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Abstract
In this paper, we present a novel computational modeling and simulation framework based on
dynamic spherical volumetric simplex splines. The framework can handle the modeling and
simulation of genus-zero objects with real physical properties. In this framework, we first develop
an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object
with spherical volumetric simplex splines which can represent with accuracy geometric, material,
and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics,
the dynamic volumetric simplex splines representing the object can accurately simulate its physical
behavior because it can unify the geometric and material properties in the simulation. The
visualization can be directly computed from the object’s geometric or physical representation based
on the dynamic spherical volumetric simplex splines during simulation without interpolation or
resampling. We have applied the framework for biomechanic simulation of brain deformations, such
as brain shifting during the surgery and brain injury under blunt impact. We have compared our
simulation results with the ground truth obtained through intra-operative magnetic resonance imaging
and the real biomechanic experiments. The evaluations demonstrate the excellent performance of
our new technique.
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1 Introduction
Modeling, simulation and assessment of digital representations of heterogeneous objects
acquired from real-world are very challenging research tasks and have many potential
applications. The fundamental objectives are to unambiguously model high-dimensional
heterogeneous objects, accurately and effectively simulate their behaviors, and rigorously
analyze their dynamic natures. Among many important aspects of physically based modeling
and simulation, the accuracy is of utmost importance since only physically realistic simulation
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can be used to represent the true reality and provide valuable information for the simulation-
based assessment and analysis. In existing approaches, several different representations are
typically required throughout the simulation of real-world models in computerized
environments. That is to say, each stage within the entire physical simulation pipeline,
including modeling (e.g., meshing, material modeling), simulation, analysis, visualization,
typically takes as input a different representation of the modeled object, which requires costly
and error-prone data conversions throughout the entire simulation process. It will certainly
introduce error into the pipeline. For instance, in order to simulate the brain deformation, a
linear solid mesh needs to be generated for finite element methods (FEMs) from the voxel-
based representation of the brain representing the geometry of the brain (which has a highly
convoluted cortical surface and many subtle sub-cortical structures). Then, manual material
editing needs to be conducted to assign material properties to solid meshes. The FEM properties
are linearly interpolated during simulation and resampled once again to voxels’ intensities for
visualization. Certainly, conversions among volumetric datasets, solid meshes, finite elements,
and voxels based on linear interpolation or resampling will introduce error. In addition, more
errors will be brought into the pipeline as the constructed linear solid mesh may not well
represent both geometry and material distribution simultaneously. The geometric, physical,
and mechanical properties are not tightly integrated into the simulation. As a result, the current
practice impedes the accurate modeling and simulation of digital models of real-world objects.
With ever-improving computing power comes the strong demand for more accurate, robust,
and powerful solid modeling and simulation paradigms that are efficacious for the modeling,
simulation, analysis, and visualization of digital models of real-world objects.

In order to bridge the gap and overcome the aforementioned deficiencies, we develop an
integrated computational framework based on dynamic spherical volumetric simplex splines
(DSVSS) that can greatly improve the accuracy and efficacy of modeling and simulation of
heterogenous objects since the framework can not only reconstruct with high accuracy
geometric, material, and other quantities associated with heterogeneous real-world models, but
also simulate the complicated dynamics precisely by tightly coupling these physical properties
into simulation. The integration of geometric modeling, material modeling, and simulation is
the key to the success of simulation of real-world objects. In contrast to existing techniques,
our framework uses a single representation that requires no data conversion. The advantages
of our framework result from many attractive properties of multivariate splines. In comparison
with tensor-product NURBS, multivariate simplex splines are non-tensor-product in nature.
They are essentially piecewise polynomials of the lowest possible degree and the highest
possible continuity everywhere across their entire tetrahedral domain. For example, given an
object of simplex splines with degree n, it can achieve Cn−1 continuity. Furthermore, C0, other
varying continuities, and even discontinuity can be accommodated through different knot and
control point placements and/or different arrangements of domain tetrahedra in 3D.
Furthermore, simplex splines are ideal to represent heterogeneous material distributions
through the tight coupling of control points and their attributes. From dynamic simulation’s
point of view, they are finite elements which can be directly brought into finite element
formulations and physics-based analysis without losing any information. Finite elements can
be derived directly from the simplex spline representation, which can also be visualized via
volumetric ray-casting without discretization (Hua et al., 2004). Trivariate simplex splines are
obtained through the projection of n-dimensional simplices onto 3D. Projecting them one step
further onto 2D for visualization results in bivariate simplex splines of one degree higher than
the original solid model, therefore, simplex splines facilitate the visualization task with an
analytical, closed-form formulation. It is not necessary to perform any resampling and/or
interpolation operations. Local adaptivity and local/global subdivision via knot insertion can
be readily achieved.
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On the application front, in recent years, tremendous efforts from biomedical research
communities have been devoted into the brain simulation since accurate simulation of brain
deformations can have many potential applications, e.g., computer-aided surgical planning/
surgery, computer-assisted disease/injury positioning, accurate radiation therapy, and many
other medical benefits (Maguire et al., 1991). Various methods are emerging for simulation of
the brains in different physical environments. However, most brain volume simulation
techniques still depend on linear geometric representation and FEMs as we have already
described above. No advanced computational models are available for better simulation. As
we all know, the brain is a highly convoluted organ rich of geometric, anatomical, and material
variations. In order to obtain realistic deformation simulation of the brain, it is very important
to construct a digital model which can simultaneously represent its geometry, imaging
intensities, and material properties, and then integrate the properties into the biomechanic
simulation. Consider that the human brain is topologically equivalent to a solid sphere, our
proposed dynamic spherical volumetric simplex splines are perfect for modeling, simulation,
and analysis of such an object. The spherical volumetric simplex splines are defined over a
solid spherical tetrahedralization. In this paper, we apply and evaluate our simulation
framework on various human brain deformations.

As depicted in Figure 1, the developed framework is fully automated without human
intervention. The spherical domain is constructed from the subdivision of an icosahedron and
harmonic volumetric mapping. With spherical domain and harmonic volume parameterization,
the continuous volumetric representation of the modeled object is obtained through fitting
spherical volumetric simplex splines to the real-world volume data. Physical properties can
then be integrated into the system to unify the geometric representation as well as the physical
representation. With Lagrangian dynamics essentials integrated into the pipeline, the powerful
framework yields the dynamic representation of the digital model. The dynamic representation
of the digital model can facilitate multiple tasks such as model assessment, biomechanic
simulation, and visualization.

