
Robust principal axes determination for point-based shapes using
least median of squares

Yu-Shen Liua,* and Karthik Ramania,b
aSchool of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
bSchool of Electrical Computer Engineering (by courtesy), Purdue University, West Lafayette, IN,
47907, USA

Abstract
A robust technique for determining the principal axes of a 3D shape represented by a point set,
possibly with noise, is presented. We use techniques from robust statistics to guide the classical
principal component analysis (PCA) computation. Our algorithm is based on a robust statistics
method: least median of squares (LMS), for outlier detection. Using this method, an outlier-free
major region of the shape is extracted, which ignores the effect on other minor regions regarded as
the outliers of the shape.

In order to effectively approximate the LMS optimization, the forward search technique is utilized.
We start from a small outlier-free subset robustly chosen as the major region, where an octree is used
for accelerating computation. Then the region is iteratively increased by adding samples at a time.
Finally, by treating the points on minor regions as outliers, we are able to define the principal axes
of the shape as one of the major region. One of the advantages of our algorithm is that it automatically
disregards outliers and distinguishes the shape as the major and minor regions during the principal
axes determination without any extra segmentation procedure. The presented algorithm is simple
and effective and gives good results for point-based shapes. The application on shape alignment is
considered for demonstration purpose.
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1 Introduction
One of the important tasks in computer graphics and computer vision is the determination of
location and orientation of an object within a specified frame of reference [1,2]. Typically,
this information is also called the pose of the object. There are several representations of an
object's pose, including the principal axes, affine transformation, moment invariants, medial
axis transform, and others [1]. The simplest and most widely accepted one for 3D shapes is
based on the principal axes of the object [1], which completely consists of its orientation and
position with respect to an orthogonal frame or coordinate system. One main problem using
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traditional global techniques is that the derived principal axes might be quite different for some
similar shapes [3,4].

In computer graphics and geometric modeling, 3D shapes are commonly represented by
explicit surfaces, implicit surfaces, or polygonal meshes. With 3D scanners becoming the
standard source for geometric data acquisition, point sets have received an increasing attention
as an alternative shape representation [5–11]. The point-based representation allows more
flexibility when a globally consistent surface topology is not necessarily required [8], and can
cover wide shapes, such as non-manifold. A geometric shape referred to in this paper is
represented by a set of points sampled from its underlying surfaces. Our method presented in
this paper is also suitable for other shape representations through converting them into point
sets.

In this paper, we focus on the problem of the principal axes determination for 3D shapes
represented by point sets, possibly with noise, by combining robust statistics methods.

1.1 Previous work
The principal axes or pose determination of 3D shapes is one of the most important techniques
in robotics, computer graphics, and computer vision. It is used in many areas, such as shape
alignment [12], object recognition [13], generating 2D drawing views from 3D models [14].
There have been some effective approaches in extracting the pose of both polyhedral and
smooth objects by associating some additional information, such as the surface normals and
areas, except the point position. These approaches include extended Gaussian image (EGI)
[13], complex extended Gaussian image (CEGI) [2], and some related improvement techniques
[15,14]. A review of many available methods for both polyhedral and smooth objects is beyond
the scope of this paper. The reader may consult Refs. [2,15,14] for detailed expositions. In this
section, the work most related to ours will be reviewed.

Research on determining the principal axes of 3D shapes can be categorized as the global and
partial approaches. The most common technique for determining the principal axes of 3D
shapes is principal component analysis (PCA) that is a global approach. The main advantages
of PCA are simple, fast, and applicable to most of 3D models, also including non-manifold
and point sets. Each object is analyzed by PCA in three principal axes (or eigenvectors), and
according to their eigenvalues these vectors are mapped to three axes. PCA is generally
considered to work well for a variety of classes. The PCA approach seeks a projection that best
represents the data in a least squares sense [16]. One problem for the least squares method is
lack of robustness. Indeed, one single outlier can have an arbitrarily large effect [17]. The
principal axes derived by PCA might be quite different for some similar shapes due to some
small local difference between shapes [3]. Our main goal in this paper is to ignore the effect
on the minor regions of 3D shapes during the principal axes computation.

More recently, Passalis et al. [12] introduced a method for improving PCA by combining the
symmetry planes of a 3D model. Their method relies on the assumption that most of real life
objects are symmetrical with respect to a plane. First, a symmetry plane of the model is
determined using a global optimization technique. Then the perpendicular vector to the
symmetry plane is used as the first axis, and the remaining two axes are determined by
projecting all vertices of the model onto the plane of symmetry and performing a 2D PCA.
This strategy actually reduces 3D into 2D by projecting 3D points into the symmetry plane,
but for the 2D case there is still the same problem as 3D using PCA. Certainly, for classes of
objects with more symmetry planes, their method can completely eliminate PCA by seeking
the primary and secondary symmetry planes. However, most 3D life objects contain
deformation, so multiple symmetry planes are difficult to be found. In addition, the
determination of symmetry is also a non-trivial task [18,19].
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In general, the partial approaches first segment the model into some patches, and then the
patches on major regions are used for the final pose computation. Recently, Gal and Cohen-
Or [4] presented a partial shape matching method for shape alignment. Their method first
segments the models into some salient geometric features, and then searches for matching
between pairs of salient features from each model. This partial method can produce better
results than those using PCA applied to the whole model. However, segmentation is a non-
trivial task itself. It often fails to segment surfaces sampled from non-manifold or large and
complex point sets acquired by 3D scanning devices, and consequently results in an
unsuccessful pose determination. Furthermore, both segmentation and partial matching require
the expenditure of large amounts of time and space if the number of points and patches is
gigantic.

