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ABSTRACT 
 
In this paper, a multiple objective ‘Hybrid Co-evolution based Particle Swarm Optimisation’ 
methodology (HCPSO) is proposed.  This methodology is able to handle multiple objective 
optimisation problems in the area of ship design, where the simultaneous optimisation of several 
conflicting objectives is considered. The proposed method is a hybrid technique that merges the 
features of co-evolution and Nash equilibrium with ε-disturbance technique to eliminate the 
stagnation. The method also offers a way to identify an efficient set of Pareto (conflicting) designs and 
to select a preferred solution amongst these designs. The combination of co-evolution approach and 
Nash-optima contributes to HCPSO by utilising faster search and evolution characteristics. The design 
search is performed within a multi-agent design framework to facilitate distributed synchronous 
cooperation. The most widely used test functions from the formal literature of multiple objectives 
optimisation are utilised to test HCPSO. In addition, a real case study, the internal subdivision 
problem of a ROPAX vessel, is provided to exemplify the applicability of the developed method. 
 
Keywords: 
Optimisation, Particle Swarm Optimisation, Ship Design, Multi-Agent, ε-disturbance 
 

1． Introduction 

 
Ship design is a dynamic process, and in recent years the multi-objective optimisation in ship design 
has attracted a lot of interest. In ship design, the internal hull subdivision is very important for damage 
stability, survivability and cargo capacity performance, particularly for Roll-on/Roll-off (ROPAX) 
passenger vessels, which have to comply with SOLAS standards, including SOLAS 90 and ‘water on 
deck’, which is known as the Stockholm Agreement. In order to satisfy these strict regulations, the 
ship designer needs to optimise the hull subdivision to achieve high safety standards, while improving 
the capacity and performance of the ship, by utilising a simple and effective method.  
 
Multi-objective optimisation is one of the main study areas of ship design. In recent years especially, 
there have been many multi-objective optimisation approaches used in ship design. Lee [1] proposed a 
multi-objective design of a marine vehicle via the ε -constraint method, coupled with a genetic 
algorithm where two objectives and three types of constraints were modelled. The GA (Genetic 
Algorithm) was used to find the separate optima required by the ε -constraint technique. Thomas [2], 
[3] used Pareto ranking, MOGA and NPGA to investigate the feasibility of full stern submarines. 
Three objectives were considered: maximize internal volume, minimize power coefficient for ducted 
propulsor submarines, and minimize cavitation index. Binary representation and different selection 
techniques were used. Thomas also compared several different algorithms and reached the conclusion 
that MOGA outperforms the other methods in all of the aspects considered. Brown and Thomas [4] 
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used a GA with Pareto ranking for naval ship concept design. Two objectives were considered: 
maximize overall measure of effectiveness (this factor represents customer requirements and relates 
ship measures of performance to mission effectiveness) and minimize life cycle cost. Binary 
representation and roulette wheel selection with stochastic universal sampling were used. Brown and 
Salcedo [5, 6] introduced a Multi-Objective Genetic Algorithm in naval ship design. Todd and Sen [7] 
used a variant of MOGA for the pre-planning of containership layouts (a large scale combinatorial 
problem). Four objectives were considered: maximize proximity of containers, minimize transverse 
center of gravity, minimize vertical center of gravity, and minimize unloading. Binary representation 
and roulette wheel selection with elitism based on non-dominance were used. They used the same 
algorithm for the cutting shop problem in the shipyard [8], [9]. Two objectives were considered: 
minimize makespan and minimize total penalty costs. Peri and Campana [10] proposed a 
multidisciplinary design optimisation of a naval surface combatant and also developed High-Fidelity 
Models and Multi-Objective Global Optimisation Algorithms in Simulation-Based Design [11]. Olcer 
[12] proposed a hybrid approach for multi-objective optimisation problems in ship design and 
shipping. In his study, software ‘Frontier’ was used to perform optimisation via MOGA. Boulougouris 
and Papanikolaou [13] introduced a multi-objective optimisation of a floating LNG terminal. The 
software ‘Frontier’ with MOGA was utilized.  
 
The Particle Swarm Optimisation (PSO) algorithm, which was proposed by J.Kennedy and R. 
Eberhart in 1995 [14], has been successfully used in single-objective optimisation problems. Since 
Moore and Chapman [15] proposed the first extension of the PSO strategy for solving multi-objective 
problems in 1999, a great deal of interest has been shown in multi-objective optimisation and many 
different approaches/techniques have been presented in literature. PSO, which has been successfully 
applied in numerous engineering areas, has only a small number of parameters, which need to be 
adjusted and is easy to implement. 
 
In ship design, Pinto et al. [16] emphasised the importance of initial points’ configuration and 
addressed some preliminary aspects of global convergence of PSO towards stationary points. In their 
follow-up paper [17], they presented a deterministic method for multi-PSO and applied the method to 
the multi-objective (two objectives) seakeeping of containership problem.  
 