Our contributions in this paper can be summarized as follows:

• We develop a physical simulation framework which seamlessly integrates geometric
properties, physical properties, and dynamic behaviors together. The consistent,
uniform representation throughout each stage of modeling and simulation is a single
degree n spherical volumetric simplex spline. It is ideal for simulating complex,
heterogenous real-world objects.

• The heterogenous model reconstructed from the digitalization of a real-world object
is faithful and of high-fidelity in terms of its geometry and material distribution. The
model reconstruction procedure is automatic, and the maximal fitting error to the
original data can be controlled by user’s specification interactively.

• During the simulation, the geometry and physical properties of the volumetric model
can be computed using the analytic representation without any need for numerical
approximations such as cubic interpolation or quadratic resampling. Hence, physical
simulation, including all downstream processes, such as analysis and evaluation, can
be achieved more accurately and robustly.

• We apply the dynamic spherical simplex splines scheme in the simulation and analysis
of brain models. The unified scheme can achieve very accurate simulation compared
with the ground-truth results because it can tightly integrate the geometric and
material properties in the simulation. Our framework has great potential to provide
simulation-based assessment for innovative computer-aided diagnosis of brain injury
cases.
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2 Previous Work
This section reviews the previous work related to the theory and application of multivariate
simplex splines and physically based modeling and simulation. In particular, we provide the
brief background regarding the brain simulation and its potential applications.

2.1 Multivariate Simplex Splines
From projection’s point of view, univariate B-splines can be intuitively formulated as
volumetric shadows of higher dimensional simplices, i.e., we can obtain B-splines of arbitrary
degree n by taking a simplex in the (n + 1)-dimensional space and volumetrically projecting it
onto R1. Motivated by this idea of Curry and Schoenberg, C. de Boor (de Boor, 1976) presented
a brief description of multivariate simplex splines. In essence, multivariate simplex splines are
the volumetric projection of higher dimensional simplices onto a lower dimensional space
Rm. Simplex splines have many attractive properties such as piecewise polynomials over
general tetrahedral domains, local support, higher-order smoothness, and positivity, making
them potentially ideal in engineering design applications (Greiner and Seidel, 1994). From the
point of view of blossoming, Dahmen et al. (Dahmen et al., 1992) proposed triangular B-
splines. Later, Greiner and Seidel (Greiner and Seidel, 1994) demonstrated their practical
feasibility in graphics and shape design.

In contrast to theoretical advances, the application of simplex splines has been rather under-
explored. Pfeifle and Seidel developed a faster evaluation technique for quadratic bivariate
DMS-spline surfaces (Pfeifle and Seidel, 1994) and applied it to the scattered data fitting of
triangular B-spline (Pfeifle and Seidel, 1996). Recently, Rössl et al. (Pauly et al., 2002)
presented a novel approach to reconstruct volume from structure-gridded samples using
trivariate quadric super splines defined on a uniform tetrahedral partition. They used Bernstein-
Bézier techniques to compute and evaluate the trivariate spline and its gradient. Hua and Qin
presented a volumetric sculpting framework that employs trivariate scalar nonuniform B-
splines as underlying representation (Hua and Qin, 2001, 2003). More recently, they applied
trivariate simplex splines to the representation of solid geometry, the modeling of
heterogeneous material attributes, and the reconstruction of continuous volumetric splines from
discretized volumetric inputs via data fitting (Hua et al., 2005). Tan et al. applied the
hierarchical simplex splines to volume reconstruction from planar images (Tan et al., 2007).

2.2 Physically Based Modeling and Biomechanic Simulation
Free-form deformable models were first introduced to the modeling community by
Terzopoulos et al. (Terzopoulos and Fleischer, 1988), and they have been improved by a
number of researchers over the past 20 years. Celniker and Gossard developed an interesting
prototype system (Celniker and Gossard, 1991) for interactive free-form design based on the
finite-element optimization of energy functionals proposed in (Terzopoulos and Fleischer,
1988). Bloor and Wilson developed related models using similar energies and numerical
optimization (Bloor and Wilson, 1990). Welch and Witkin extended the approach to trimmed
hierarchical B-splines for interactive modeling of free-form surfaces with constrained
variational optimization (Welch and Witkin, 1992). Terzopoulos and Qin (Terzopoulos and
Qin, 1994; Qin and Terzopoulos, 1995b) devised dynamic physically based generalization of
NURBS (D-NURBS). Later, they further developed dynamic triangular B-splines (Qin and
Terzopoulos, 1995a) paradigm for high topology surface modeling. The new paradigm on
simplex spline finite elements is substantially more sophisticated and is expected to produce
even more true-to-life simulation results.

As for simulation of digital models of real-world objects, researchers have focused on FEM
meshing, which can represent the shape of the objects, and physical laws and properties, which
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govern the model’s behavior. Zhang et al. presented a method for 3D mesh generation from
imaging data (Zhang et al., 2007). They further designed an algorithm for automatic 3D mesh
generation for a domain with multiple materials. In general, the main objective of FEM meshing
is to construct a nicely-shaped elements which can represent both geometry and material of
the real-world models for accurate and robust simulation. However, due to its linear
representations in general, it cannot accurately represent the geometric and physical properties
of real-world objects. For simulation-based assessment of real-world objects, e.g., the brain,
these FEM representations are not able to obtain an accurate and objective analysis result
(Zhang et al., 2001).

Biomechanic simulation of brain behaviors such as brain shifting and brain injury gains ever-
increasing importance in recent years while these behaviors remain an unclear problem for
public health professionals. Although impeded by that fact that brain material properties can
not be retrieved directly from the human brain in vivo, there is a certain number of research
which have been done either using animal brains or modifying brain biomechanic parameters
to approach the real situation. Margulies et al. studied the relationship between non-
preconditioned and preconditioned biomechanic response of brain tissue from porcine (Gefen
and Margulies, 2004). Later they further investigated the homogeneity of gray matter by
measuring stiffness of cerebral cortex and comparing it to the thalamus of porcine brain (Coats
and Margulies, 2006). Many investigations have been conducted using mathematical finite
element modeling (Ruan et al., 1991; Kang et al., 1997; Zhang et al., 2001). In general, the
cerebral tissues in their models were represented by homogeneous materials. Recent studies
started to make distinctions between gray and while matters. In terms of applications, brain
deformation simulation facilitates researchers and clinicians new prospects in clinical practice
(Maguire et al., 1991).

