusion

We have provided an efficient and stable implementation of a
medial axis algorithm for planar free-form shapes. To our knowl-
edge, this is the first algorithm that runs fast in practice and at the
same time guarantees convergence to the exact medial axis of
the input shape. The program can compete with current state-of-
the-art implementations on this field with regard to correctness,
speed, and reliability. The basic idea was using a piecewisecir-
cular boundary conversion, which allows for appropriate feature
preservation of the shape, as well as for a simple and fast medial
axis algorithm. An implementation of the algorithm which com-
bines thedouble and theGmpq kernels to achieve speed and sta-
bility in one single program is possibly an issue for future work.
In addition, we plan to the extend the method to multiply con-
nected domains and we will apply the results to obtain efficient
methods for the computation of offset curves.
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Oberneder M anďSı́r Z. Computational and structural ad-
vantages of circular boundary representation. In: Dehne F,
Sack JR, Zeh N, editors. Algorithms and Data Structures.
Springer LNCS; 2007. p. 374–85.

[2] Aigner W. The medial axis of planar shapes. Master Thesis,
Institute for Theoretical Computer Science, University of
Technology, Graz, Austria 2007.

[3] Alt H, Cheong O, Vigneron A. The Voronoi diagram of
curved objects. Discrete & Computational Geometry 2005;
34: 439–53.

[4] Attali D, Boissonnat J-D, Edelsbrunner H.. Stability
and computation of medial axes – a state-of-the-art re-
port. Mathematical Foundations of Scientific Visualiza-
tion, Computer Graphics, and Massive Data Exploration,
T. Müller, B. Hamann, B. Russell (eds.), Springer Series on
Mathematics and Visualization, 2008, to appear.

[5] Blum H. A transformation for extracting new descriptorsof
shape. In: Wathen-Dunn W, editor. Models for the Percep-
tion of Speech and Visual form. MIT Press; 1967. p. 362–
80.

[6] Brandt JW, Algazi VR. Continuous skeleton computation
by Voronoi diagram. CVGIP: Image Understanding 1992;
55: 329–38.

[7] Burnikel C. Rational points on circles. Research Re-
port MPI-I-98-1-023, Max-Planck-Institut für Informatik,
Saarbrücken, Germany. 1998. Available at www.mpi-
inf.mpg.de.

[8] Cao L and Liu J. Computation of medial axis and offset
curves of curved boundaries in planar domain. Computer-
Aided Design 2008; 40: 465-75.

[9] CGAL. Computational Geometry Algorithms Library.
http://www.cgal.org/.

[10] Chin F, Snoeyink J, Wang CA. Finding the medial axis of
a simple polygon in linear time. Discrete & Computational
Geometry 1999; 21: 405–20.

[11] Choi HI, Choi SW and Moon HP. Mathematical theory
of medial axis transform. Pacific Journal of Mathematics
1997; 181: 57–88.

[12] Choi HI, Choi SW and Moon HP and Wee NS. New algo-
rithm for medial axis transform of plane domain. Graphical
Models and Image Processing 1997; 59: 463–83.

[13] Choi HI and Han CY. The Medial Axis Transform. In:
Farin G., Hoschek J, Kim MS, editors. The Handbook of
Computer Aided Geometric Design. Amsterdam: North-
Holland; 2002. p. 451–71.

[14] Chou JJ. Voronoi diagrams for planar shapes. IEEE Com-
puter Graphics and Applications 1995; 15; 52–9.

[15] Degen WLF. Exploiting curvatures to compute the medial
axis for domains with smooth boundary. Computer Aided
Geometric Design 2004; 21: 641–60.

12



[16] Elber G, Cohen E and Drake S. MATHSM: medial
axis transform toward high speed machining of pockets.
Computer-Aided Design 2005; 37: 241–50.

[17] Elber G and Kim MS. Bisector curves of planar rational
curves. Computer-Aided Design 1998; 30: 1089–96.

[18] Evans G, Middleditch AE, Miles N. Stable computation of
the 2D medial axis transform. Int. J. Computational Geom-
etry & Applications 1998; 8: 577-98.

[19] Farouki RT and Ramamurthy R. Degenerate point/curve
and curve/curve bisectors arising in medial axis computa-
tions for planar domains with curved boundaries. Computer
Aided Geometric Design 1998; 15: 615–35.

[20] Gisch D and Ribando JM. Apollonius’ problem: A study of
solutions and their connections. 2004

[21] GMP. GNU Multiple Precision Arithmetic Library.
http://gmplib.org/.

[22] Held M. VRONI: An engineering approach to the reliable
and efficient computation of Voronoi diagrams of points
and line segments. Computational Geometry 2001; 18: 95–
123.

[23] Held M and Eibl J. Biarc approximation of polygons
within asymmetric tolerance bands. Computer-Aided De-
sign 2005; 37: 357–71.

[24] Jin L, Kim D, Mu L, Kim D-S and Hu S-M. A
sweepline algorithm for Euclidean Voronoi diagram of cir-
cles. Computer-Aided Design 2006; 38: 260–72.

[25] Kim D-S, Hwang I-K and Park B-J. Representing the
Voronoi diagram of a simple polygon using rational
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