Since Mistree [18] approached ship design from a decision perspective, the decision making based 
ship design environment has developed rapidly. In recent years, multi-agent based ship design 
decision making has received a great deal of attention and at the same time the distributed 
synchronous cooperative ship design method via the internet is becoming a new research field. 
However, in terms of simplicity and efficiency, it requires a new optimisation approach which is 
suitable for a multi-agent system. 
 
This paper introduces a new ‘Hybrid Co-evolution based Multi-objective Particle Swarm 
Optimisation’ (HCPSO) method. The HCPSO combines co-evolution, game theory and ε-disturbance 
technique to develop an effective optimisation approach which performs remarkably well in the 
multi-agent system. The paper then demonstrates the application of HCPSO with three objectives on 
the internal subdivision arrangement of a ROPAX vessel. 
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The paper is organised as follows: Section 2 presents PSO and Multi Objective Particle Swarm 
Optimisation (MOPSO), and Section 3 presents a new multi-objective particle swarm optimisation 
methodology and the detailed explanation of this algorithm. the test functions are processed in section 
4, while a real case study ‘hull subdivision design optimisation’ is performed in section 5. Finally, in 
section 6, discussions and conclusions are presented.  
 
2. Background 
 
The Particle Swarm Optimisation is a global optimisation algorithm and described as sociologically 
inspired. It was first proposed by Kennedy and Eberhard in 1995 [14]. In the PSO algorithm, the 
candidate solution is the particle position in search space. Every particle is structured with two 
parameters: position and velocity, then the particle searches the solution space by updating the 
position and velocity. There are two best positions in PSO. The first one is Pbest, which represents the 
best position that the particle itself can reach; the other is Gbest, which is the best position in the 
whole swarm.  
 
The PSO can be described as following, 
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ω  is the inertia weight and χ  is the constriction factor.  
   
PSO has been proven as a simple but effective algorithm in single objective optimisation and 
multi-objective research has rapidly developed in recent years. Since the first extension was proposed 
in 1999, many different multi-objective PSOs have been presented [19] and some of these approaches 
are briefly given below. 
 
Aggregating approaches: They combine all the objectives of the problem into a single objective and 
three types of aggregating functions are adopted: conventional linear aggregating function, dynamic 
aggregating function and the Bang-bang weighted aggregation approach (Parsopoulos and Vrahatis 
[20], Baumgartner et al.[21] and Jin et al [22]). 
 
Lexicographic ordering: In this algorithm, which was introduced by Hu and Eberh [23], only one 
objective is optimized at a time using lexicographic ordering Schema. 
 
Sub-Population approaches: These approaches involve the use of several subpopulations as 
single-objective optimizers. Then, the subpopulations somehow exchange information or recombine 
amongst themselves, aiming to produce trade-offs amongst the different solutions, which were 

3 



previously generated for the objectives that were individually optimised. Parsopoulos et al. [24], 
Chow et al.[25] and Zheng et al.[26] use this approach.  
 
Pareto-based approaches: These approaches use leader selection techniques based on Pareto 
dominance and references include Moore and Chapman [27], Ray and Liew [28], Fieldsend and Singh 
[29], Coello et al [30] and [31] and Li [32]. 
  
Some of the other approaches, which use different techniques such as Combined Approach and 
MaxMin approach, can also be found in literature.  
 
Sefrioui and Periaux [33] introduced Nash equilibrium of game theory into the multi-objective 
optimisation. Nash equilibrium is a set of strategies with the property that no player can benefit by 
changing its strategy while the other players keep their strategies unchanged. A Nash genetic 
algorithm was given with comparisons to Pareto GAs. They concluded that Nash genetic algorithms 
offer a fast and robust alternative for multi-objective optimisation.  
 
3. Description of the Proposed Approach - HCPSO 
 
The proposed approach combines co-evolution approach, Nash equilibrium and ε-disturbance 
technique to form a new improved hybrid approach. At the same time, the agent-based structure is 
adopted for distributed synchronous cooperation.  
 
In HCPSO, the co-evolution approach is combined with Nash optima, which looks for Nash 
Equilibrium. For an optimisation problem with M number of objectives in an agent environment, M 
numbers of agent-groups are employed to optimise their own objective while changing the objective 
of other/remaining agent-groups. When no agent-group can improve its objective further, it means that 
the system has reached a state of equilibrium called Nash Equilibrium. In HCPSO, the co-evolution 
approach provides a public information sharing mechanism to improve the communication amongst 
agent-groups.  
 
The reason for adopting the co-evolution approach here is that on the one hand, the co-evolution 
approach can provide quicker search ability, and on the other hand, by using the co-evolution 
approach it is easier to perform simulation via a multi-agent system. In an engineering application, the 
approach can be studied in a multi-computer environment thereby reducing the time via parallel 
calculation.   
 
The Nash optima [33] and [34] is deployed in HCPSO because the information sharing in Nash 
optima is simple and effective. Furthermore, in Nash optima, one agent, which has one objective, 
receives the information from other agents, and this is a good model for the multi-agent system in 
concept and computer realization.  
 