3 Dynamic Spherical Volumetric Simplex Splines
In this section, we first briefly review the theoretical background of volumetric simplex splines.
Then, we formalize them to the spherical volumetric simplex splines with details on spherical
domain construction. We further generalize the splines with physical dynamics and develop
dynamic spherical simplex splines which can be used for modeling and simulation of real-
world models.

3.1 Volumetric Simplex Splines
A degree n volumetric simplex spline, M(x|x0, ···, xn+3), can be defined as a function of x ∈
ℝ3 over the half open convex hull of a point set V = [x0, ···, xn+3), depending on the n + 4 knots
xi ∈ ℝ3, i = 0, ···, n + 3. The volumetric simplex splines may be formulated recursively, which
facilitates point evaluation and its derivative and gradient computation. When n = 0,

and when n > 0, select four points W = {xk0, xk1, xk2, xk3} from V, such that W is affinely
independent, then

(1)
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where  and .

The directional derivative of M(x|V) with respect to a vector d is defined as follows:

(2)

where  and .

3.2 Spherical Simplex Spline Volume
Generally, volumetric simplex spline can take as input any domain with arbitrary geometry
and topology due to its non-tensor-product nature. Spherical simplex spline volume is defined
by volumetric simplex splines over a spherical volumetric domain. Here, we choose the sphere
domain since mapping most organic objects in the biomedical research field to a sphere results
in less distortion and more uniform distribution of sampling points, which reduces the difficulty
in the fitting procedure. Note that, our volumetric simplex spline volumes represent not only
boundary geometry, but also interior geometry. They can represent physical or material
attributes over the entire solid as well.

3.2.1 Spherical Volumetric Simplex Splines—Now let  3 = {x ∈ ℝ3, ||x|| ≤ c} denote
a solid sphere in ℝ3. Without loss of generality, let  3 be a unit solid sphere, i.e., c = 1. Let
T be an arbitrary “proper” tetrahedralization of  3. Here, “proper” means that every pair of
domain tetrahedra are disjoint, or share exactly one vertex, one edge, or one face. To each
vertex t of the tetrahedralization T, we assign a knot cloud, which is a sequence of points [t0,
t1, ···, tn], where t0 ≡ t. We call t primary-knot and [t1, ···, tn] sub-knots. Figure 2(a) shows 4
vertices with cubic knot clouds associated, which are labeled as p, q, r, or s group, respectively.
The primary-knots are rendered with yellow dots and sub-knots with blue dots. We will use
these two colors to differentiate the primary-knots and sub-knots in the rest illustrations.

For every tetrahedron I ∈T, assume I = (p, q, r, s) = (p0, q0, r0, s0). We call (p, q, r, s) the
underlying tetrahedron. All the other tetrahedra [pi, qj, rk, sl] with 0 < i + j + k + l ≤ n are called
the virtual tetrahedra. Figure 2(a) shows the underlying tetrahedron with shading. Figure 2(b)
demonstrates the virtual tetrahedra rendered with different shading colors.

Then for every tetrahedron I, we require

• all the tetrahedra [pi, qj, rk, sl] with i + j + k + l ≤ n are non-degenerate, i.e., the
underlying tetrahedron and virtual tetrahedra should be valid.

• the set

(3)

is not empty.

• if I is a boundary tetrahedron, the sub-knots assigned to the boundary vertices must
lie outside of  3.

The condition that Ω is nonempty states that the sub-knots associated with different vertices
of I are all separated from each other. The underlying tetrahedron I and its virtual tetrahedra
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have the same orientation. As shown in Figure 2(a), in our framework, the orientation of the
tetrahedron is defined as, observing from pi, the triangle formed by (qj, rk, sl) is clockwise-
oriented where i + j + k + l ≤ n.

The formation of Ω can be intuitively described as: starting from the underlying tetrahedron,
we chop it using the triangle faces from each virtual tetrahedron, and only keep the part inside
of the triangle faces. As the starting shape of the underlying tetrahedron is convex, the chopping
operation will not affect its convexity. Hence the final shape of Ω is a convex, solid polyhedron
if nonempty.

Figure 3(a) and Figure 3(b) depicts the Ω of a cubic domain tetrahedron, with and without
virtual tetrahedra rendered, respectively. Note that if Ω ≠ ∅, Ω must be a convex solid
polyhedron formed by the interior of the underlying tetrahedron and virtual tetrahedra. Figure
3(a) and Figure 3(b) illustrate the Ω as a blue, convex, and solid polyhedron.

We then define, for each tetrahedron I ∈T and i + j + k + l = n (in the following, we use β to
denote 4-tuple (i, j, k, l)), the knot sets are

(4)

For an example in Figure 2 and Figure 3, as the degree of the domain is cubic,  has 16
elements: 4 primary-knots and 12 sub-knots.

The basis functions of normalized simplex splines are then defined as

(5)

These basis functions can be shown to be all non-negative and to form a partition of unity. The
volumetric spherical simplex spline volume is the combination of a set of basis functions with

control points :

(6)

The “generalized” control points  are now (k+3)-dimensional vectors, including control
points (px, py, pz) for the solid geometry, and control coefficients (g1, ···, gk) for the attributes,
where k denotes the number of attributes associated with the geometry. The spherical simplex
splines are ideal to model genus-zero, heterogeneous solid objects. The number of physical
properties is application-oriented. For a concise expression of the formulation, without loss of
generality, we will deal with only one physical attribute in the following formulas.

Figure 4(a) illustrates a spherical volumetric simplex spline and its domain with its cubic knot
clouds associated. As observed in the figure, the sub-knots assigned to the boundary vertices
of the sphere domain are positioned outside of the sphere. Figure 4(b) shows the control space
and the evaluated spherical volumetric simplex volume.