Another class of approaches focuses on topological or graph comparison for determining the
pose. The topology-based approaches rely on the fact that 3D model topology is an important
shape characteristic. For instance, Hilaga et al. [20] proposed the use of the skeleton of an
object for retrieving. A drawback of topological approaches is that relatively small anomalies
on the object's surface can have a significant impact on the topological properties of the object
[12]. In addition, the topological approaches also have some problems similar to partial shape
matching methods for non-manifold and complex objects.

1.2 Robust statistics methods
Determining the principal axes of point sets using PCA is similar to the linear regression using
least squares [16]. The linear regression belonging to a statistical method is considered to be
robust if it has a large breakdown point. A breakdown point might be loosely defined as the
smallest percentage of outliers that can cause the estimator to take an arbitrarily large aberrant
values [17,7]. For instance, the breakdown point of the median of a set of values is 50% [17],
whereas least squares has a breakdown point of 0%.

Robust statistics methods have been applied to various computer vision applications [21]. For
example, Torre and Black [22] proposed a robust PCA approach for automatic learning of
linear models from data that may be contaminated by outliers. However, there is little attention
on 3D computer graphics. Jones et al. [23] and Fleishman et al. [24] have applied the bilateral
filter to mesh denoising, which can be considered as a robust statistics technique. Pauly et al.
[25] introduced a method for analyzing the uncertainty and variability of a point set. Their
method can be regarded as a backward method that can not detect masked outliers [7]. Masked
outliers are outliers that can not be identified from the statistics of a model that is dealt with to
the entire sample set. The strategy of backward methods for fitting a model first fits a model
to the entire sample set and then tries to delete bad samples. The reader may consult Ref. [7]
for other several works related to robust statistics methods in computer graphics.

Fleishman et al. [7] recently presented a new robust fitting method from a set of points in order
to overcome the drawback of backward methods. The main tool that they use is the forward
search algorithm which has a significant advantage in detecting outliers over commonly used
backward methods. The main strategy of their algorithm is as follows. A subset of the data is
first fitted using the second degree polynomials based on the forward search algorithm, and
then the rest of the data is identified as outliers. To fit multiple surfaces, the above procedure
is repeated for the remaining point sets. Our work presented in this paper is in the same spirit
and applies the forward search to the principal axes determination.

1.3 Contributions
The work most related to ours is Fleishman et al.'s work [7]. From statistical view point, the
method in [7] treats the points across the discontinuities as outliers in order to define sharp
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features. Unlike their method for defining a surface from a point cloud, our goal is to determine
the principal axes of 3D shapes. Our work is based on a powerful statistic technique, called
least median of squares (LMS) [17,26], to improve the PCA limitations. Using this method,
an outlier-free major region of a 3D shape is extracted, which ignores the effect on other minor
regions regarded as the outliers of the shape. At the last phase of our algorithm, the principal
axes of the major region are regarded as the final ones of the shape. In order to effectively
approximate the LMS optimization, the forward search technique [27] is utilized. The basic
idea in forward search is to start from a small subset of robustly chosen samples of the data
that excludes outliers. To accelerate the extracting of the initial subset, we exploit the octree
for approximating the shape and sampling points. Then the principal axes are computed
iteratively by adding one sample into the subset at a time while monitoring certain statistical
estimates. We can use the method to deal with noise, outliers, and minor regions on shapes.
The presented algorithm is simple and effective and can give good results for point-based 3D
shapes. The application on shape alignment is considered for demonstration purpose. The main
contributions of our work can be summarized as follows:

- Propose a new robust technique for principal axes determination by guiding the classical
PCA computation based on least median of squares and the forward search technique. The
proposed algorithm automatically disregards outliers and distinguishes the shape as the
major and minor regions during the principal axes determination. Our algorithm can be
applied to large and complex point sets acquired by 3D scanning devices or sampled from
multi-surfaces (or non-manifold).

- The octree-based approximation and point sampling methods accelerate the extraction
of the initial subset in forward search.

- Apply our algorithm to some shape matching techniques, such as shape alignment.

- Investigate the effect on noise and sampling density and compare our method with
previous works.

2 Robust estimation
In this paper, we consider the following input conditions. For this case in 3-dimensional space,
let N = {pi|i = 1, …, N} be a set of unorganized data points, where pi = (xi, yi, zi)T is a 3D
vector. The set N of data points is assumed to be a sampling of underlying surfaces of a 3D
shape with or without boundary. We suppose that the unorganized data points, often referred
to a point set, point clouds, or scattered data points in the literature, may have non-uniform
distribution with considerable noise.

The most commonly used technique for determining the principal axes of 3D shapes is the
PCA technique. In this section, we will investigate the reasons and limitations on the
application. Then a robust statistics method, i.e. least median of squares (LMS), will be
introduced to overcome the PCA limitations. Finally, the forward search technique is utilized
in order to effectively approximate the LMS optimization.

2.1 Review of PCA
In statistics, PCA is a technique for simplifying a data set by reducing multidimensional data
sets to lower dimensions for analysis. The basic idea of PCA is to seek a projection that best
represents the data in a least squares sense [16]. We first review this procedure by considering
a 3D shape represented by a point set N. The specified reference frame for the 3D shape
consists of an origin and three principal axes. PCA assumes the origin is at the sample mean
point o. PCA wants to find a vector e through the origin o such that the sum of the squared
distances between various pi ∈ N and the corresponding projection point  onto e is as small
as possible. The squared-error criterion function is defined by
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(1)

Let e be a unit vector. Then the equation of the line through the origin o in the direction of e
can be written as x = o + αe, where the scalar α corresponds to the distance of any x from the
mean o. If each projection point  of pi ∈ N onto the line is represented by

(2)

We can find an optimal set of coefficients αi by substituting Eq. (2) into Eq. (1) and minimizing
the squared-error criterion function

(3)

By adding the constrain ‖e‖ = 1 and setting the derivative to zero for finding the best direction
e, the solution to this problem involves the so-called covariance matrix A [16] defined by

(4)

The eigenvector corresponding to the largest eigenvalue of the covariance matrix A is the first
principal axis e.