In the multi-objective PSO method, sometimes the algorithm will generate local optima value and the 
ε-disturbance technique is deployed to avoid it. When both Pbest and Gbest stand on a fixed value and 
the particle position is stagnant on a boundary, a random ε-disturbance is needed to help the algorithm 
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jump out of the stagnation point. For a given step T, if the stagnant step ts > T, a random ε-disturbance 
is introduced to both Pbest and Gbest. For example, setting T=10 steps, the algorithm would check the 
value of Pbest and Gbest at every step. If both Pbest and Gbest keep the same values as the last step, 
the counter in algorithm will increase by one. In the next iteration, if both Pbest and Gbest still keep 
the same values, the counter will further increase by one, otherwise the counter returns to zero. When 
the counter is equal to 10, the algorithm will give a random ε-disturbance value to change Pbest and 
Gbest, so as to keep the particles moving. 
 
For an optimisation problem with K design variables and M objectives, the algorithm would employ 
N particles to run optimisation and N should be multiples of M. Firstly, HCPSO divides N particles 
into M sub-swarm group according to objectives. Secondly, the design variables, K, are also divided 
into K1, K2, … Km sub-groups according to the objectives. This means every sub-swarm group has its 
own corresponding objectives and design variables. Then every sub-swarm group optimises relevant 
design variables according to relevant objectives in its own group. The optimised result would be sent 
to the “public board” as shared information. In the next step, the sub-swarm group would read other 
design variables and corresponding information from the public board as an update. At last, when a 
Nash Equilibrium is reached, the algorithm gives the final results. In every sub-swarm, in order to 
give enough pressure to push the solution space to Pareto space, particles in two generations are 
compared to update the position.  
 
Algorithm HCPSO 
The step-wise description of the proposed algorithm, HCPSO, is given below and shown in Fig.1: 
1. initialize the population including position and velocity; 

(i) create a public-board to store information; the public-board is a simple database to store all 
particles’ information;   
(ii) give the number of sub-swarms and size of each sub-swarm; 
(iii) divide the population into sub-swarms; 

2. every sub-swarm begins iteration; for example (mth sub-swarm with (N/M) particles and Km design 
variables); 
3. read information from public-board and calculate fitness; 
4. update Pbest via comparing individual position history according to mth objective ; 
5. non-dominated sorting via Pareto-based approach; 
6. give pointed number of best ranking particles to the public-board;  
7. collect particles in step 6 from all sub-swarm to the public-board and form Gbest pool; 
8. every sub-swam randomly selects Gbest from the pool; 
9. compare Pbest and Gbest with past values to decide whether to introduce ε-disturbance or not;  
10. calculate velocity and give limit velocity; 
11. update and limit the position of particles; 
12. combine last iteration particles with this iteration to form a new group with 2*(N/M) population 
and perform non-dominated sorting via Pareto-based approach;   
13. select first (N/M) particles from new group with 2*(N/M) population in step 12 and update 
position and velocity;  
14. send corresponding information to the public-board; 
15. if every solution can not be improved, stop and if it can be improved, continue iteration;  
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16. output final results; 
 
Sub-swarm partition  
In HCPSO, the whole swarm is divided into different sub-swarms according to the number of 
objectives. If an optimisation problem has M objectives, the swarm is divided in to M sub-swarms. 
The relationship between variable and sub-swarm is very important. For special objective functions, 
detailed analysis of these relationships should be processed before the partition. For example, a two 

objective problem: 1 1 2 2 3( ) , ( ) ( , ,..., );nf x x f x g x x x= = , following the above principle, the swarm 

should be divided into two sub-swarms. The first choice of variables is allocated to the first 

sub-swarm which contains variable 1x and second sub-swarm includes the variables from 2x  to nx . 

The second choice is averaged out and every sub-swarm has half variables. In a particle application in 
engineering, when the relationship is unclear, the average distribution is recommended.  
 
Information sharing mechanism 
The information sharing mechanism is realised through a public-board in sub-swarm optimisation. 
The public-board concept in HCPSO comes from a multi-agent system environment. For easy and 
efficient communication in an agent environment, a black board is used for sharing the public 
information. The same mechanism is used here, and the black board is called a public board for public 
information sharing. In every sub-swarm, the particles optimise variables according to the sub-swarm 
optimisation objective, and send the information, including the optimised objective value, the best 
particle location etc. to the public board in the system. In synchronization, the sub-swarm reads the 
information from the other sub-swarm optimisation as the information for the next step. 
 
Pbest and Gbest updating 
The Pbest updating in HCPSO adopts the updating inside sub-swarm while Gbest uses updating 
outside sub-swarm. For Pbest, the particle in nth sub-swarm compares the corresponding objective 
fitness value between the current position and the previous best position. If the current position in the 
nth objective fitness is better than the previous value, the Pbest is replaced by the current value or if 
the current value is not better, then the previous value is retained. 
 