3.2.2 Initial Construction of Spherical Volumetric Domain—Theoretically, domain
tetrahedralization, T, can be an arbitrary tetrahedralization of a unit solid sphere,  3, as

Tan et al. Page 7

Comput Aided Des. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



aforementioned in Section 3.2.1. However, in practice, two important aspects of the domain
tetrahedralization should be carefully considered:

• T should be as uniform as possible, i.e., minimize . Uniform tetrahedralization
at the same hierarchical level will decrease the recursion time while hierarchical
structure is needed.

• T should avoid bad-shaped tetrahedra in Delaunay tetrahedralization. Bad-shaped
tetrahedra, for instance, slivers, will increase numerical error during the evaluation.

Constrained Delaunay tetrahedralization (Edelsbrunner, 2001) can observe the second
requirement, but it will introduce very large and very small tetrahedra thus can not comply
with the first requirement. Instead, we tetrahedralize a regular icosahedron and then make use
of harmonic volumetric mapping to map the tetrahedralization to a solid sphere. As a result,
the solid sphere tetrahedralization is uniform and its quality is better than what constrained
Delaunay tetrahedralization can offer.

Figure 5 shows the flow of domain establishment and the knots distribution. Note that, in Figure
5(d), the sub-knots associated with boundary vertices are placed outside of the sphere. The
uniform tetrahedralization may be subdivided and refined when necessary, e.g., modeling
discontinuity as described later.

3.3 Model Reconstruction by Data Fitting
Besides constructing the initial unit sphere tetrahedralization as the parametric domain, another
preliminary step prior to the reconstruction of the continuous volumetric model using spherical
simplex splines is to find a volumetric parameterization between the physical model and
domain space.

3.3.1 Volumetric Parameterization—To find a volumetric parameterization of a genus-
zero solid, harmonic volumetric mapping facilitates a viable solution. Harmonic volumetric
mapping was first implemented for applications by Wang et al. (Wang et al., 2004b,c). They
successfully exposed its merits by applying the approach to brain mapping which can be
considered as a genus-zero volume. Recently Li et al. (Li et al., 2007) further extended the
scheme to high-genus harmonic volumetric mapping and employed it in solid modeling
applications. Harmonic volumetric mapping can be formulated as follows:

Given two solid objects M1 and M2, and their boundary surfaces ∂M1 and ∂M2. Suppose that
f⃗′ is the conformal mapping (Gu et al., 2003; Wang et al., 2004a) between ∂M1 and ∂M2, which
is pre-computed. The harmonic volumetric mapping f⃗: M1 ↦ M2 satisfies:

where the ∇2 is the Laplacian operator defined continuously in 3D as

and ∇2 f⃗ = 0 for f⃗ = (f0, f1, f2) is equivalent to ∇2fi = 0 for all i = 0, 1, 2.

Tan et al. Page 8

Comput Aided Des. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The harmonic volumetric mapping f here minimizes a harmonic energy E(f) (Wang et al.,
2004c), which is defined as

(7)

where k(u, v) is the string constant defined in edge between u and v. Here, f can be solved using
steepest descent algorithm.

The algorithmic procedure of harmonic volumetric mapping is concisely summarized as
follows:

1. For each boundary vertex, v, v ∈ ∂M1, let f⃗(v) = f⃗′(v); for each interior vertex, v, v ∈
M1 \ ∂M1, let f⃗(v) = 0→, compute the harmonic energy E0 using Equation (7).

2. For each interior vertex, v, v ∈ M1 \ ∂M1, compute its derivative Df⃗ using steepest
descent algorithm, then update f⃗(v) by δf⃗(v) = −Df⃗(t)δt, δt is the step length.

3. Compute the harmonic energy E; if E−E0 is less than user specified threshold δE, the
algorithm stops; Otherwise assign E to E0 and repeat step (2) through step (3).

Figure 6 shows the harmonic volumetric mapping from one brain to a solid unit sphere. After
the mapping has been established, the point parameterization and correspondence between the
domain and the object can now be stored as the input of our spherical simplex spline model
reconstruction algorithm.

3.3.2 Fitting with Spherical Volumetric Simplex Splines—After harmonic volumetric
mapping, a finite number of discretized sampling points of the physical object,

, and their parametric coordinates in the domain, , can be retrieved.
ρi denote a physical attribute. Note that, there could be multimodality physical attributes with
more dimensions. In this case, all we need to do is to increase the dimensions and add the
additional variables into the sampling. All the computation remains the same. Without loss of
generality, we only consider one type of attribute here in order to simplify the mathematical
notation. The sampling point pairs indicates the parameterization from the solid sphere domain
to the to-be-modeled object. Volumetric simplex spline is an ideal tool for fitting the geometry
as well as the physical properties of the volumetric object. In this section, we will describe how
to fit spherical volumetric simplex splines to the real-world model.

The problem of model reconstruction in our system can be stated as follows: given a set
 of points, pi = (xi, yi, zi, ρi) ∈  4, and , gi = (xi, yi, zi) ∈ ℝ3 denoting the

pure geometry extracted from the sampling points, find a volumetric simplex splines volume
s: ℝ3 → ℝ3 that approximates G.

Since we are interested in reconstructing the model with respect to its solid geometry, our

spherical simplex spline volumes are vector functions, i.e., the control points  are
vectors. Unlike the existing fitting algorithms with simplex splines which usually find the
parametric domain which is close to the original geometry of the to-be-fitted dataset (Hua et
al., 2004, 2005), we use the position (ui, vi, wi) within the solid sphere as the data point gi’s
parametric value. Therefore, we need to minimize the following objective function:
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(8)

Equation (8) is a typical least squares problem. If the control points are treated as free variables,
it falls into a very special category of nonlinear programming, i.e., unconstrained convex
quadratic programming, which has the following form:

where ,

and . Note that, Q is a positive definite, symmetric and sparse matrix. Interior-point
method can solve this problem very efficiently.

After reconstruction procedure, we can achieve an integrated representation incorporating the
object’s solid geometry, s, and its material attribute, d, at the same time. The scheme can be
expressed as

(9)

where c and dc are the control points and control coefficients for solid geometry and material
attributes, respectively.