In fact, PCA is similar to the linear regression in a least-squares sense. However, a single sample
with a large error, an outlier, can change the principal axes arbitrarily. This results in that the
derived principal axes might be quite different for some similar shapes [3,4].

2.2 Least median of squares
To overcome the lack of robustness using least squares in Eq. (1), some robust methods might
be used for improving PCA, such as making use of some weight functions for bounding the
influence of outliers. However, most robust methods are least sum of squares by replacing the
square by something else, and they can not raise a high breakdown point [17].

In our case, we assume that a 3D shape represented by a point set N consists of two parts: a
major region and the remaining minor regions, and there is no overlap between them. The
major region is expected to contain at least 50% points of the entire point set, so the remaining
minor regions have up to 50% points. In our work, not only the noise but also the minor regions
are considered as outliers for determining the principal axes of the point-based shape. Our
motivation is to improve the least sum of squares in PCA with a high breakdown point (up to
50%). This above assumption, i.e. the major and minor regions making up of the 3D shape, is
similar to the partial shape alignment [4], in which the major region is defined by the set of
some salient features and the remaining can be considered as minor regions.

Liu and Ramani Page 5

Comput Aided Des. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The least median of squares (LMS) is a robust regression method that estimates the parameters
of the model by minimizing the median of the absolute residuals. In other words, LMS replaces
the sum of least squares by a median. LMS satisfies a 50% breakdown point [17]. The resulting
estimator using LMS can resist the effect of nearly 50% of contamination in the input data,
which is applicable to our case. In our case, we define the absolute residual as the distance
between the test point pi and the projection point  onto the first principal axis through the
origin: for the ith point . In this paper, we search a best direction
e that minimizes the median of the residuals as follows:

(5)

where e is the first principal axis that will be computed. Rousseeuw [17] has also pointed out
there always exists a solution for LMS.

Eq. (5) can be solved using the following random sampling algorithm (i.e. RANSAC) [7,28].
First, k points are selected at random, and the first principal axis is computed using the standard
PCA algorithm to the points. Next the median of the residuals of the remaining N−k points is
computed. The process is repeated T times to generate T candidate axes. The axis with the
minimal median is selected as the final principal axis e. For the remaining two principal axes,
we might use the similar strategy acquired by projecting all points onto the plane perpendicular
to e and through o and performing a 2D resolution for Eq. (5). A small value of k does not use
all of the available points to PCA computation, while a larger value of k requires more iterations.
If k is too large, the algorithm becomes sensitive to outliers including noise and minor regions.

2.3 The forward search algorithm
The forward search algorithm [27] is a robust method that avoids the need to fix k. Fleishman
et al. [7] applied this technique to reconstruct surfaces from point clouds. The forward algorithm
first searches a small outlier-free subset and then iteratively refines the subset by adding one
sample at a time. This is in contrast to the backward algorithms, which first deal with the entire
data points and then delete bad samples. Fleishman et al. [7] show that some outliers with a
large breakdown point usually fail on fitting based on the backward algorithms, whereas the
forward algorithm will give satisfactory results. The initial model is computed for Eq. (5) using
the LMS method with a small k value, typically k close to p for a model with p parameters
[27,7] (p = 3 in the 3D case). In our implementation, we choose k = 4.

During the forward search, a number of parameters can be monitored to detect the influential
points. Typically, the forward search will add the good-samples first and only when these are
exhausted, outliers will be added. Atkinson et al. [27] suggested several statistics, including
the residual-plot, Cook's distance and others, to be monitored. For their purposes, these are
plotted on a graph and inspected visually. The maximal residual rmax is monitored by Fleishman
et al. [7]. In our technique, we also monitor the maximal residual similar to Fleishman et al.'s
strategy [7]. However, we compute rmax based on the initial subset. It will be discussed in
Section 3.3.

Using the forward search technique for solving Eq. (5), we present the main procedure of
determining the principal axes of a point set N as follows:

1. Choose a small outlier-free subset Q using LMS.

2. The principal axes and the origin are computed using PCA to Q.

3. The point with the lowest residual in the remaining points is added into Q.
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4. Repeat steps 2 and 3 until the error is larger than a predefined threshold rmax and
identify the points in N − Q as outliers.

Fig. 1 shows an example of this process in two dimensions (see caption). The process is simple,
but there are some limitations for effective computation for large and complex point sets
acquired by 3D scanning devices. We will take advantage of the octree and point sampling to
significantly accelerate the process and improve its stability. The overall algorithm will be
introduced in the next section.

3 Robust principal axes determination
3.1 Initial robust estimator

In the first step of the forward search algorithm, the initial subset is computed using the LMS
algorithm with a small k value (see Section 2.3). If the number N of points in N is small, the

choice of the initial subset can be performed by exhaustive enumeration of all ; otherwise,
the LMS uses the RANSAC algorithm (see Section 2.2) that requires a large iteration number
T to achieve a high probability of finding a good estimator. The LMS, as a statistical method,
assumes that the samples (points) are independent. If g is the probability of selecting a single
good sample at random from the original point set N, then the probability P of successfully
finding k good samples after T iterations can be computed by P = 1 − (1 − gk)T [7]. Furthermore,
for every iteration, LMS requires a sort of the residuals of the remaining N − k points to find
their median, so this will also require the expenditure of large amounts of time and space for
sorting for a large T if N is gigantic. In general, there is a large number of points for a 3D shape
acquired by 3D scanning devices. For instance, Fig. 2 shows a 3D shape with 23,400 points,
and the running time for finding an initial subset (k = 4) is about 401.8 seconds with T = 5000
iterations, where the process of computing and sorting the remaining residuals is repeated 5000
times.

