
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/13 2 5 0/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Li, Ming,  Lan g b ein,  F r a nk  Cu r d  a n d  M a r tin,  Ralph  Rob e r t  2 0 1 0.  De t ec tin g  d e sig n

in t e n t  in a p p roxim a t e  CAD m o d els  u sin g  sy m m e t ry. Co m p u t e r-Aided  Design  4 2  (3) ,

p p .  1 8 3-2 0 1.  1 0.1 0 1 6/j.ca d.2 00 9.10.00 1  

P u blish e r s  p a g e:  h t t p://dx.doi.or g/10.10 1 6/j.ca d.2 00 9.10.00 1  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



Detecting Design Intent in Approximate CAD Models

Using Symmetry

Ming Lia,b, Frank C. Langbeina, Ralph R. Martina

aSchool of Computer Science, Cardiff University, Cardiff, UK
bState Key Lab of CAD & CG, Zhejiang University, Hangzhou, P.R. China

Abstract

Finding design intent embodied as high-level geometric relations between a
CAD model’s sub-parts facilitates various tasks such as model editing and
analysis. This is especially important for boundary-representation models
arising from, e.g., reverse engineering or CAD data transfer. These lack
explicit information about design intent, and often the intended geometric
relations are only approximately present. The novel solution to this problem
presented is based on detecting approximate local incomplete symmetries,
in a hierarchical decomposition of the model into simpler, more symmetric
sub-parts. Design intent is detected as congruencies, symmetries and sym-
metric arrangements of the leaf-parts in this decomposition. All elementary
3D symmetry types and common symmetric arrangements are considered.
They may be present only locally in subsets of the leaf-parts, and may also
be incomplete, i.e. not all elements required for a symmetry need be present.
Adaptive tolerance intervals are detected automatically for matching inter-
point distances, enabling efficient, robust and consistent detection of approx-
imate symmetries. Doing so avoids finding many spurious relations, reliably
resolves ambiguities between relations, and reduces inconsistencies. Experi-
ments show that detected relations reveal significant design intent.
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1. Introduction

Design intent concerning the shape of a CAD model can be expressed
via geometric properties of, and relations between, its vertices, edges, faces
and sub-parts. As shape is often essential to function, such relations must
be enforced on the model to fulfil its purpose. Many intentional geometric
relations form geometric regularities. However, information about a model’s
design intent is not always explicitly available. E.g., reverse engineering [42]
captures the shape of a model but does not explicitly detect intended reg-
ularities. Such models are approximate due to measurement errors, and
approximation and numerical errors occurring during reconstruction. Sim-
ilarly, models constructed from inexact user input, e.g. sketches [26, 43],
are also approximate, and lack explicit design intent. Exchanging models
between different CAD systems [32] may break intended, exact regularities
due to incompatible tolerance systems and representations; design intent is
often not explicitly transferred. Detecting design intent in such approximate
models can reveal high-level information that is necessary for the model’s
function or purpose. Such information may be used to constrain and guide
editing operations. It may also allow us to improve an approximate model
by enforcing intended regularities. It may enable faster analysis and more
compact representation, if the model has symmetric sub-parts. It may also
allow models to be more meaningfully indexed for shape search, etc. Thus,
this paper considers algorithmic detection of geometric design intent in ap-
proximate boundary-representation (B-rep) models of engineering objects,
such as the one in Fig. 1.

Symmetry is a key concept in design. Engineering objects often ex-
hibit symmetries for functional, aesthetic, and manufacturing reasons [2, 40].
Many regularities can be represented via symmetries [19]. A symmetry is
an isometry that maps a set exactly onto itself. However, symmetry may
be present approximately—the set is almost invariant under an isometry, lo-
cally—only part of the set is invariant, incompletely—not all elements build-
ing a symmetry are present, and compatibly—multiple subsets share the same
symmetry. We thus later define a precise concept of approximate incomplete
symmetry which includes exact and global symmetries as special cases, gen-
eralising the ideas in [29]. For brevity, henceforth, we refer to approximate
symmetry or congruency as symmetry or congruency, unless stated otherwise.
An alternative approach [21] considers asymmetries in a model to describe
design intent as a sequence of symmetry breaking operations.
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Figure 1: An example of an approximate CAD model: Monster

Complex models often exhibit far too many alternative plausible approx-
imate regularities for exhaustive methods to be able to determine which reg-
ularities represent the original design intent of the whole model [20]. As
a simple example, consider a rectangular block with many prisms attached
to its faces. Analysing the whole model without finding the prisms creates
many candidate angles and distances forming plausible regularities between
the model’s planes. By first identifying the individual prisms as sub-parts, we
can detect their approximate prismatic symmetries, and separately determine
symmetric arrangements of the prisms on the block. Analysing sub-parts of
the model separately increases the speed of regularity detection and provides
more reliable results. Hence, our design intent detection algorithm performs
model decomposition before detecting regularities in the resulting sub-parts.