To model discontinuity in attribute field, we first detect where the discontinuity occurs, then
decompose the original domain into two separated new domains with shared vertices and edges
as the 2D illustration in Figure 7. This simple mechanism maintains the consistent structure of
the domains. The evaluation, hierarchy structure, and data structure all remain the same.
Therefore, we can perform the same evaluation on these two domains simultaneously as if the
evaluation is performed on a single domain. With the association of different control
coefficients, the functional evaluation can output a discontinuity in material field
corresponding to the shared edges. This change will not affect the geometry of the DSVSS
volume as long as the associated control points remain the same.

3.4 Dynamic Spherical Simplex Splines
In this section, we formulate our dynamic spherical volumetric simplex splines. We integrate
mass, dissipation, and deformation energy into static simplex spline models, and employ
Lagrangian dynamics to derive their equations of motion. Consequently, the static control
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points of the geometric model become generalized time-varying physical coordinates in the
dynamic model.

3.4.1 Geometry and Kinematics of Simplex Spline Volumes—The dynamic simplex
splines further extend the geometric simplex splines by incorporating time into the volume
representation. Now the function of representation bears both parametric variable u and time
t as follows:

(10)

For simplicity of formulation expression, we define the vector of generalized coordinates of

control points  as:

(11)

where ⊤ denotes transposition. We then express Equation (10) as s(u, c) in order to emphasize
its dependence on c whose components are functions of time. Hence, the velocity of the
dynamic simplex splines is:

(12)

where the overstruck dot denotes a time derivative and Jacobian matrix J(u) is the

concatenation of the vectors . Assuming m tetrahedral in the parametric domain, β
traverses k = (n+1)(n+2)(n+3)/6 possible tetrads whose components sum to n. Because s is a
4-vector and c is an M = 4mk dimensional vector, J is a 4 × M matrix, which is expressed as

(13)

where .

The subscripts x, y, z and d denote derivatives of the components of the 4-vector: Cartesian
coordinates and physical property, respectively. Apparently, the solid volume can be presented
as the production of the product of the Jacobian matrix and the generalized coordinate vector,

(14)

3.4.2 Lagrange Equations of Motion—Lagrange dynamics are widely used in physics-
based shape design. In this section, we derive the equations of motion of dynamic simplex
splines by applying Lagrangian dynamics (Gossick, 1967). We express the kinetic energy due
to the prescribed mass distribution function μ(u, v, w), and a Raleigh dissipation energy due
to a damping density function γ(u, v, w). Both energy functions are defined over the parametric
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domain of the volume. The mass distribution function and damping density function are
reconstructed with spherical volumetric simplex splines as well, as described in Section 3.3.2.
3D thin-plate-like energy under tension energy model (Celniker and Gossard, 1991; Halstead
et al., 1993; Welch and Witkin, 1992; Terzopoulos, 1986) is employed here in order to define
an elastic potential energy,

(15)

The subscripts on s denote the parametric partial derivatives. The αi,j(u, v, w) and βi,j(u, v, w)
are elasticity functions which control tension and rigidity, respectively. Other energies,
requiring greater computational cost, are also applicable, for instance, the non-quadratic,
curvature-based energies in (Terzopoulos et al., 1987; Moreton and Sequin, 1992). Applying
the Lagrangian formulation, we obtain the second-order equations of motion

(16)

where the mass matrix is

(17)

the damping matrix is

(18)

and the stiffness matrix is

(19)

M, D and K are all M ×M matrices. fc is the generalized force, which is obtained through the
principle of virtual work (Gossick, 1967) done by the applied force distribution f(u, v, w, t).
fc can be computed as follows:

(20)

4 Finite Element Framework
The evolution of the vector of generalized coordinates, c(t), is determined by the second-order
nonlinear differential equation. Equation (16) with physical parameter dependent matrices,
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does not have an analytical solution. Instead, we obtain an efficient numerical implementation
using finite-element techniques.

Standard finite element methods explicitly integrate the individual element matrices into the
global matrices that appear in the discrete equations of motion (Kardestuncer, 1987). Although
applicable in some environments, it is infeasible in our infrastructure because of its
unacceptably high computational cost. Instead, we pursue an iterative matrix solver to avoid
the cost of assembling the global matrices M, D, and K, working instead with the individual
dynamic simplex spline element matrices. We construct finite element data structures, similar
to (Qin and Terzopoulos, 1995a), which facilitates the parallel computation of element
matrices.

4.1 Data Structures for Dynamic Simplex Spline Finite Elements
We define an element data structure which contains the geometric specification of the
tetrahedron patch element along with its physical properties. In each element, we allocate an
elemental mass, damping, and stiffness matrix, and include the quantities such as the mass μ
(u, v, w), damping γ(u, v, w), and elasticity αi,j(u, v, w) and βi,j(u, v, w) functions. A complete
dynamic simplex spline consists of an ordered array of elements with additional information.
The element structure includes pointers to appropriate components of the global vector c.
Neighboring tetrahedra will share some generalized coordinates.

The physical parameters, such as mass μ(u, v, w), damping γ(u, v, w), and elasticity, αi,j(u, v,
w) and βi,j(u, v, w), need to be measured and computed before the calculation of element
matrices. In this paper, as the goal of the applications is to simulate the biomechanical behavior
of the brain, we directly adopt μ and γ from the brain study conducted by Zhang et al. (Zhang
et al., 2002). According to the relationship of elastic moduli of elastic isotropic materials (Ting,
1996), α and β can be computed from Bulk modulus and Poisson’s ratio as follows:

(21)

(22)

where B is the Bulk modulus and v is the Poisson’s ratio of brain tissues. After we get the
physical parameters for different types of brain tissues, we then take these coefficients into the
fitting procedure to integrate them into our DSVSS framework. Now the volume representation
can be described as follows:

(23)

where c and μc, γc, αc, βc are the control points and control coefficients for solid geometry and
material physical attributes, respectively. Homogeneously taking the parameters into the
element without fitting may sound feasible. However, it is the fitting procedure that takes
attribute field discontinuity into account to achieve a model of high fidelity.
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4.2 Calculation of Element Matrices
We employ Gaussian quadrature (Press et al., 1986) to numerically evaluate the integral
expressions for the mass, damping, and stiffness matrices associated with each element. In this
section, we explain the expression of the element damping matrix in detail; the expressions of
mass and stiffness matrix will follow suit. Assuming the parametric domain of the element is
I(v0, v1, v2, v3) where vi denotes the vertex, the expression for entry dij of the damping matrix
takes the integral form

(24)

where fij is evaluated using the recursive expression in Equation (1). Given integers Ng, we
can find the corresponding Gauss weights αg, and parametric abscissas ug, vg, and wg such that
dij can be approximated by

(25)

In our system, we choose Ng to be 10 for cubic dynamic simplex splines. Because of the
irregularity of the knot distribution, many of the fij vanish over the subspace of I(v0, v1, v2,
v3). We can further subdivide the I(v0, v1, v2, v3) to minimize the numerical error.