3.1.1 Octree-based approximation—In this phase, we use octrees described by Adams
et al. [29] to accelerate the initial subset searching, where the points of N are considered as
surfels with zero radius. In some point-based processing, such as Boolean operations [29],
surface reconstruction [30], and area computation of point-based models [9], the octree can be
utilized. Thus, it is not an additional price for the point set. In the preprocessing step, an axis-
aligned octree of depth d [29] can be constructed. Adams et al. [29] suggested that d = 4 or 5
can lead to both a small approximation error for shapes and little computation time. We
typically choose d = 5 in our implementation.

Suppose that we have constructed an octree for N, and have classified the cells of the octree
as two types: boundary cells containing points of N, and empty cells containing no point of

N [29]. For each boundary cell of the octree, we compute a center of points in the boundary
cell as a feature point that characterizes all points inside the boundary cell. Let  be the set of
feature points for all boundary cells of the octree. For every iteration, k points are first selected
at random from the original point set N, and three principal axis are determined using PCA.
Let e be the first principal axis obtained using PCA. Next the residuals are computed by
projecting feature points in  onto e. Unlike the original LMS method, we compute the median
of the residuals of feature points in  instead of ones of N − k points in N. The octree-based
approximation yields both the good approximation results and little computation time. Some
other tree data structure can also be used for approximating the point set, such as B-Trees
[11].

3.1.2 Octree-based point sampling—In the first step of the forward search algorithm, k
points are selected at random for every iteration for computing three principal axes. Point
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sampling is an intermediate step for a variety of computer graphics applications, and specialized
sampling strategies have been developed to satisfy the requirements of each problem (such as
Refs. [31–33]). A simplest sampling strategy is to choose k points randomly from N points in

N using pseudo-random number generators, but it might occur the chance of point clustering.
For example, k points appear on the same boundary cell of the octree of N, which results in
an invalid sample. Plenty of invalid samples will result in a low convergence rate.

Instead, our method for generating unbiased random points with respect to the number of points
in each boundary cell proceeds as follows. First, for each boundary cell, we count the number
of points inside the boundary cell, which is also called the density of the boundary cell. Then,
we store the density of each boundary cell in an array along with the cumulative density of
boundary cells visited so far. Next, k boundary cells are selected with probability proportional
to their densities. This procedure is finished by generating k random numbers between 0 and
the total cumulative density and performing a binary search on the array of cumulative
densities. For each selected boundary cell, one sample point is chosen randomly from the points
inside the boundary cell. Intuitively, the above sampling method gives k uniform random points
with respect to the density of the boundary cells. Our idea is similar to the area-based sampling
strategy presented by Osada et al. [33]. They uniformly sample points from a triangle mesh
with probability proportional to the area of triangles.

We find that the sampling based on octree can offer a faster convergence rate than one using
the direct sampling from points of the original model. Of course, other sampling methods that
sample according to curvature or other surface properties would be possible as well. However,
these methods usually require the large expense of computation time, and this is not applicable
to fast computation in our applications.

Fig. 2(a) illustrates an octree of depth d = 5 for a point-based shape, where the octree has 499
boundary cells that are displayed. In Fig. 2(b), a good initial subset with k = 4 points (red) is
obtained with T = 5000 iterations using the above octree-based approximation and point
sampling methods, and its running time is about 1.822808 seconds.

3.2 Residual computation
In Section 2.2, we defined the residual as the distance between the test point pi and the
corresponding projection point . Eq. (5) minimizing the median of projection distance onto
the first principal axis is an extension of PCA. In the special 2D case, LMS corresponds to
finding the narrowest “strip” covering half of the points [17]. In our case, the optimization in
Eq. (5) also implies that the major region of 3D shapes is nearly a cylinder-like shape
surrounding the first principal axis. The assumption can work well for most mechanical parts
(such as pipeline and bearing) and real life objects (such as human, animal, and tree). However,
there are still some limitations for point sets sampled from surface patches. The cylinder-like
shape is not expected to be similar for most surface patches whose major regions are near
planes. To overcome the disadvantage for surface patches using LMS, we might redefine the
residual as the distance between the test point pi and the projection  onto the reference plane
defined by the first and second principal axes. Based on the new residual definition, the LMS
optimization can be implemented by projecting all points onto the reference plane, which is
determined by two principal axes using PCA, at every iteration. Fig. 3 shows an examples for
determining the principal axes for a point set sampled from surface patches using the new
residual definition. Of course, some other residuals can also be defined for being suitable for
some special style of shapes. For some shapes without obvious major regions, our algorithm
is also incapable as the standard PCA.
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3.3 Forward search on point sets
After a robust estimator is computed for a small number of points using the above algorithm,
the results are three reference principal axes and an initial outlier-free subset Q. The threshold
of maximal tolerated residual rmax is computed using Q as follows. The k points in Q are
projected onto the first principal axis (or a reference plane in Section 3.2). Suppose that rt is
the maximal residual of k points. We define rmax to be proportional to rt

(6)

where λ is the value of residual band. We typically use λ = 1.25. A small value of λ does not
use all of the available samples to determine the major region, while a larger value for λ requires
more iterations. The second step of the forward search is to iteratively add one point with lowest
residual to the set Q at each iteration by sorting the residuals of the remaining points. The
iteration is terminated until the lowest residual is larger than rmax.

Since we expect a less iteration and little computation time for the forward search, instead of
only adding one point at each iteration, we add more points every time. The number m of adding
points can be set by users. We typically choose m = 60 or more for the dense point sets. Fig.
2 illustrates the procedure of robust principal axes determination for a 3D shape.