The decomposition phase builds a regularity feature tree (RFT) forming
a hierarchy of regularity features: simple, closed volumes which in combi-
nation describe the original shape. The regularity features at the leaves of
the RFT describe the complete shape of the object; the tree indicates how
to build the complete model from the leaf-parts. Unlike a CSG tree, the
RFT does not contain standard primitives, nor does it give a Boolean de-
composition [22]. Instead, the emphasis is on the fact that the leaf-parts
are simpler and more symmetric than other parts in the tree, and not on

3



Figure 2: Overview of algorithmic steps for detecting design intent of the Monster model
in Fig. 1

how the object was or might have been constructed. The second phase of
the algorithm seeks regularities within the model in terms of congruencies,
incomplete symmetries and symmetric arrangements of these leaf-parts. It
first detects congruencies to partition the leaf-parts into congruence sets, each
containing one or more congruent leaf-parts. Next, for each congruence set,
it seeks subsets forming incomplete symmetries and incomplete symmetric
arrangements. Compatible symmetries shared by leaf-parts, and symmetric
arrangements, are further combined before we output all detected regular-
ities as transformations matching sub-parts of the model. The process is
illustrated in Fig. 2 for the model in Fig. 1. Fig. 2(a) shows the computed
RFT, Fig. 2(b) shows the congruent leaf-parts found, and the detected sym-
metries are given in Figs. 2(c)–(e). The output may, e.g., be used to describe
a model by geometric constraints [36], or be processed by regularity selection
techniques [20, 45].

As the models are approximate, the method has to consider tolerances
carefully. We compute suitable (tolerance) validity intervals directly from
distances present in the model to ensure that model entities match unam-
biguously (i.e. in a one-to-one manner) at any tolerance in the interval.
During decomposition, each different validity interval yields a different, well-
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defined RFT. We let the user select a suitable RFT, which is often straight-
forward as appropriate tolerances are often known. Regularity detection is
then restricted to that particular validity interval. For a particular decom-
position, regularities may also exist at different tolerance levels. To avoid
missing any important regularities, we seek all of these. We ensure that the
regularities are unambiguously present to avoid inconsistencies between regu-
larities and to reduce the number of spurious regularities found. Regularities
are detected in a certain sequence for efficiency, and to ensure that rela-
tions between regularities are preserved (e.g. congruent sub-parts must have
the same symmetries). Tolerance information is used to ensure that these
inter-regularity relations are preserved at the tolerance intervals at which the
regularities are present.

Throughout this paper, we assume that the input model is a manifold 3D
solid represented by a valid, watertight B-rep data structure, and is bounded
by planar, spherical, cylindrical, conical and toroidal surfaces, which covers
a wide range of mechanical components [30]. The only reason for this restric-
tion is the difficulty of extending the geometry of free-form surfaces involved
in the RFT construction; see Section 6. We assume that blends have been
identified and suppressed using existing blend-removal methods [35, 46] (or
have not been added during a reverse engineering process).

This paper uses our previous results on constructing RFTs [22] and de-
tecting incomplete symmetries of discrete point sets [24, 23]. Here we combine
and extend these results to efficiently and robustly detect design intent in
B-rep models for a wide range of symmetry-based regularities. We extend
our earlier work to include all elementary symmetry types in 3D (mirror,
inversion, translation, rotation, rotation-mirror, glide, screw), not just rota-
tions and rotation-mirrors, with a single, consistent algorithm. We also give
further previously unpublished details of our incomplete symmetry detection
algorithm, and explain how to adapt it to detecting symmetries of B-rep
models (not just point sets).

Detecting symmetries in a B-rep model is achieved by using characteristic
points. They are the model’s vertices and some other special points which
characterise curved edges and faces (e.g. a circular arc is uniquely determined
by its two end points and the arc’s mid-point). These, together with topo-
logical and face type information, uniquely characterise the model [10, 29].
Hence, although a wireframe model is insufficient to define a volumetric ob-
ject uniquely, only regularities of the solid model are detected via consistent
mappings between characteristic point sets; see Section 3.2.
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In summary, this paper presents a novel solution to efficiently detect geo-
metric design intent as geometric regularities of and between model sub-parts
using symmetry. It can handle approximate models robustly, yielding well-
defined, unambiguous regularities and providing a higher-level description
for downstream processing. Detecting local symmetries using the RFT, in-
stead of working directly on the model as a whole, avoids considering many
spurious, almost certainly unintentional geometric relations. It greatly re-
duces the computation time required and leads to a better understanding
of regularities of the model. Moreover, we consider all possible elementary
symmetry types with a single method based on inter-point distances. The
results do not depend on arbitrary user-chosen tolerances, but most toler-
ances are inferred automatically from the model. This improves robustness
and reliability, as well as efficiency. As some approximate models have mul-
tiple consistent interpretations in terms of regularities at different tolerance
ranges, the user must make a simple choice of a suitable tolerance interval
which gives the desired interpretation. Our experiments show that we can
efficiently detect regularities which describe significant design intent.