4.3 Discrete Dynamics Equations
In this section, we will derive the discrete dynamics equations based on Equation (16). In order
to integrate it in a simulation system, e.g., tissue simulation during surgery, it is important to
provide users with visual feedback about the evolution state of the DSVSS model. Rather than
using computation-intensive time integration methods which may traverse the largest possible
time steps, it is more crucial to provide a smoothly simulated display by maintaining the
continuity of the dynamics form one step to the next. Therefore, it is much desirable to employ
less costly yet stable time integration methods that take reasonable time steps.

The state of the dynamic simplex splines at time t + Δt is integrated using prior states at t and
t − Δt. To maintain the stability of the integration scheme, especially for high stiffness
configurations with large elasticity functions, we use an implicit time integration method,
which employs discrete derivatives of c using backward differences. The velocity expression
is

(26)

and the acceleration expression is

(27)

Then the time integration formula can be expressed as
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(28)

where the superscripts denote evaluation of the quantities at the indicated times. The matrices
and forces are evaluated at time t. Our extensive experiments have shown that this discretization
scheme produces satisfactory results. Instability due to large transient applied forces can be
reduced by shortening the time integration step adaptively.

The equations of motion allow physically realistic simulation of real-world models with
complex dynamics. However, it is possible to make simplifications to the equations of motion
to further reduce the computational cost of solving Equation (28) when we simulate some more
complicated volumes which bears more tetrahedra in its domain. In certain solid modeling and
simulation applications where the inertial terms are not taken into count, the Equation (16) can
be simplified by setting the mass density function to zero. Without computation of the
acceleration terms or storage of mass matrices, the algorithm is more efficient. With zero mass
density, Equation (16) simplifies to

(29)

Discretizing the corresponding derivatives of c in Equation (29) with backward differences,
the integration formula becomes

(30)

5 Brain Simulation Using DSVSS Volume
With the reconstruction of brain model from both MRI data and material map using our
spherical volumetric simplex splines, we can obtain an analytic representation simultaneously
describing both geometric and physical properties of the brain. Thus, brain simulations, such
as brain shifting, deformation, and brain injury predication, can be achieved via the simulation-
based analysis. In this section, we present the accurate brain reconstruction and simulation
using our unified scheme, DSVSS volume. The reconstruction process is fully automated, and
for brain simulation, the user only needs to initialize a few environmental parameters, e.g., the
gravity and the resected skull in brain shifting simulation.

5.1 Fitting Spherical Volumetric Simplex Splines to Brain Data
Taking a set of high-resolution brain SPGR MR scans, we first strip away the skull and only
retain the brain volume as shown in Figure 8(a). With the initial tetrahedralization of the brain
model and harmonic volumetric mapping, we can obtain the parameterization of the data points
of the brain tetrahedralization as described in Section 3.3, i.e., the parameterization describes
the correspondence between the brain data points and parametric coordinates in the sphere
domain. Fitting spherical volumetric simplex splines to the geometric representation, we can
reconstruct the geometry of the brain nicely as shown in Figure 6. To model the intensities (for
visualization purpose) and material distribution (for simulation purpose), we can start with the
same spherical tetrahedral domain, and then subdivide and refine the domain (Tan et al.,
2007), when necessary, to model more sophisticated material variations or discontinuities as
described in Section 3.3.2. Note that, the intensities and material of brain structures are related
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since the imaging procedure can be considered as a function mapping of the material maps to
scanned images. So the required domain for intensities and material distributions are very
similar. Figure 8 shows the reconstruction result with different rendering techniques and
Equation (31) shows the reconstructed representation,

(31)

where s denotes the solid geometry of the brain, d denotes the reconstructed physical attributes
of the brain, and I denotes the reconstructed image intensities from the high-resolution SPGR
MRI sequence. c, dc and Ic are the control points and control coefficients. The accuracy of the
data fitting is documented in the experimental result section. After obtaining high-quality
DSVSS volume representation of the brain model, we can use it to simulate brain deformation
during surgery for computer-assisted surgical planning/surgery, or even for an innovative
simulation-based diagnosis for brain injury under blunt impact.

5.2 Brain Shifting during Surgery
As known by brain surgery professionals, after a patient’s skull is open, the brain will behave
increasing deformation, known as brain shifting, during ongoing surgical procedures,
predominantly due to the gravity and the drainage of cerebrospinal fluid. This will inevitably
lead to the repositioning of the surgical targets embedded in brain. As a compensation to
increase the spatial accuracy of modern neuronavigation systems, intraoperative magnetic
resonance imaging (IMRI) is widely used for quantitative analysis and visualization of this
phenomenon (Nimsky et al., 2000). Nevertheless, despite its virtually real-time aspects, IMRI
only provides very low-resolution intraoperative MR image which can never substitute the
high-resolution pre-operative SPGR MR image used to determine with high accuracy key
dimensions of the brain and the locations of the surgical targets embedded in the brain. We
employ our dynamic spherical volumetric simplex splines model into the brain simulation to
compute the brain shifting.

In our framework, brain shifting can be simulated by applying constant gravity force G ⃗ to the
brain. The material properties that we used in our experiments were obtained from the
biomechanics group at Wayne State University (WSU). After setting up the physical
parameters of an individual brain, we also need to take the nature boundary of the brain, the
skull, into consideration. The fact is that no matter what manner the brain behaves deformation,
it lies inside the skull, i.e., its nature boundary will not exceed the skull. Therefore, spatial
geometric constraints need to be enforced. We add the soft constraints with forces. When there
is shifting outside the boundary, we insert corresponding forces along the opposite direction
of the movement to the simulation procedure.