The Gbest selection uses the Gbest pool in the public board. Every sub-swarm provides its best value 
to the public board and constructs a Gbest pool. HCPSO randomly selects a particle as the Gbest 
position from the Gbest pool.  
 
Particle updating 
In order to give enough pressure to Pareto front, an updating position approach is used to mutate 
every particle. In every sub-swarm, the system will compare the fitness in the last generation and the 
current generation (size of population is 2×N/M), then select N/M position as this generation; some 
particles hold their own position and others will be replaced by the nearest neighbour. 
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Fig. 1. Flow chart of HCPSO algorithm. 
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4 Experiments 
4. 1 Test Functions 
 
From the related literature, eight multi-objective test functions (Table1) ,are selected to evaluate this 
algorithm. Deb [35] introduced the design of a multi-objective test problem for EAs (Evolutionary 
Algorithms) and the test problems in Table 1 are chosen following the principles of Deb. Test 1 is 
selected by Pinto etc. [17] as a convex Pareto front. Test 2 is ZDT1 function in Zitzler etc. [36] with 
continuous Pareto front and a uniform distribution of solutions across the front. Test 3 is ZDT2 in 
which the Pareto front is not convex. Test 4 is obtained combining the test function of Test 2 and Test 
3 (Jin et al. 2001) and explored by Pinto etc. [17]. Test 4 is neither purely convex nor purely non 
convex. Test 5 is ZTD3, which is difficult for a discontinuous Pareto front. Test 6 is ZTD4 and the 
difficulty of this problem is that the sheer number of multiple local Pareto-optimal fronts produce a 
large number of hurdles for an algorithm to converge to the global Pareto-optimal front. 
 
Table 1 
Two-objective test problems selected to evaluate HCPSO algorithm. 

Name Variables n Range Test Function 

Test 1 30 [0,1] 
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Two three-objective test functions are selected according to Deb [37] in Table 2. Test 7 is DTLZ2 and 
is used here to investigate HCPSO’s ability to scale up its performance in a large number of objectives. 
Test 8, as DTLZ4, is selected to test HCPSO’s ability to maintain a good distribution of solutions.  
 
Table 2  
Three-objective test problems selected to evaluate HCPSO algorithm. 

Name Variables n Range Test Function 

Test 7 12 [0,1] 
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4.2 Parameters Setting 
As a critical parameter for the PSO’s convergence behaviour, ω  is utilised to control the impact of 
prior velocities. Usually, a large ω  facilitates global exploration while a small one tends to facilitate 
local exploration. The experimental results indicate that it is better to set the inertia to a large value 
initially, in order to promote global exploration of the search space, and gradually decrease it in order 
to obtain more refined solutions. The proper setting of parameters c1 and c2 may result in faster 
convergence and alleviation of local minima. The constriction factor χ controls the magnitude of the 
velocities, in a similar way to the Vmax parameter. (Parsopoulos and Vrahatis [38]) 
 
The standard PSO is the original algorithm provided by Kennedy and Eberhard (literature?), 

which is similar to equation (1) but without χ . The coefficient ω  is equal to 1 and .   1 2 2.0c c= =

 
In order to perform a comparison with regards to the rate of convergence between standard 
PSO and its improved form, two test functions in the literature are selected[39][40]: 
 
1. De Jong’s function 
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For a better and more comprehensive comparison of the rate of convergence, the Genetic 
Algorithms (GA) are also included in the comparison, and the parameters used for each 
approach are listed in Table 3.  
 
Table 3  
The parameters used for standard PSO, improved PSO and GA  in comparing the rate of 
convergence 
 

Parameters Name Standard  
PSO 

Improved 
PSO 

Parameters Name Genetic Algorithms 

Constriction function χ N/A 0.72 Crossover rate 1 

Initial inertia weight 1 (fixed) 1 Mutation rate 1/n 

Final inertia weight 1 (fixed) 0.4 SBX 20 

Cognitive parameter c1 2 2 Polynomial Mutation 100 

Social parameter c2 2 2 Selection Method Tournament selection 

 
The number of particles and generation for both standard PSO and improved PSO are set to 
200 and 100 respectively. The population and the cycle number for the corresponding GAs 
are set to 200 and 100 respectively. Every algorithm is run for 10 times and the best solution 
out of 10 runs is selected as the overall best solution. For standard PSO the coefficients are 
fixed and adjusting the convergence depends on the Vmax, which is set to 2% of the range 
for this case.      
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                (a)                                 (b) 

 
                (c)                                 (d) 
Fig.2. Comparison of the rate of convergence between standard PSO, improved PSO and GA; (a) 
De Jong’s function; (b) De Jong’s function with average fitness range from 0 to 1; (c) 
Griewangk’s function; (d) Griewangk’s function with average fitness range from 0 to 10; 
 
Typical convergence of average fitness values as a function of generations is shown in Fig.2. 
As far as De Jong’s function is concerned, the rate of convergence for standard PSO is better 
than GA, but the rate of convergence for the improved PSO is the best among three 
algorithms.With regards to Griewangk’s function (Figure (c) and (d)), the improved PSO is 
still the best one while GA performs better than standard PSO. The reason for this is that the 
standard PSO has to adjust itself through Vmax, which is difficult to control.   
 