The rest of the paper is organised as follows. Section 2 discusses related
previous work and Section 3 gives our definition of incomplete symmetry for
discrete point sets and B-rep models. Section 4 outlines our design intent
detection algorithm. Details follow in Section 5 on a clustering algorithm to
handle tolerance ranges, Section 6 outlines the RFT construction, and Sec-
tions 7 to 11 discuss in detail the stages of our regularity detection approach.
Section 12 presents experimental results, and Section 13 concludes the paper.

2. Related Work

We now overview relevant work on representing and detecting geometric
design intent, and on symmetry detection.

2.1. Design Intent

Previous consideration of design intent has been based on geometric con-
straints, features and construction history. Efforts have been made to use
these (including symmetries) to extend the STEP ISO standard for design
intent description [32, 18]. Such approaches mostly focus on exact geometric
relations and representation, while our approach is aimed at approximate
models and design intent detection.
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Geometric constraints annotate relations between geometric entities [14,
12]. However, they usually describe design intent at a low level, prescrib-
ing many simple relations and parameters, instead of higher-level relations
such as a symmetric arrangement of identical complex sub-parts. Solving
constraint systems provided by a user is the main topic considered, rather
than detecting constraints. Our algorithm finds high-level relations using
symmetries, from which low-level constraints can be derived if required.

Feature recognition is often aimed at determining machining operations
needed to manufacture a model [11, 13, 37]. Recording a complete model
construction history, e.g. [7], views design as akin to writing a program to
construct the model. However, such histories contain artificial construction
steps as well as the intended regularities. Furthermore, histories are not
unique—many can produce the same final object. Bidarra [4] has, however,
proposed a semantic feature modelling method in which such design recording
is independent of the model design history. Sitharam et al [36] present a
geometric constraint solver which can handle features. In our view theirs
is the most promising approach for representing design intent; their system
may well be suited for downstream processing of the output of our algorithm.
Leyton [21] views design as a sequence of symmetry breaking operations
yielding a generative history. As with construction histories, however, the
generative history of most complex models is ambiguous. In contrast, we are
only concerned with detecting regularities and not inferring a history. He
utilises symmetry and symmetry breaks, but for the representation of design
intent, not its detection.

Reverse engineering solid models from measured data, using prescribed
features or geometric constraints, has also been considered [3, 27, 41], but
few authors discuss how to extract these from point data [17]. However,
detecting candidate geometric constraints after reverse engineering models
has been previously examined [10, 19, 20, 29]. This approach can handle fairly
simple approximate models, but suffers from ambiguities and inconsistencies
between regularities in more complex models. Our approach resolves this
issue for complex models by first decomposing them; it also detects more
general incomplete symmetries and symmetric arrangements of sub-parts.
Beautification of 3D polyhedral models reconstructed from 2D sketches was
also considered recently [45].
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2.2. Symmetry Detection
Previous work on symmetry detection has mainly considered rotation and

mirror symmetries, with different approaches used for different symmetry
types. Here, we consider all seven elementary 3D symmetry types using a
uniform approach.

Exact symmetries can be found in O(n log n) time: see [24] and the refer-
ences therein. However, differing definitions of (global) approximate symme-
try cause its detection to be NP-hard [15] or to take O(n8) time [1]. Our ap-
proach extends the global approximate symmetry detection algorithm in [29],
which takes only O(n3.5 log4 n) time.

Little work exists on detecting approximately symmetric subsets of data.
Robins [33] considers subsets of points regularly arranged along a line. While
for global approximate symmetries a single tolerance applies, for subset sym-
metries, a tolerance only applies to a particular subset: different subsets may
have different tolerances. This complicates the automatic detection of tol-
erances. Another approach to finding subset symmetries in solid models is
presented by Tate and Jared [39]. It is based on matching every pair of edge
loops and finding the isometries that relate them. The isometries are then
grouped according to similarity. Their implementation only finds axes of ro-
tation and mirror planes. The approach may be used to detect approximate
symmetries by ‘relaxing’ matching tolerance conditions, but this means the
resulting notion of approximate symmetry is ambiguous and does not eas-
ily enable automated tolerance detection. We aim to detect what is present
unambiguously in the data without predetermined tolerances. Limiting the
search to edge loops, mainly due to efficiency reasons, is also too restrictive
for finding all symmetries. Instead we employ a volumetric decomposition of
the model for efficiency reasons and to detect predominantly intended sym-
metries. [24] describes an approach for detecting point subsets which form
approximate, complete rotation or rotation-mirror symmetries. We extend
this work here to all incomplete symmetries of sub-parts.