Figure 9 illustrates the brain shifting simulation using our framework when taking out the
resected skull over the right temporal lobe. The green contour shows the deformation clearly.
Our shifting simulation results highly agree with the fact captured by IMRI. The experiments
show that it is effective to use our model to recover motion and deformation from image data.
Based on 20 simulation experiments, quantitative comparison between the IMRI volumes and
our simulated brain volumes by co-registration shows that our system can achieve an excellent
accuracy of 92.2%. The accuracy of a single simulation, denoted by A, is calculated as the
normalized sum of squared differences between the two volumes,
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(32)

where S is the volume obtained from our shifting simulation results and R is the registered
IMRI volume. To make the comparison substantial and intra-sequence, we first register MRI
volume to IMRI volume. Figure 10 depicts another brain shifting simulation. The skull is
resected over the left temporal lobe. The color map is blended into the figure to better visualize
the deformation scale. Note that, when surgical tools are operating in the brain, there will be
larger shifting and deformation.

As demonstrated from the available comparison and evaluation, our framework can accurately
simulate the deformation of the brain (e.g., s(t)) and simultaneously present high-quality and
high-resolution visualization using the transformed SPGR image intensities, I, modeled in the
reconstructed simplex spline volume (see Equation (31)). It is very promising to use the
framework in both surgical planning (e.g., predicting the shifting of the targets) and computer-
assisted surgery (e.g., repositioning the targets with high-resolution display, I, automatically
computed based on the realistic deformation of the reconstructed brain, s(t)).

5.3 Brain Injury Prediction
Here, we refer the brain injury prediction as a procedure of finding out the extent and location
of the injury in the brain during a blunt impact. The injury frequently occurs to automobiles
drivers during the collision and sports players during the acute sports activities such as football.
Current brain surgeons and professionals rely indispensably on those modern neuroimaging
and neuronavigation systems to pinpoint the injury. Clinically, the identification of the site and
extend of injury within the brain without subjecting the patient to an imaging scanning, has its
advantages. For instance, head injured patients are difficult to control and may not remain still
long enough for the completion of the scanning. In some severe cases, time is so limited that
patients even can not afford such a pre-operative scanning. Thus the demand of simulation-
based Computer Aided Diagnosis (CAD) solution goes up to high gear. Oftentimes, the solution
is referred as “brain injury modeling”.

One critical issue about BIM technique is to derive a patient-specific brain model based on a
template model, thus skipping neuroimaging and neuronavigation, and saving computational
time as well as pre-operation time. One widely employed way is to modify the exterior surface
of each substructure from a general brain model followed by re-generation of the mesh. Ferrant
et al. (Ferrant et al., 2000) and Miga et al. (Miga et al., 2003) developed their approaches
respectively using this approach by meshing the entire brain without considering anatomical
structures and material difference. Obviously, this approach is not accurate since the brain
geometry, structures, and heterogeneous material variations are not considered. We employ
our dynamic spherical simplex splines-based simulation framework to handle the situation. As
for developing a patient-specific model, our method can quickly modify the control points/
coefficients according to the data fitting of the available data or information of the patient.

In our framework, we compute the stress field of the human brain under blunt impact using
our DSVSS volume. Because the human brain has highly heterogenous physical properties in
different areas of the brain, such as the white matters, the gray matters, the cerebellum, the
brainstem, the lateral ventricles, the third ventricles, the bridge veins, and so on. From this
perspective, brain structures under direct impact are not necessary the parts where brain injuries
occur. With our unified solid representation through dynamic spherical volumetric simplex
splines, blunt-impact injury can be simulated using our framework by applying an
instantaneous impact to the brain model under given approximate impact conditions. The
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model incorporated in our framework can not only assist the physician in identifying the
location and extend of damaged area without pre-operative scanning but also enable the
designer of automobiles and helmets to improve the human-centered design of head-protective
facilities.

Figure 11 demonstrates a brain injury prediction with a blunt impact on the frontal lobe. Time
interval here is 3ms. Note that, we assume that the brain always lies inside the skull during the
simulation. As in brain shifting simulation, we add corresponding contacting forces into the
simulation when the brain is shifting outside the boundary. The corresponding contacting
forces is along the opposite direction and linear to the extent of the brain movement. Figure
11(b–j) shows the stress fields of the brain in each time step. Redder area indicates higher
stress, which is a sign for a higher possibility of injury and bleeding. In the figure, the thalamus
is under bigger stress as well beside the place under direct blunt impact. The result complies
with the ground truth captured from the real biomechanic experiments on a human corpus
model. Quantitative evaluation of our simulation result is obtained through the comparison
with the ground truth.

Figure 12 shows two stress evolution curves of one landmark inside right thalamus under the
specified blunt impact in Figure 11. The green one is the ground truth obtained from the real
biomechanic experiments and the red one is the result simulated using our framework. The
result curves demonstrated that our simulation can obtain an accurate and satisfactory result,
which has great potential for computer-aided diagnosis of brain injury under blunt impact.

Figure 13 illustrates another experiment regarding brain injury prediction. A different patient
is undergoing a similar blunt impact on the left frontal lobe. The simulation shows that besides
the spot under direct impact, the thalamus is another area where bleeding may happen, which
also coincides with the ground truth fact.

6 Experimental Results
We have implemented a prototype system on a Dell Precision Workstation T7400, which has
dual Xeon CPUs with Quad Cores and 4GB RAM. The system is written in VC++ and VTK
4.2. We perform experiments on several brain datasets. In order to compare the reconstruction
qualities for patient-specific cases, we uniformly sample the brain geometric and physical fields
into a unit cube.

Table 1 shows the configuration of DSVSS volumes reconstructed from different datasets. The
performance statistics of our fitting algorithm is also included. From the table, one can observe
that, compared with discrete mesh representation, our spherical volumetric simplex spline
based representations have low storage requirements and can achieve high accuracy, e.g.,
fitting r.m.s. error ≤ ×10−4. High computational cost is the challenging aspect of our algorithm.
However, in practice, by applying multiresolution and multi-thread implementation of the
geometric elements, the time cost can be greatly reduced.