Clerc and Kennedy [41] have given a mathematical analysis of algorithm parameters and derived a 
reasonable set of turning parameters. Based on this, Trela [42] provides a direct and simple guideline 
for parameter selection. A convergence triangle is given as a diagram (Fig. 3). Trela transfers classic 
PSO formula to the following and makes c=d=1: 

1 1 1 1 2 2 2

1 1

( ) ( )
;

k k k

k k k

v av b r p x b r p x
x cx dv

+

+ +

= + − + −
= +

;k                         (2) 

1 2 ;
2

b bb +
=  
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Corresponding to (1), a and b can be expressed as: 

1 2

;
(

2

a
c cb

χω
χ

=⎧
⎪
⎨ +

=⎪⎩
)                                                 (3) 

These parameters are critically important for PSO. The different parameters setting is given in Table 4. 
Test 2 is selected as a standard test function to evaluate the effort of parameters in HCPSO. The 
number of particles and generation are set to 200 and 50 respectively, in order to compare the final 
results (Fig. 3).   
Table 4  
HPSCO parameters used for the comparison of the rate of convergence on a multi-objective 
optimization problem --- Test 2 in Table 1; 
 

Parameters Name Choice 1 Choice 2 Choice 3 Choice 4 
Constriction Function χ 0.72 0.72 -0.72 1.5 

Initial inertia weight 1 1 1 0.6 
Final inertia weight 0.4 0.4 0.4 0.6 

Cognitive parameter c1 2 0.5 0.5 2 
Social parameter c2 2 0.5 0.5 2 

a1 0.72 0.72 -0.72 0.9 
a2 0.288 0.288 -0.288 0.9 
b 1.44 0.36 -0.36 3 

 
 

  

 
Fig. 3. Comparison of results for the rate of convergence on a multi-objective optimization 

problem --- Test 2 in Table 1; 
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The line 1 in Fig. 3 is a zigzagging line and line 2 is a harmonic oscillation line. As can be 
seen from Fig. 3, choices 1 and 2 fit well after optimisation, but choice 3 and choice 4 can not 
fit Pareto solutions. Fig. 3 displays that the principle of Trelea is applicable to HCPSO. 
 
4.3 Performance Metrics 
 
Two evaluation criteria are selected: [35] 
 
(1) GD (Generational Distance) finds an average of the solutions of Q from P* (Q is solution and p* 

is a known set of the Pareto-optimal) 
| |

1/

1

( )

| |

Q
p p

i
i

d
GD

Q
==
∑
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(2) Spread 
Deb et al. [35] suggested the following metric to alleviate the above difficulty 

| |

1 1

1

| |

| |

QM
e
m i

m i
M

e
m

m

d d

d Q d

= =

=

+ −
Δ =

+

∑ ∑

∑

d
 

where d  can be any distance measured between neighbouring solution and d  is the mean value of 

the above distance measure. The parameter  is the distance between the extreme solutions of P* 

and Q, corresponding to mth objective function. 
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4.3 Results  
 
The HCPSO is run 10 times and real-coded NSGAII, a multi-objective genetic algorithm, is used for 
comparison. In HCPSO, the parameters are set as following: the population of swarm is 200 and 

generation is 100 iteration steps.  and  are set to 0.5 while 1c 2c ω  is gradually decreased from 1.0 

to 0.4. Vmax is set to the boundaries of decision variable ranges. χ  is 0.72. The ε-disturbance has 3 

steps. The number of sub-swarm is 2 and population of sub-swarm is 100. In NSGAII, the number of 
individuals is 200 and the number of generation is set to 100. The SBX (Simulated binary crossover) 

is used with 10cη = and the polynomial mutation is used with 20mη = . The crossover and mutation 

probabilities are set to 0.9 and  respectively. The parameters of NSGAII are selected according 
to prior study, (Turkmen 2005 [43]). The results of performance metrics of Test 1 to 6 are averaged 
and summarised in Table 5. The non-dominated solutions found by HCPSO for all test functions are 

1/ n
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displayed in Fig. 4 and they all perform very well for both 2D and 3D objectives. The HCPSO gives 
the last generation results as non-dominated solutions.  
 

 
            Test 1                                        Test 2  
 

 
             Test 3                                    Test 4 

 
                  Test 5                                 Test 6  
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                   Test 7                                 Test 8 

 
Fig. 4. Non-dominated solutions found by HCPSO on test functions in Table 1 with Pareto Fronts  

 
Table 5 
Comparison of mean and variance values of convergence metric GD and diversity metric on six 
two-objective problems; 

Δ

 

 
 

As can be seen in Table 5，in comparison to NSGAII, the HCPSO can perform very well for 

all six standard multi-objective optimisation test functions, which are tested in this paper.  
 