Algorithm 1 : RobustPrincipalAxes( N, o, e1, e2, e3, Q)

Input:

N ∈ ℝ 3×N: the given point set with N points

Output:

o: the origin of the reference frame

e1, e2, and e3: the first, second, and third principal axes

Q ⊆ N: the working subset, i.e. the major region

Local variables:

k: the number of random samples

rmax: the maximal tolerated residual

I: the current iteration

crem ⊆ N : the set of the remaining points

m: the number of points added into Q at every iteration

MAX_ITERS: the maximal number of iterations

begin

1: Q ⇐ Ø;

2: LMS( N, k, Q);

3: Compute rmax using Q via Eq.(6);

4: I ⇐ 0;

5: while (I + + < MAX_ITERS) do

6: Compute the origin o and three principal axes: e1, e2 and e3 for Q using PCA;

7: crem ⇐ N – Q;

8: Compute the residual as the distance between each point in crem and its projection point onto the line through o in the
direction of e1;

9: Get m points with lowest residuals for crem;

10: if (the maximal residual of the m points > rmax) then

Liu and Ramani Page 9

Comput Aided Des. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



11: The points whose residuals are smaller than rmax are added into Q;

12: return

13: end if

14: Add the m points into Q;

15: end while

16: Project N onto the plane determined by e2, e3 and o, then perform a 2D robust PCA for updating the principal axis
e2 and e3;

end

3.4 The algorithm implementation
The outline of an algorithm for robust principal axes determination, called
RobustPrincipalAxes, is given in Algorithm 1. The algorithm takes as input a point set N
and computes the origin o and three principal axes e1, e2, and e3 of the reference frame. This
is achieved through an iterative procedure with the aid of a variable Q which is a working
subset of N. Initially, Q is computed using the LMS algorithm through selecting k points at
random with T iterations, as illustrated in Algorithm 2. Here, the LMS procedure is accelerated
for approximating and sampling using an octree of depth d for N. The octree can also be
constructed in the preprocessing step.

Algorithm 2 : LMS(cn, k, Q)

Input:

cn ∈ ℝ3×n: the working point set with n points

k: the number of random samples

Output:

Q ⊆ cn: the initial subset

Local variables:

d: the depth of the octree for cn

T: the number of iterations

ctemp ⊆ cn: the initial subset

o: the origin of the reference frame

e1: the first principal axis of the reference frame

rhalf: the median of redsiduals

rmin: the minimal redsidual

begin

1: Construct the octree of depth d for cn; /* the octree can also be constructed in the preprocessing step */

2: rmin ⇐ ∞;

3: for (i = 0;i < T;i + +) do

4: Select randomly a subset ctemp with k points using the octree-based sampling;

5: Compute the first principal axis e1 and the origin o for ctemp using PCA;

6: for (boundary cells of the octree of cn) do

7: Compute the residual as the distance between the feature point of each cell and its projection point onto the line through
o in the direction of e1;

8: end fors

9: Compute the median rhalf by sorting the residuals;

10: if (rhalf < rmin) then

11: rmin ⇐ rhalf;

12: Q ⇐ ctemp;
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13: end if

14: end for

end

According to Algorithm 2, the proposed algorithm is passed into a point set (cn ⇐ N), and a
loop with T iterations begins. At each iteration, a subset ctemp with k points is randomly selected
using the octree-based sampling, and the first principal axe e1 and the origin o is computed for
ctemp using the classical PCA. Then, the residuals of cn are calculated as the distance between
the feature point of each cell and its projection point onto the line through o and e1. Next, the
median rhalf of the residuals is obtained. If rhalf is less than the minimal residual rmin, rmin and
Q are updated as rhalf and ctemp, respectively.

During the iterative procedure in Algorithm 1, the cardinality of Q is gradually increased by
adding m points with lowest residuals every time. In this way, one is able to increase Q regarded
as the major region in the forward search. If the residuals of the remaining points ( N − Q) are
more than a threshold rmax, the procedure is terminated. Finally, the points in the major region
Q are used to compute the first principal axis e1, and the remaining points are identified as
outliers or minor regions.

Algorithm 1 is mainly used to compute the first principal axis e1. The remaining two principal
axes might be computed using the strategy similar to Ref. [12] by projecting all points of N
onto the plane perpendicular to e1 and through the origin o. Then a 2D case for Algorithm 1 is
performed for computing e2 and e3.

4 Results and applications
We have implemented the technique presented in the previous section and tested it on a large
number of different point-based 3D shapes. The algorithm described above is implemented in
C++. In this paper, the execution time is given in seconds on a Pentium IV 1.70GHz processor
with 512M RAM excluding the time of loading point sets.

Before computing the principal axes, a preprocessing step includes an octree construction that
can be performed in a short time. Table 1 gives the time in seconds for some point-based shapes
referred to in this paper, where “N” is the number of points of the models, “Major%” is the
percentage of the major region that belongs to the original point set, “m” is the number of points
added at each iteration (see Section 3.3), “T1” and “T2” are the time of constructing an octree
and computing the principal axes. The computation time increases with the number of points
of the models used. The time also depends on the size of major region and the number of
iterations. In all examples, we use T = 5000 iterations in Algorithm 2.

4.1 Testing major regions for articulated and scanned models
One important issue of principal axes computation using our method is its robustness of
computing the major regions for different poses of the same object. We test the 3D models
with multiple poses in Gal et al.'s database [34], which contains some similar articulated models
with multiple poses. All models in this database are represented by triangled meshes, so we
first sample the triangled meshes to generate the point sets as the tested models. Then our
method is applied to the point-based models for obtaining the major regions. Most of real life
objects in this database, such as animal models, contain the similar major region with a cylinder-
like shape. Fig. 4 shows some results of major regions for the dinosaur and horse models,
respectively. Here, our method can recognize that the body of animal is the major region. The
major regions computed by our method are insensitive to pose changes of the same object.
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In addition, some real point sets acquired by 3D scanning devices are also tested for computing
the major regions and the final principal axes (see Fig. 5). These selected models are obtained
from AIM@SHAPE Shape Repository. Fig. 5(a) shows the result of a dancer model. In this
example, the computed major region, which contains automatically the portions: one leg, the
head and hands, and part of body, captures the main pose of the dancer. In Fig. 5(b), another
complex example is given for the Neptune model. Although the lance and pedestal hold part
of the model, the principal axes on the major region are still determined on the Neptune's body.
In Fig. 5(c), the major region is captured as the body of the pig, not its legs. Our results show
that our method works good on both scanned or articulated objects.