We seek discrete point symmetries to find symmetries of B-rep models as
explained later, but we use quite different point sets compared to symmetry
approaches used in image processing, e.g. [38], and mesh processing, e.g. [31].
Generally, the aim there is to detect one or a few dominant approximate
symmetries by partial matching of images or meshes described by dense point
data, under user-selected tolerances. In contrast, we wish to generate all
unambiguous subset symmetries in a carefully chosen characteristic point set
derived from the B-rep model, sufficient to uniquely characterise its geometry
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Figure 3: Some elementary symmetries in 3D

given its face types and topology. Our algorithm thus processes far fewer
points than a mesh symmetry algorithm, but the position and existence of
each and every point is significant.

Our method carries out hierarchical model decomposition before applying
symmetry detection. A similar idea is found in [34], which uses a symmetry
based decomposition of 2D B-rep models to obtain an axial shape description.
However, only three symmetry types are considered there: skew symmetries,
parallel symmetries and smooth local symmetries. Moreover, only one domi-
nant symmetry is detected for each decomposed part, and symmetry relations
between parts are not addressed. Detecting global rotational symmetries of
3D objects using invariant feature indexing has also been considered [8].

3. Definition of Approximate Symmetry

We first introduce approximate incomplete subset symmetries for point
sets in Section 3.1, and use them to define such symmetries for B-rep models
in Section 3.2. This definition covers all elementary isometries in 3D [28]:
mirror M, inversion I, translation T, n-fold rotation Cn, n-fold rotation-
mirror Sn (mirror followed by n-fold rotation about an axis orthogonal to
the mirror plane, Fig 3(a)), glide Z (mirror in a line followed by translation
parallel to the line), and screw W (rotation about an axis followed by trans-
lation along the axis, Fig. 3(b)). Throughout the paper we denote the set
of all distances {‖P − Q‖ : P, Q ∈ P} between members of a point set P
as D(P). We also denote approximate equality of real numbers a, b within
tolerance ǫ, where |a− b| ≤ ǫ, by a =ǫ b.

3.1. Approximate Symmetries of Point Sets

We recap global approximate symmetries as defined in [29], and then give
an extended definition of (incomplete) symmetry cycles based on our previous
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work [24]. Merging such cycles leads to incomplete symmetries [23]. These
definitions cover symmetries in a wide mathematical sense: approximate,
subset, incomplete, compatible symmetries, and include all the seven types
of elementary symmetries. Further details on these definitions are given
in [24, 23].

Approximate symmetry of a point set is defined in terms of a permuta-
tion of the points which maps distances between the points approximately
onto each other. This definition allows an algorithm to be devised based
on expanding local matches without backtracking, enabling us to keep the
efficiency of the approach used in [29].

Specifically, let µ : P1 → P2 be a bijection between two point sets P1,
P2, and let ǫ ≥ 0 be a tolerance. We say DEC(P1,P2, µ, ǫ) is satisfied if
‖P − Q‖ =ǫ ‖µ(P ) − µ(Q)‖ for all P, Q ∈ P1, and if =ǫ is an equivalence
relation on D(P1) ∪ D(P2) (see below; this idea was introduced in [29] to
define global approximate symmetry). We define two point sets P1, P2 to
be approximately congruent at tolerance ǫ if, for at least one of all possible
bijections µ : P1 → P2, DEC(P1,P2, µ, ǫ) is satisfied. We say that a point set
P has an approximate symmetry (µ, ǫ) for bijection µ : P → P and tolerance
ǫ if DEC(P ,P , µ, ǫ) is satisfied.

Assuming that some ǫ can be found for which a set of points exhibits
an approximate symmetry, in general, a tolerance validity interval EP =
[Emin(P), Emax(P)) around ǫ exists at which P is approximately symmetric.
For tolerances ǫ smaller than some minimal tolerance Emin(P), some dis-
tances in the same distance class would no longer be considered equal, and
so the approximate symmetry would not exist. Conversely, for tolerances ǫ
greater than some maximal tolerance Emax(P), the points would no longer
map onto each other in a one-to-one fashion, as more than one point would
be considered to be at the ‘same’ (approximate) position. The validity in-
terval plays a key role in our previous work on detecting (incomplete) point
symmetries [24, 23], and will also be used throughout this paper.