For checking the rate of convergence, the convergence history of two algorithms on test 2 is 
given in Fig. 5. As it can be seen in Fig. 5, the HCPSO is converging faster (approximately 
60%) than NSGAII and this means a significant reduction in computing time.  
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Fig. 5. Comparison of convergence history of HCPSO and NSGAII on a two-objective 

optimization problem --- Test 2 in Table 1; 
 

5. Case Study in Ship Design 
Due to the well publicised accidents in recent years, with the loss of many lives, Ropax vessels have 
gone through significant design changes, while the demand for passenger and cargo capacity in 
European waters has increased. Following the tragic accidents of the Herald of Free Enterprise in 
1987 and the Estonia in 1994, a significant surge of research related to the capsizing of Roll on – Roll 
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off type ships was initiated. The ‘Water on Deck’ standards, which are known as Stockholm 

Agreement [44] determines the limiting wave height（Hs）in which a ROPAX vessel survives in a 

damaged condition. In response to these regulations, the shipping industry is in search of new modern 
designs to match these high safety standards, while maximizing the cargo capacity of vehicles in a 
cost effective approach.  
 
The changes in design focus on the damage stability and survivability, cargo and passenger capacity. 
Therefore, the internal hull subdivision layout is an important problem especially for damage stability, 
survivability, internal cargo capacity and the general arrangement of the vessel.  
 
In literature, different solution methods have been proposed. Sen and Gerick (1992) [45] suggested 
using a knowledge-based expert system for subdivision design using the probabilistic regulations for 
passenger ships. Zaraphonitis et al. [46] proposed an approach for the optimisation of Ro-Ro ships in 
which centre-casing, side-casing, bulkhead deck height and locations of transverse bulkheads are 
treated as optimisation variables. Ölçer et al. [47] studied the subdivision arrangement problem of a 
ROPAX vessel and evaluated conflicting designs in a totally crisp environment where all the 
parameters are deterministic. They also examined the same case study in a fuzzy multiple attributive 
group decision-making environment, where multiple experts are involved and available assessments 
are imprecise and deterministic (Ölçer et al. [48]). Turan et al. (2004) [49] approached the subdivision 
problem by using the case-based reasoning approach. Turkmen et al. (2005) [43] proposed NSGAII 
with TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) to perform design 
optimisation for internal subdivision. 
 
5.1 Problem Modelling 
The case study naturally focuses on improving the performance of the Ropax vessels in terms of not 
only maximising the ship related parameters mentioned above but also reducing the time to perform 
the multi-objective design iteration. 
 
As this study is based on the previous work of Ölçer et al. [47], [48] and Turkmen et al. [50] the same 
problem is selected and used in this study. The optimisation problem is an internal hull subdivision 
optimisation for a ROPAX vessel whose main particulars are given in Table 6. Therefore the main aim 
of this case study is to maximise the survivability and damage stability standards, as well as to 
improve the cargo capacity. These three parameters form the objectives of the study as presented in 
Table 7. 
 
The recently developed ‘Static Equivalent Method (SEM)’ [51] is used to calculate the limiting 
significant wave height (HS) value for the worst SOLAS’90 damage, determined from damage 
stability calculations.  
 
The Stockholm ‘Water on Deck’ standards, which are applied specifically for Ropax vessels, 
determine the maximum significant wave height at which the Ropax vessel can survive and therefore 
is allowed to operate in wave heights, which are equal to or less than the maximum wave height. The 
Stockholm agreement allows model tests for demonstration of compliance to determine the maximum 
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wave height as an equivalent approach. The SEM is an empirical capsize model for Ro-Ro ships that 
can predict with reasonable accuracy the limiting sea-state for specific damage conditions. The SEM 
for Ro–Ro ships postulates that the ship capsizes quasi-statically, as a result of an accumulation of a 
critical mass of water on the vehicle deck, the height of which above the mean sea surface uniquely 
characterises the ability of the ship to survive in a given critical sea state. This method was developed 
following observations of the behaviour of damage ship models in waves and it was validated using 
several model experiments and a large number of numerical simulations. Therefore, in this particular 
case study, SEM is used as an equivalent approach to the Stockholm Agreement. 

 
Table 6 
Main dimensions of the vessel used in the case study. 

Length overall(Loa) 194.4 m 
Length between perpendiculars (Lbp) 172.2 m 
Breadth moulded (B) 28.4 m 
Depth to car deck 9.7 m 
Lower hold height (m) 2.6 m 
Depth to upper deck 15.0 m 
Draught design (T) 6.6 m 
Displacement  20200 ton 
Max number of persons on board 2660 
Number of car lanes 8 

 
There are three objectives and 16 design variables in this study (Table 7).  Three of the design 
variables are: the depth of the ship to the car deck  ’Car Deck Height’, ‘Lower Hold Height’  and 
the width of the side casing at the car deck, ’Side Casing Width’. As presented, the original design has 
a 9.7 m depth to car deck, a 2.6 m lower deck height and no side casings at the car deck (Fig. 10 a). 
The remaining 13 design parameters are the locations of transverse bulkheads given in the format of 
frame numbers (starting from the stern of the ship). Table 7 also presents the lower and upper 
boundaries of the parameters with assigned increments to be used in the optimisation study. 
 