4.2 Shape alignment
Many shape matching methods require an alignment step in order to position all objects in a
standard orientation [4,12]. These searching methods rely on the ability to align models by
some global similarity transformation (rotation + uniform scale) that normalizes the models
and establishes some correspondence between them. Most global alignment methods first
determine a rigid-body transformation and a uniform scale, which align two models together
as closely as possible, before measuring the distance between them. This is typically achieved
by PCA applied to the whole model. The PCA method does not discriminate between the major
regions, and can easily cause similar local features to be misaligned. Our alignment algorithm
based on robust principal axes determination first searches the major region of each model.
Then for each model, the origin and three principal axes are computed for the corresponding
major region as a specified frame of reference. Finally, the transformation is applied to two
reference frames for finishing the final alignment.

In Fig. 6, a 3D example is shown for aligning two gun models, where the gun in Fig. 6(b) is
part of one in Fig. 6(a) only through removing the cartridge clip. Fig. 6(c) shows that a global
PCA alignment fails to align them correctly, whereas our method correctly aligns as shown in
Fig. 6(d). Comparison between two major regions for Figs. 6(a) and 6(b) is given in Fig. 7.
Another example is shown in Fig. 8, where two point sets are sampled from the drills with
different angle-rotation hands. Our alignment (see Fig. 8(d)) is better than a global PCA
alignment (see Fig. 8(c)).

In addition, an animal example is shown in Fig. 9, where the same models appear in two
different poses. In spite of the obvious difference between them, our algorithm aligns the two
better than a global PCA alignment, where the body of the cat is automatically identified as
the major region not its legs. Our alignment is based on a majority scheme that finds the
transformation which satisfies the major regions not the whole shapes.

5 Discussion
In this section, we will discuss some parameters used in our algorithm, influences on noise and
irregular samples, comparison with previous works, and limitations of our algorithm.

5.1 Parameters
In Algorithms 1 and 2, the parameters of the algorithms are: rmax, T, m, and MAX_ITERS. In
our implementation, the maximal tolerated residual rmax in Eq. (6) is determined by both the
scale λ and the initial outlier-free subset Q, as described in Section 3.3. Eq. (6) can be regarded
as a rough approximation for the narrowest strip covering half of the points in N. The reason
of choosing Eq. (6) as the threshold during monitoring is that the principal axes of Q
approximates the final principal axes of CN. In general, when the good samples are added in
the forward search, the updated principal axes will change a little; there will be a clear change,
otherwise. One may choose a large λ and increase the number of iterations. If λ is too large so
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that the major region is equal to N, the principal axes using our method is same as ones using
PCA. In some sense, PCA is only one special case of our algorithm.

The maximal residual—Fig. 10 shows the angle difference between the initial and final
first principal axes e with respect to the various scale λ of rmax in Eq. (6) for two models, which
are referred to in Table 1. We vary the threshold of the maximal residual, using λ from 0 to
2.5, to determine its effect on the the initial and final first principal axes. The value of angle
difference between them increases with λ until the major region is equal to N. This reason is
that the forward method adds the points with the minimal residual into the current subset at
each iteration until all point sets are exhausted. We observe that the value of λ between 1.0 and
1.5 can leads to a small angle change between the initial and final first axes. For example, λ =
1.25 can get an angle difference close to 2 degree. In fact, we found the initial subset can
introduce the good direction for the first principal axis, but it is not sufficient for the center
computation due to the few points in the subset, as described in Fig. 1. The main goal of the
forward searching procedure in our method is to mainly refine the center position and slight
adjust the direction for the frame of reference.

Eq. (6) is only a simply linear function for estimating the bound of the major region. A potential
improvement considered is to choose a non-linear function instead of Eq. (6), such as Gaussian
function. In fact, some standard methods in regression analysis for identifying outliers, such
as the residual plot [27], can also be used for monitoring the termination of iterations during
the forward search. In the future we plan to take advantage of the statistics methods to find a
way to automatically select rmax such that the forward search is adaptively achieved.

The forward search algorithm as described in Section 2.3 adds a single sample into the current
subset at each iteration. In our implementation that presented in Section 3.4, we allow adding
multiple (m) points at each iteration as long as their residuals are within the allowed tolerance.
For sparse point sets, a small m can be considered. Furthermore, in all results shown in this
paper, we use T = 5000 iterations in Algorithm 2 for obtaining both small errors and little
computation time. The maximal iteration number MAX_ITERS is usually a predefined integer
to ensure that the number of points on the major region is more than 50% in N (generally
[0.5N/m] ≤ MAX_ITERS ≤ [N/m]).

Multiple objects—The method presented in this paper focuses on a set of points with no
connectivity. This permits one to deal with multiple and non-manifold objects. In Fig. 12(d),
we show an example from Ref. [35] for determining the principal axes for a point set sampled
from two objects, where the large object is identified as the major region.

5.2 Noise and sampling density
Models created from 3D scanners usually contain noise [6,23,24]. Noise tends to increase point-
error (or “point cloud thickness”) [10]. Our method uses tools from robust statistics to operate
well in the presence of noise, identifies outliers and ignore them. The main tool that we use is
the forward-search algorithm which has a significant advantage in detecting outliers over
commonly used “backward” methods. To test the ability of the procedure to handle noise, we
have added uniformly distributed random noise (along the normals with 30.0% variances of
the diagonal of the bounding box of the model) to the gun model. Fig. 11(a) and 11(a) shows
the original and noisy models with the major regions colored by blue. Fig. 11(c) gives the
alignment result between the original model and the noisy one using our method. Our method
can keep the almost consistent principal axes between two models.