A complete symmetry consists of cycles : orbits arising by repeatedly
applying the symmetry mapping to a single point. We define incomplete
cycles as subsets of a point set P comprising consecutive points from a full
cycle; otherwise, multiple and ambiguous symmetries may appear, e.g. a six-
fold rotational cycle can be seen as incomplete twelve-fold cycle by allowing
gaps. Further conditions are necessary to uniquely define an incomplete
cycle: (C1) its points must potentially belong to some symmetric set of
points, (C2) its points must be sufficiently far apart from other points in P

10



to avoid ambiguity, and (C3) it should contain as many points as possible
from P while still satisfying (C1) and (C2). Formally, let C = (P1, . . . , Pc)
be a sequence of c ≥ 2 points from point set P , which induces a bijection
µ mapping Pk to Pk+1 for k = 1, . . . , c − 1. We say that C is a (maximal
approximate) incomplete cycle at tolerance ǫ ≥ 0 if

(C1) DEC(C, C, µ, ǫ) is satisfied (Pc maps to P1 in a complete cycle, and to
no point otherwise—for simplicity we skip over the fact that µ is not
defined on the last point of an incomplete cycle);

(C2) no point in P \ C can replace a point in C while (C1) still holds under
the same µ; and

(C3) no single point in P \ C can be added to C for any tolerance ǫ while
still satisfying (C1) and (C2).

Incomplete symmetries arise by merging compatible cycles under similar
conditions to ensure unambiguity as detailed in [23]. A point subset S ⊂ P
has an (approximate) incomplete symmetry (µ, ǫ) of symmetry type t if

(I1) S is the union of a set of non-intersecting cycles of type t, each having
at least N(t) points to determine a symmetry of a given type t: 2 points
for M, I, C2; 3 for T, C3; 4 for Cn≥4, Z and a regular tetrahedron; 5
for Sn, W.

(I2) DEC(S,S, µ∗, ǫ) is satisfied, where µ∗ is the concatenation of the indi-
vidual µs of the cycles from (I1); and

(I3) no cycle C∗ of type t in P \ S exists such that (I2) is true for C∗ ∪ C at
tolerance less than ǫ for any cycle C of S.

3.2. Approximate Symmetries of B-rep Models

The above ideas can be used to detect congruencies, incomplete sym-
metries and symmetric arrangements of sub-parts of a B-rep model, using
characteristic points of a B-rep model [10, 29]; see Section 1.

For sub-parts to be congruent or symmetric, any mappings have to satisfy
the consistency condition that entities are matched to others of the same
geometric type, e.g. circular arcs to circular arcs. Let µ : S1 → S2 be a
bijection between the characteristic point sets S1, S2 of two sub-parts S1,
S2. We say µ is consistent if whenever a subset S∗ ⊂ S1 defines an entity

11



P2

P3

P4

1 µ1µ4

µ 3
µ2

3S

S2
4

S1

S

P

Q1

Q4

Q 3

Q 2

(a) Type I

4P
P2

P1

S3

S4

3
P

S2

Q2

Q4

1S
Q1

Q3

(b) Type II

Figure 4: Two types of symmetric arrangement of sub-parts

of S1, µ(S∗) are corresponding characteristic points of an entity of the same
type. Two sub-parts thus are approximately congruent if their characteristic
point sets are congruent at tolerance ǫ under a consistent bijection µ. A
sub-part is approximately symmetric at tolerance ǫ if its characteristic points
are symmetric under a consistent bijection µ.

A symmetric arrangement of congruent sub-parts forms a pattern given
by a symmetry group. Even if the relations between them are limited to three
independent translations in 3D, 230 space groups exist [9]. However, most of
the cases are not of interest to mechanical engineering, and we only consider
two particularly important types: I and II in Fig. 4. Type I is formed by sub-
parts which exhibit global symmetry. Thus, their characteristic points form
an (incomplete) symmetry, each cycle of which consists of one point from
each model at a specific location, called location cycles. E.g., in Fig. 4(a),
objects S1, S2, S3, S4 have such an arrangement: cycles (P1, P2, P3, P4) and
(Q1, Q2, Q3, Q4) are two of its location cycles forming a symmetry. Alterna-
tively, placing a sub-part at symmetric locations while keeping its orientation
unchanged gives Type II. In this way, the location cycles are not compati-
ble, but are related by a translation. E.g., in Fig. 4(b), models S1, S2, S3, S4

have such an arrangement: cycle (Q1, Q2, Q3, Q4) is a translation of cycle
(P1, P2, P3, P4) by Q1 − P1.

Thus, a set of congruent sub-parts S1, . . . , Ss with characteristic point sets
S1, . . . ,Ss has a symmetric arrangement at tolerance ǫ if consistent bijections
µk : S1 → Sk, k = 2, . . . , s exist such that for all P1 ∈ S1 with location cycle
C(P1) = (P1, µ2(P1), . . . , µs(P1)), and, for Type I or Type II respectively,

I: all location cycles C(P1), P1 ∈ S1 form an incomplete symmetry at
tolerance ǫ; or
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II: for any other point Q1 ∈ S1, translating cycle C(P1) by vector Q1 − P1

gives cycle C(Q1) at tolerance ǫ.