Table 7 
Optimisation variables with their types, boundaries, and objectives. 
  Type Boundaries  
No Variables 

Original 
design Discrete Cont. Lower Upper Increment 

1 Car deck height 9.7 m √  9.6m 9.9m 0.025m 
2 Lower-hold height  2.6m √  2.6m 5.2m 2.6 
3 Side casing width No  √  1m 2m 0.5m 
4 Transverse Bulkhead 02 27 √  25 29 1 
5 Transverse Bulkhead 03 39 √  37 41 1 
6 Transverse Bulkhead 04 51 √  49 53 1 
7 Transverse Bulkhead 05 63 √  61 65 1 
8 Transverse Bulkhead 06 81 √  79 83 1 
9 Transverse Bulkhead 07 99 √  97 101 1 
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10 Transverse Bulkhead 08 117 √  115 119 1 
11 Transverse Bulkhead 09 129 √  127 131 1 
12 Transverse Bulkhead 10 141 √  139 143 1 
13 Transverse Bulkhead 11 153 √  151 155 1 
14 Transverse Bulkhead 12 165 √  163 167 1 
15 Transverse Bulkhead 13 177 √  175 179 1 
16 Transverse Bulkhead 14 189 √  187 191 1 
Boundaries for transverse bulkheads are given in frame numbers 
No Objectives Type Description 
1 HS value Maximization for the worst two compartment damage case 
2 KG limiting value Maximization for the worst two compartment damage case 
3 Cargo capacity 

value 
Maximization expressed in car lanes 

 
The damage stability has been calculated according to the constraints of SOLAS’90 regulations as 
shown in Table 8. 
 
Table 8  
Constraints of SOLAS’90 requirements 
 

No Constraints Requirements 
1 Range Range of positive stability up to 10 degrees 
2 Min. GZ Area Minimum area of GZ-curve more than 

0.015mrad 
3 Maximum GZ Maximum righting lever more than 0.1m 
4 Maximum GZ due to 

Wind Moment 
Maximum righting lever after applied wind 
moment more than 0.04m 

5 Maximum GZ due to 
Passenger Moment 

Maximum righting lever after passenger 
crowding more than 0.04m 

6 Maximum Heel Maximum static heel less than 12degrees 
7 Minimum GM Minimum GM more than 0.05m 
8 Margin Line Margin line should not be immersed 
9 Progressive Flooding No progressive flooding should occur 
 

 
JAVA language is used to code the optimisation system according to the multi-agent structure and the 
calculation is processed between the optimisation system and the NAPA software [52]. The Visual 
Basic (VB) is used to form the interface. The optimisation system uses NAPA to calculate the Hs, KG 
limiting and Cargo Capacity, and after optimisation, modified design variables are transferred to 
NAPA (Fig. 6).  
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Fig. 6. Work flow between the Optimisation System and third party software NAPA 
 

The vessel is modelled in NAPA (Fig. 7) and can be modified for each design experiment (or design 
layout) with respect to each optimisation parameter via NAPA macro. For each design experiment, 
the relevant adjustments of Draught and Displacement are made during the optimisation process (Fig. 
8).  

 

Fig. 7. Ship model built in NAPA for optimization.  
 

 
Fig. 8. Interface of ship design optimisation system. 
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5.2 Result and Analysis 
The calculations are performed using both NSGAII and HCPSO, and the results are compared in 
terms of the numerical value of objectives and the computing time that each approach takes.  
 
This optimisation has three objectives to maximize, thus three sub-swarms are set. The population 

size is 30 and the generation is 100. Therefore every sub-swarm has 10 particles. and  are set to 

2.0. 

1c 2c

ω  is gradually decreased from 1.0 to 0.4. Vmax is set to the bounds of decision variable ranges. 

χ  is 0.72. The ε-disturbance has 3 steps. The NSGA II uses the parameters setting of prior research 

in the same environment [49]. The HCPSO and NSGAII parameters are listed in Table 9. 
 

Table 9  
The setting of the parameters in the case study for HCPSO and NSGAII 

HCPSO Parameters’ Setting NSGAII Parameters’ Setting 
Parameters Name Parameters Value Parameters Name Parameters Value 

Constriction Function 0.72 SBX (Simulated binary crossover) 10 
Inertia weight  1.0 to 0.4 polynomial mutation 20 
Cognitive parameter 2 crossover probabilities  0.9 
Social parameter  2 mutation probabilities  0.1 
Population 30 Population 30 
Generation 100 Generation 100 
 