Highly irregularly sampled point sets are uncommon in scanned data sets [24]. If the sampled
points are not uniformly distributed over the underlying surfaces of 3D shapes, our method
may lead to large errors for approximating the principal axes. The forward search method
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approximates the LMS optimization using the PCA computation for the currently working
point sets on each iteration, as seen in Algorithms 1 and 2. The only information used in our
current implementation is the position of the points in N. However, the PCA analysis is blind
to the position of the points [11], even though we only use PCA for computing a subset of

N. Recently, Kalaiah et al. [11] presented a randomized rendering method for a point-based
model. They use multi-attribute PCA to represent the geometry and attributes of the point-
based model in a high dimensional space. In their case, the input is a set of N points with three
attributes: spatial position, normal, and color. The mean, variance, and the basis of each of
these attributes are identified respectively to obtain the high dimensional eigenvectors. In
practice, normal and color of points can be estimated from scanners. To overcome in part the
effect on irregular data sets, we might also apply the additional attributes of the points, including
normal and color, to achieve the intermediate PCA computation in Algorithms 1 and 2. In
addition, another hopeful strategy is to pre-compute the sampling densities of points as weights
of points, and achieve a weighted PCA in Algorithm 1.

5.3 Combination with ICP
One main application of our method is shape alignment. Another widely used geometric
alignment technique is Iterative Closest Point (ICP) [36,37], which is employed to match two
clouds of points to reconstruct 3D surfaces from different scans, to localize robots, to match
bone models with measures in realtime, etc. The ICP algorithm starts with two point clouds
and an initial guess for their relative rigid-body transform, and iteratively refines the transform
by repeatedly generating pairs of corresponding points on the models and minimizing an error
metric. One main limitation of ICP and its variants is that, as a local optimization method, it
is not guaranteed to find the globally optimal alignment. Therefore, ICP is only effective when
the initial position of the input shapes is close to the correct alignment [36,37]. For the shape
registration application, PCA is typically used to compute an initial guess between two input
models, and then the initial guess is refined with ICP for finding the final transform. Our method
can be expected to obtain a better initial position than PCA for improving the robustness of the
ICP step.

5.4 Comparison with previous works
Backward vs. forward methods—Although there are different types of robust statistical
methods (such as SVD [38], Least Trimmed Squares (LTS) [38], Iterative Reweighted Least-
Squares (IRLS) [39], and RANSAC [28] techniques) being available for improving PCA
computation that are used in solving practical problems in computer vision, most existing works
are backward methods and they do not work well in our case. Backward methods fit a model
to noisy data work by fitting a model to the entire sample set and then trying to delete bad
samples. Backward methods identify the outliers with respect to the initial guess. For example,
LTS first fits the data using ordinary least squares; then identifies some points with the largest
residuals and discards these; finally re-fits the remaining data. One main problem of backward
methods is that some large outliers may affect the final fit or principal axes computation. The
main tool that we use is the forward-search algorithm which has a significant advantage in
detecting outliers over commonly used backward methods [7].

Recently, Cortadellas et al. [39] presented an approaches for normalizing silhouettes of 2D
images. The key technique used in this paper involves the computation of the center of gravity
and the orientation of the principal axis for 2D shapes with deformation. The main idea is to
improve IRLS for principal axis computation with a 2D shape dependent weighting function.
This algorithm works well when being applied to 2D shapes whose measured orientation
changes under slight deformations. However, it does not work well when being directly applied
to our works due to two reasons. The first one is that their weighting function is not suitable
for 3D point-based shapes. The presented shape dependent weighting function needs to
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compute distance maps. Although, this method can be implemented for 2D images, but it is
not a trivial task to determine distance maps of 3D point-based shapes without any connectivity
and parameterization information. The second one is that Cortadellas et al.'s method is a
backward method, which identifies the outliers with respect to the initial guess. In our
experiment, we test Cortadellas et al.'s IRLS algorithm for 3D point-based shapes with the
standard weight function. Since Cortadellas et al. only presented the first principal axis
computation, we compare the results of four methods (PCA, IRLS, LTS and our method) for
the first principal axis. The principal axis determined by IRLS perhaps might be affected by
large outliers or deformation regions. Fig. 12 shows comparison of four methods for a point
set sampled from two objects. PCA, IRLS and LTS are affected by the small object, while our
method ignores the small object regarded as outliers and identifies the large object as the major
region for the final principal axis computation and thus produces the expected result.

RANSAC vs. Forward Search—RANSAC (RANdom SAmple Consensus) is a general
procedure for fitting models to data that has clearly separated outliers. Given a fitting problem
with parameters x, the RANSAC algorithm can be described as follows [28,38].

1. Randomly select k data items;

2. Estimate the parameter x;

3. Find how many data items (of N) fit the model with parameter vector x within a user
given tolerance. Call this Q.

4. if Q is big enough, accept fit and exit with success;

5. Repeat steps 1–4 until the best fitting to the remaining data is retained.

Least Median of Squares (LMS) can be solved by RANSAC in which the median error is used
to evaluate RANSAC. One limit of RANSAC for solving LMS is that it is difficult to choose
an appropriate k value [7]. A small value of k does not use all of the available points to PCA
computation, while a larger value of k requires more iterations. If k is too large, the algorithm
becomes sensitive to outliers including noise and minor regions.

The forward search algorithm [27] is a robust method that avoids the need to fix k. In this
procedure, a small subset of inlying points is first identified (e.g. using RANSAC or perhaps
manually), and then this set is grown by iterating the following steps:

1. Add the data point with the lowest residual to the currently fit model;

2. Re-fit the model to the new set of points.

The iteration is terminated when the lowest residual is larger than some threshold reflecting
an outlier. In our works, we use RANSAC for the extraction of the initial subset in forward
search. Meantime, we present the octree-based approximation and point sampling for
accelerating this RANSAC procedure. RANSAC is only one step of our works.