4. Main Design Intent Detection Algorithm

Given an approximate B-rep model as input, our algorithm finds con-
gruencies, incomplete symmetries and symmetric arrangements of sub-parts,
with corresponding tolerance levels, which describe the model’s geometric
design intent. Here we describe the top-level algorithm (Algorithm 1). It
takes as input a B-rep model M . It outputs a hierarchy of congruence sets at
different tolerance levels with associated symmetries and symmetric arrange-
ments. In general, different regularities may be detected for each congruence
set in the hierarchy. We must detect all regularities at all tolerance levels so
as not to miss any intended regularities—a problem noted in [16] with the
symmetry detection approach of Zabrodsky et al [44]. We do not consider the
problem of choosing between alternative, mutually inconsistent regularities
(which share entities) here.

As sub-parts are congruent at different tolerance levels, the congruence
sets form a tree or forest rather than a simple partition of the sub-parts.
Each congruency is described by a set C of sub-parts, a set of pairwise
mappings ΓC giving the congruency matchings, and a validity interval EC

for the congruence set. For each C, incomplete symmetries are detected as
symmetries of the congruent shape: S[C] gives its symmetries as mappings µ
matching the faces of the congruent shape of C within a validity interval. The
congruencies and the symmetries indicate how the elements of a congruence
set match and are hence necessary to find symmetric arrangements A[C] of
C: we store symmetric arrangements in terms of the mappings between the
involved sub-parts, and a validity interval.

Initially the algorithm decomposes the model into a regularity feature
tree (Line 01), as explained in Section 6. Congruencies between leaf-parts
are then found (Lines 02–03). All sets of congruent leaf-parts (Lines 04–
13) are next analysed for incomplete symmetries (Line 09) and symmetric
arrangements of Type I and II (Lines 10–13). Finally compatible symmetries
are merged (Line 14). We now explain these steps further.

We first construct an RFT T for M , hierarchically decomposing it into
simpler sub-parts (Line 01). More than one possible RFT may exist, each
with a different validity interval; we discuss later how one is selected. A
validity interval ET is also reported which indicates the range of tolerances
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Algorithm (C,R)←DesignIntent(M)
Input: M : B-rep model
Output: C: congruency hierarchy

R: symmetries and symmetric arrangements

01 (T,ET )← RFT(M)
02 L ← leaf nodes(T )
03 C = {(Ck, ΓCk

, ECk
)} ← Congruencies(L, ET )

04 S ← empty, A← empty

05 Q ← roots(C)
06 while not empty(Q)
07 (C, ΓC , EC)← pop(Q)
08 Q ← append(Q,children(C))
09 S[C]← BRepSymmetries(C, ΓC , EC)
10 if S[C] 6= S[parent(C)]
11 I ← IncompleteCycles(Centroids(C), EC)
12 G ← FilterGlobalSymmetries(S[C], C)
13 A[C]← TypeI(C, ΓC , EC ,G, I) ∪ TypeII(C, ΓC , EC ,G, I)
14 R ← MergeCompatibleCycles(A ∪ S,ET )

Algorithm 1: Main design intent detection algorithm

for which this tree is valid. Subsequent regularity detection is limited to this
range. The set L of leaf-parts of this tree is extracted (Line 02) for regularity
detection.

Congruencies are detected first (Line 03) as these facilitate other reg-
ularity detection: all members of a congruence set must exhibit the same
incomplete symmetries; symmetrically arranged leaf-parts must be congru-
ent. Congruencies are detected as a hierarchy of congruent leaf-part sets Ck

at different tolerance levels. For each such congruence set, the bijections ΓCk

indicate how the leaf-parts are matched, and the tolerance validity interval
ECk

is also computed. Congruence detection is detailed in Section 7. The
congruence set hierarchy is examined top-down for incomplete symmetries S
and symmetric arrangements A using a FIFO queueQ (Lines 04–08): all con-
gruencies at different tolerance levels in the hierarchy have to be considered
as they may exhibit different regularities.

Detecting incomplete symmetries of a congruence set is achieved by first
detecting the incomplete symmetries of an exemplar leaf-part in the set and
then retaining those shared by all leaf-parts in the set (Line 09). The in-
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complete symmetries of the example leaf-part may have been detected pre-
viously when examining the parent congruence set. Hence, for efficiency,
these symmetries are cached. Details of the symmetry detection algorithm
are described in Section 8.

Next, symmetric arrangements of the elements of a congruence set are
detected (Lines 10-13). We first detect incomplete cycles formed by the cen-
troids of the leaf-parts (Line 11) and then select those which also match the
leaf-parts (Line 13); see Section 10. In order to do this, the global symme-
tries of the congruent shape of the congruence set are necessary: combining
these symmetries with the congruencies yields all possible ways of matching
the leaf-parts. The global symmetries are easily found by filtering the set of
all detected symmetries (Line 12). Note that unless a congruence set has dif-
ferent symmetries from its parent in the congruency hierarchy, its symmetric
arrangements are also present in its parent. Hence, we only seek symmetric
arrangements (Line 10) if new symmetries have been detected. We only need
to store and detect symmetric arrangements in that first congruence set in
the hierarchy in which they occur.