Table 2 shows the performance of DSVSS framework applied to brain datasets. Both brain
biomechanic behaviors, brain shifting and brain injury, are simulated. Note that all the units
in this table are metric. In the table, only the physical properties of white matter are listed. For
the physical properties of different type of brain tissues, readers are referred to (Zhang et al.,
2002). The averaged, overall computational time for the entire simulations demonstrated in
Figure 10 (brain shifting) and Figure 11 or 13 (brain injury simulation) are listed in the table.
Faster overall computations can be achieved by increasing the simulation time interval. The
simulation results on brain shifting and brain injury prediction have been already illustrated in
Section 5. Overall, our brain simulation results exhibit a reliable approximation of how brain
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behaves shifting and how brain could be injured in the real world when inputting the real
material parameters.

7 Conclusion
In this paper, we have developed a novel simulation framework based on dynamic spherical
volumetric simplex splines. We have introduced an automatic and accurate algorithm to fit the
digital models of real-world objects with a single spherical volumetric simplex spline which
can represent with accuracy geometric and material properties of objects simultaneously. With
the integration of the Lagrangian mechanics, the dynamic volumetric simplex spline
representing the real-world object can accurately simulate its physical behavior. We have
applied the framework in the biomechanics simulation of the brain, such as brain shifting during
the surgery and brain injury under sudden impact. We have compared the simulated results
with the ground truth obtained through interactive magnetic resonance imaging and the ground
truth from real biomechanic experiments. The experimental results have demonstrated the
excellent performance of our technique, which can be effectively used in deformation-based
brain simulation and simulation-based diagnosis/assessment. The robustness and accuracy
result from the tight integration of the geometric and material properties into the simulation.
In the near future, we will investigate more powerful simulation schemes based on our novel
digital representations. Hierarchical simulation will also be explored to speed up the simulation
for real-time applications. On the application side, we will develop a DSVSS model of an entire
head, which allows us to simulate more sophisticated behaviors of the brain.
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Fig. 1.
Illustration of the pipeline of our DSVSS framework. The rectangles inside the pipeline indicate
tasks, and the icons with text under them denote the inputs and outputs of tasks.
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Fig. 2.
(a) A domain tetrahedron demonstrated with its knot clouds assigned and labeled. The
underlying tetrahedron, (p, q, r, s), is rendered as a shaded tetrahedron; (b) The virtual
tetrahedra of the domain tetrahedron are visualized in different colors with the opacity value
of 0.4. In (a) and (b), the degree of the domain is cubic hence each vertex of the tetrahedron
has three sub-knots. The primary-knots are presented with yellow dots while sub-knots are
depicted with blue dots. The red lines connecting the primary-knots indicate the underlying
tetrahedron. Each green line here denotes the association between primary-knot and sub-knot.
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Fig. 3.
(a) The Ω of a domain tetrahedron, formed by the interior of the underlying tetrahedron and
virtual tetrahedra, is rendered with a blue polyhedron. The virtual tetrahedra are visualized in
different colors with opacity value 0.1; (b) The virtual tetrahedra are removed to better visualize
the Ω.
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Fig. 4.
(a) The spherical domain with assigned knot clouds for defining spherical volumetric simplex
splines. The yellow and blue dots denote primary-knots and sub-knots, respectively; (b) The
spherical simplex spline volume defined upon the domain in (a). The green dots denote the
control points. The evaluated spherical volume simplex volume is scaled to show its nonempty
interior property.

Tan et al. Page 25

Comput Aided Des. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
(a) A regular icosahedron, which is the best approximation of a solid sphere among all regular
polyhedra; (b) Tetrahedralization of (a) is uniform and it is easy to implement; (c) Harmonic
mapping from (b) to a unit solid sphere yields the domain tetrahedralization, consisting of
uniform and well-shaped tetrahedra; (d) A domain with cubic knot clouds assigned to (c); (e)
A close view of the domain picked from (d).
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Fig. 6.
(a) The discretized point set in the spherical domain space; (b) The discretized data point set
in the physical space, from the same angle of view as (a); (c–f) The shapes are cut into halves
sagittally (c–d) and axially (e–f) in order to show the interior mapping between the parametric
domain and the physical object.
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Fig. 7.
Modeling discontinuities with separated domain triangles. Even though A and A′ are co-
located, and B and B′ are co-located, the domain triangles in red and green are belonged to two
different domains.
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Fig. 8.
(a) An axial view of a slice high-resolution brain SPGR MRI dataset; (b) Volume visualization
of the reconstructed DSVSS volume; (c) The volume is split to show its reconstructed interior
intensities.
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Fig. 9.
(a) One slice view of IMRI image; (b) The reconstructed DSVSS volume, where the cross-
sectional view displays the DSVSS-captured image intensities reconstructed from the pre-
operative high-resolution SPGR images; (c) The brain deformation simulated using our system,
where the cross-sectional view is captured, from the same view angle as (b), to show the
displacement from (b), and the green contour indicates the extent of displacement at the
boundary. In (b) and (c) the red arrow denotes the orientation of gravity, and its position denotes
the resected skull.
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Fig. 10.
(a) The color map used to describe the deformation scale. The red arrow on the ISO-surface
indicates the position where skull is resected; (b–h) Brain shifting simulation with a time
interval of 75ms; (i–j) To better visualize the deformation, cross-section views of the first key
frame (b) and last one (h) are retrieved. Deformed junction between the two hemispheres
indicates the global brain shifting.
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Fig. 11.
(a) The color map used to describe the stress field. The red arrow on the ISO-surface indicates
the position where a blunt impact occurs; (b–j) Brain injury simulation with a time interval of
3ms. The blunt impact occurs at the front lobe. Simulation results indicate that in addition to
the spot directly under the impact, there are some other positions where bleeding may happen.
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Fig. 12.
Comparison of stress evolutions of the right thalamus under a blunt impact. The green one is
the simulation curve obtained from the real biomechanic experiments and the red one is the
result simulated using our framework.
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Fig. 13.
(a–f) Another brain injury simulation with a time interval of 3ms. The blunt impact occurs at
the left front lobe; (g) Comparison of stress evolutions of the right thalamus under the blunt
impact.
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