The optimisation is performed using a PC (Dual Core 2.4GHz, 3 GB RAM) environment and takes 
80h (Fig. 9). At the end of this run, 2625 different designs are obtained in design space, with 615 of 
them being unfeasible designs. Therefore 2010 (=2625-615) feasible designs are filtered in design 
space to obtain only the designs that belong to the Pareto front. The selected HCPSO optimisation 
solutions are listed in Table 10 together with the NSGAII optimisation. The comparison of the 
original design and the selected design in amidships is also given in Fig. 10. In this solution (Table 
10), the Hs in HCPSO is improved by more than 0.55 m compared to the original design, while the 
number of car lanes is increased by 6 extra lanes, which is equivalent to an increase of above 50%. 
The KG limiting value is also increased significantly (0.9 m) thus provides flexibility for future 
modifications on the basis of changing passenger demands as well as improvement in survivability. 
When comparing the two optimisation methods, the HCPSO design improves both the limiting KG 
and significant wave height (Hs) by 0.1m, compared to the NSGAII design. Both methods provide the 
same solution for the cargo capacity by increasing the lower-hold height and car deck height, thus 
yielding more cargo capacity. 
 
More importantly, for the real design case application, compared to NSGAII, HCPSO converges 
faster and reduces the computing, and hence the design time significantly. In ship design, most of the 
computing time is not consumed on the optimisation approach, but rather on the naval architectural 
calculations using third party software (NAPA etc.). It is important to note that it takes sometimes 
hours for one fitness calculation [16]. In this study, the solution begins converging from 40th 
generations in HCPSO, while the NSGAII begins converging from 54th generation in NSGAII. This 
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means the HCPSO takes 35% less time in looking for Pareto solutions compared to NSGAII. In a 
more complex environment, such as a real ship application with many objectives, this provides an 
advantage in terms of completing the design faster and thus cheaper. 
 

 
                    (a)                                     (b) 

 

                   (c)                                      (d) 
Fig. 9.  Optimisation results of HCPSO; (a) Limiting KG vs Hs; (b) Cargo Capacity vs Limiting KG; 

(c) Cargo Capacity vs Hs (d) 3D optimization feasible designs  
 

All feasible results are given in Fig. 8. The relationships between different variables are 
shown for designers to make a direct observation and to select the appropriate solution 
according to their practical preference. All of the feasible designs are listed in 3D space (Fig. 
9 d).  

 
Table 10 
Comparison of the original design and selected designs which are optimal solutions for HCPSO and 
NSGAII   
 

No Optimisation Variables Original Design NSGAII Design HCPSO design

1 Car deck height 9.7 m 9.9m 9.9m 
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2 Lower-hold height (from car deck) 2.6m 5.2m 5.2m 

3 Side Casing width (m) No side-casing 1m 1m 
 Watertight transverse bulkheads 

(In frame numbers) 
 
 

 
 

4 Transverse Bulkhead 02 27 27 27 
5 Transverse Bulkhead 03 39 39 39 
6 Transverse Bulkhead 04 51 52 53 
7 Transverse Bulkhead 05 63 65 63 
8 Transverse Bulkhead 06 81 83 83 
9 Transverse Bulkhead 07 99 97 99 

10 Transverse Bulkhead 08 117 115 118 
11 Transverse Bulkhead 09 129 128 130 
12 Transverse Bulkhead 10 141 141 143 
13 Transverse Bulkhead 11 153 153 155 
14 Transverse Bulkhead 12 165 164 167 
15 Transverse Bulkhead 13 177 175 179 
16 Transverse Bulkhead 14 189 189 189 

Optimisation Objectives  
1 HS value (m) 4.641 5.082 5.179 
2 KG limiting value (m) 14.012 14.813 14.9085 
3 Cargo capacity value (lanes) 8 14 14 

 

 
                 (a) Original design                        (b) selected design 

Fig. 10. Comparison between original design and selected design based on HCPSO. 
 

6. Conclusions 
 
This paper presents a new hybrid approach, HCPSO, which is a co-evolutionary based 
Multi-Objective Particle Swarm Optimisation methodology. The proposed algorithm is tested and 
validated successfully utilising the most widely used 2D and 3D test functions and applied on a real 
design case study with three objectives. In test functions, HCPSO converges significantly faster than 
NSGAII and provides 3D solutions using PSO comfortably. 

24 



 
With regards to the real ship design case, the internal subdivision optimisation of a ROPAX vessel, 
with three conflicting objectives (survivability, damage stability and cargo capacity), is carried out. 
For the search platform, a JAVA based optimisation system and NAPA have been integrated into a 
multi-agent search framework.  
 
The proposed algorithm provides an improved design, compared to the original design, in every 
chosen objective with a significant margin, and demonstrates the value of HCPSO. In this design case, 
the HCPSO displays a better performance both in speed and final results compared to NSGAII. The 
co-evolution method used in HCPSO provides a good basis for distributed calculation and allows 
sub-swarm being updated dynamically. The proposed algorithm is structured via a multi-agent system 
and every agent works remarkably well. It can be concluded that the proposed approach has shown 
great potential and can be applied to similar and even more complex optimisation problems in ship 
design, as well as to related areas within the maritime industry.  
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