Finally all incomplete symmetries and symmetric arrangements are stored
in R for output (Line 14). As several cycles may be induced by the same
isometry, we combine such compatible cycles; see Section 11.

5. Consistent Clustering

Hierarchical clustering is used in several places in our algorithm to deal
with different tolerance levels, to merge mappings, etc. Our clustering algo-
rithm is adopted from [29]. Initially each entity starts in its own cluster, and
we compute pairwise similarities between all entities. Clusters are considered
for merging in order of increasing entity similarity, leading to a cluster hier-
archy. However, clusters must fulfil two conditions. The first is a transitivity
condition which requires clusters to be sufficiently separate from each other:
the distances between all entities within a cluster must all be smaller than
the distance between any entity inside the cluster and any other entity out-
side the cluster. Secondly, the cluster must exist at a tolerance which allows
the entities to be appropriately merged, e.g. for clustering symmetries, the
existence of the corresponding validity interval, as defined in Section 3.1, for
the merged symmetries must also be ensured. Thus, each cluster must have
a suitable validity interval which is within an overall validity interval bound
to ensure consistency with other tolerances, e.g. from the RFT construction.
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Algorithm H ← ConsistentClustering(Q, E∗)
Input: Q = {(Ik, EIk

)}: entities Ik with validity intervals EIk

E∗: validity interval bound
Output: H: consistent cluster hierarchy

01 D = {(l, k)} ← sort(Similarity(Q))
02 H ← empty

03 for each (Ik, EIk
) ∈ Q

04 C ← {(Ik, EIk
)}, v[C]← 1, e[C]← 0, E[C]← EIk

05 H ← add root(H, C)
06 if not empty(E[C] ∩ E∗), Flag(C)
07 for each (l, k) ∈ D // in increasing order of similarity
08 if Il, Ik are in the same cluster C of H
09 e[C]← e[C] + 1
10 else Il, Ik are in distinct clusters C1, C2 of H
11 C ← Merge(C1, C2,H)
12 v[C]← v[C1] + v[C2], e[C]← e[C1] + e[C2] + 1
13 E[C]← ValidityInterval(C1, C2)
14 if Complete(v[C], e[C]) and not empty(E[C] ∩ E∗)
15 Flag(C)

Algorithm 2: Consistent hierarchical clustering algorithm

If we construct a graph with nodes representing the entities to be merged,
we can detect transitive clusters as complete sub-graphs, i.e. sub-graphs of
v vertices having e edges with acceptable similarities where e = v(v + 1)/2.

The clustering algorithm in Algorithm 2 takes as input a set of distinct
entities {Ik} with corresponding tolerance intervals EIk

, plus an overall tol-
erance range E∗. It outputs a consistent cluster hierarchy. Each distinct pair
of entities (l, k) from {Ik} is stored in a list D sorted by increasing order of
entity similarity (Line 01). The similarity measure depends on the type of
entities being clustered; details are given later. For each entity Ik, a cluster
C is created with v[C] = 1 vertices, e[C] = 0 edges, and a validity interval
E[C] = EIk

; this is added to the cluster hierarchy H (Lines 03–06). We only
wish to keep clusters fulfilling the two consistency conditions, so we flag such
clusters. The initially created clusters are consistent if the intersection of
the clusters’ validity interval E[C] with the tolerance range bound E∗ is not
empty (Line 06).

In increasing order of similarity, clusters corresponding to the pairs from

16



D are merged: an edge is inserted into the graph of entities (Lines 07–15).
During this process, the cluster hierarchy H is updated, and complete com-
ponents of the graph are detected by tracking the number of edges e[C] and
nodes v[C] in each cluster C. Firstly, the clusters linked by the current en-
tity pair (l, k) from D are merged. If the current pair links nodes inside
the same cluster, we increase the edge count for the cluster (Lines 08–09).
Otherwise, we merge the two distinct clusters and create new vertex and
edge counts accordingly (Lines 10–13). We next check whether the result-
ing cluster is consistent. Clusters which are complete and fulfil the validity
condition within the overall tolerance range E∗ are flagged (Lines 14–15).
The earlier merging of two clusters (Line 11) only preserves sub-clusters if
these are flagged. Clusters are ignored if they do not fulfil the validity con-
dition and hence are not a valid merged entity, or if they violate the overall
tolerance bound.

Line 13 involves computation of the validity interval EC = [Emin(C), Emax(C))
for a set of entities C = C1∪C2 to decide if it is valid. Assuming C comprises
the entities I1, . . . , Ic with given minimal and maximal tolerances for each Ik,
we set Emin(C) = max1≤l 6=k≤c(Emin(Il ∪ Ik)), Emax(C) = min1≤k≤c(Emax(Il ∪
Ik)).