Robust least squares techniques are receiving more attention in computer graphics. For
example, Pighin and Lewis [38] presented a ACM SIGGRAPH 2007 courses for an overview
of the least squares technique and its robust variants for computer graphics. Using robust least
squares for resolving the deformation shapes is a potential research direction by regarding
deformation region as outliers.

Limitations—The first principal axis of a shape can also be used for determining shape
orientation [39,40], which provides a properly oriented frame of reference and has been shown
to affect performance of object recognition in the human visual system. However, note that
there are many situations in which, even without noise, the principal axis approach is ill defined,
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resulting in orientation estimation failing [40]. To overcome this problem, a new shape
descriptor, called shape orientability, is introduced [40], which describes the degree to which
a shape has distinct (but not necessarily unique) orientation. Orientability quantifies the likely
reliability and stability of orientation estimates. For instance, even minor changes in a shape
due to digitization or noise effects can substantially alter orientation estimates for shapes with
low orientability. A future work is to combine shape orientability with our robust algorithm
for principal axis computation of 3D point-based shape.

6 Conclusion
We have presented a robust method for determining the principal axes of point-based 3D
shapes. The method is based on least median of squares (LMS) for guiding the classical
principal component analysis (PCA) computation. Using the method, we can automatically
identify portions of a shape as the major region or minor regions. The forward search technique
is used for approximating the LMS optimization by combining the octree-based approximation
and sampling. Our experiments show that the proposed method can efficiently obtain the
reasonable principal axes without requiring any extra segmentation procedure. We have
presented one application on shape alignment for demonstrating the effectiveness of our
method. The method presented in this paper can help many point-based processing
applications, such as shape registration and matching. In summary, the theoretical/
methodological contributions of the paper are three-fold:

- The paper shows that interpreting PCA as a least-squares minimization drives the
development of a LMS algorithm with higher breakdown point.

- The paper develops a forward search algorithm for efficiently determining/growing the
major region defining the pose.

- The paper presents an efficient method for finding and initial estimator (voxel/octree-
based approximation) for the forward search.

Two future works can be considered for extending the current work.

- In our experiments, we only use the point position for guiding the robust principal axes
computation. The principal axes might be effected by sample density of 3D shapes. In
some applications, the normals of points are also the important information for 3D shapes.
Improving the robustness of this method while using sample density and normals is a topic
for future work.

- Furthermore, since numerous shape-matching algorithms depend on pose estimation, we
also plan to apply the robust principal axes determination to improves retrieval of point-
based models by combining the known shape-matching algorithms.
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Fig. 1.
The illustration of determining the principal axes with the forward search technique. (a) The
input data points sampled from the contour of a handwritten digit “9”. (b) First, determine
robustly the principal axes to a small subset (4 red points) using PCA, where the red and green
lines are the first and second principal axes, respectively. (c) Next, add points with smallest
residual (blue points) into the subset and recompute PCA to the updated subset, where the result
after five iterations is shown. (d) The final principal axes of the forward search is shown. In
(d), the remaining points (black points) are regarded as outliers or minor regions, and the final
principal axes are defined using the major regions (blue and red points).
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Fig. 2.
The illustration of robust principal axes determination for a point set representing the drill hand
model with 23,400 points. (a) First, an octree of depth d = 5 is constructed with. (b) Next, the
initial subset with 4 points (red) is chosen after 5000 iterations. (c) The final major region (blue
points) is shown using the forward search technique. (d) The final principal axes are determined
using the points on the major region, In this paper, the red, green, and blue axes correspond to
the first, second, and third principal axes, respectively.
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Fig. 3.
Determining principal axes for point sets sampled from surface patches. The input is a wedge
data with 14,687 points sampled from two planes. (a) PCA. (b) Our method. Here four red
points are the initial subset and blue points are major region. Note that the points sampled from
the small plane do not effect our method unlike PCA.
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Fig. 4.
Testing the major regions (blue points) of similar models using our method. (a) One dinosaur
with different poses. (b) One horse with different poses.
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Fig. 5.
The major regions and principal axes of the scanned models using our method. (a) One dancer
model. (b) Another dancer model with different pose. (c) The Neptune model. (d) The pig
model.
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Fig. 6.
Shape alignment based on the global PCA and our method. (a) A point set sampled from a gun
model. (b) Another point set sampled from the same gun, but without the cartridge clip. (c)
The alignment result using PCA. (d) The alignment result using our method.
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Fig. 7.
Comparison between two major regions (blue points) for Fig. 6(a) and Fig. 6(b) using our
method. Here two major regions are almost consistent.
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Fig. 8.
Aligning two models sampled from a drill with the different angle-rotation hand. (a) and (b)
show the input data. (c) is the alignment result using PCA. (d) is the alignment result using our
method.
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Fig. 9.
Aligning two models of a cat in different poses. In spite of the obvious difference between
them, our algorithm aligns the two (bottom left) better than a global PCA alignment (bottom
right).
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Fig. 10.
The angle difference between the initial and final first principal axes e with respect to the
various scale λ of rmax in Eq. (6) for two models: gun and drill hand.
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Fig. 11.
An alignment between the original model and the noisy. (a) The original point set and the
computed major region (blue points). (a) The noisy point set and the computed major region
(blue points). (c) The alignment result between the noisy model and the original one. Note that
our method keeps the almost consistent major regions and principal axes between two models.
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Fig. 12.
Comparison of four methods for determining the principal axis for a point set sampled from
two objects. (a) PCA. (b) IRLS [39]. (c) LTS. (d) Our method. Note that the large object is
identified as the major region for the final principal axis computation using our method. In
contrast, PCA, IRLS and LTS are affected by the small object.
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