This clustering method takes O(n2 log n) time for n entities to be clus-
tered: n2 pairs have to be sorted and all n(n − 1)/2 pairs must be merged,
taking O(log n) time for each pair [29].

6. Regularity Feature Tree Construction

Next we outline the RFT construction used to initially hierarchically de-
compose the input model (Line 01, Algorithm 1). Our algorithm is detailed
in [22], so here we give a brief overview and concentrate on the associated
tolerance levels in the context of our design intent detection algorithm.

Many regularities can be expressed in terms of symmetries [19]. Our
RFT construction is based on recovering symmetries that were broken during
construction of the (ideal, rather than approximate) original model by using
modelling operations on geometric primitives. The regularity feature is used
to represent the newly generated sub-parts for this purpose. While this
means that some regularity features may become more symmetric, others
may just represent the symmetry break in the model, i.e. some part which
reduces the model’s symmetry. They hence are not a class of pre-defined
simple geometric primitives, but are determined by the model’s geometry.
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The RFT is used here to record the hierarchal process of producing these
regularity features. For example, the RFT for the Monster model in Fig. 1
is displayed in Fig. 2, and the RFT for the Angle in Fig. 11 is displayed in
Fig. 10.

Specifically, our approach groups model entities into sub-parts, i.e. regu-
larity features, with the aid of newly constructed edges, faces and sub-parts
derived from the initial geometry. No Boolean operations are involved. By
analysing the model’s faces, missing edges are constructed which give rise
to new faces, and consequently new sub-parts when combined with existing
geometry. These sub-parts have to be combined with each other to build
the model. By recursively decomposing the arising sub-parts, the model is
decomposed hierarchically giving the RFT. For details see [22]. Sub-parts
in this hierarchy increasingly become simpler and more symmetric until no
further decomposition can be found. When combined, the leaf-parts of the
RFT describe the whole model.

As the input model is approximate, RFT construction requires careful
matching and intersection of edges and faces. Handling of the tolerances
necessary for design intent detection was not addressed in [22]. We do so here
robustly by clustering model faces which share the same underlying surface
within tolerance—different edges between face pairs which share the same
underlying surface must belong to the same underlying curve. Where two
surfaces intersect in multiple intersection curves, we consider each in turn,
and allocate edges to each intersection curve based on its minimum distance.
To decide which underlying surfaces are approximately the same we use our
ConsistentClustering algorithm. The input entities Ik are the faces Fk

of the input model. We set no predefined tolerance bound (E∗ = [0,∞))
and set EIk

= [0, d∗), where d∗ is the minimal distance between any two
characteristic points of Fk (we need these points to be distinctly identifiable).
The symmetric Hausdorff distance between two faces is a good measure of
whether they share the same underlying surface, and we use it to compute
the minimal tolerances and similarity measure.

As the face clusters form a hierarchy, different RFTs may be constructed
at different tolerance levels. Instead of expensively examining all resulting
RFTs for regularities, we let the user interactively choose a tolerance level by
selecting suitable clusters and with them an RFT T . This results in a mini-
mum distance tolerance Emin(T ) required to match the faces in the clusters
and a maximum distance tolerance Emax(T ) at which the selected clusters
would need to be merged with other clusters higher up in the hierarchy. The
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validity interval ET = [Emin(T ), Emax(T )) is then used to determine which
regularities are found by the rest of the design intent algorithm.

7. Detecting Congruencies

After RFT construction, congruencies between leaf-parts are detected
(Line 03, Algorithm 1). The congruency detection algorithm (Algorithm 3)
takes as input a set L of leaf-parts (each is a closed B-rep model), and the
validity interval ET from the RFT construction. It hierarchically groups L
into congruence sets, each of which contains (i) a set of leaf-parts Ck, (ii) the
point mappings ΓCk

giving all pairwise congruency matchings between the
leaf-parts, and (iii) the validity interval ECk

for each set. If the congruent
parts are symmetric, multiple matchings between them exist, but we only
find the match with the minimum error.

7.1. Idea

Congruencies can be detected by adapting the clustering algorithm (Al-
gorithm 2) to cluster the leaf-parts into congruence sets based on a similarity
measure describing their congruency. This measure has to clearly describe
the congruency difference between every leaf-part pair, and we compute it
as the minimal matching error given by a consistent congruency mapping
between the leaf-parts’ characteristic points. The algorithm’s efficiency can
be further improved by noticing that all the leaf-parts in a congruence set
have the same geometric structure, e.g., the same number of faces of each ge-
ometric type, etc. This observation helps to group the initial set into sub-sets
which may potentially be congruent. The clustering algorithm is only run on
these sub-sets separately to reduce the number of leaf-part pairs considered.

7.2. Algorithm Description

The algorithm first computes the similarity (based on congruency) be-
tween every leaf-part pair, and then uses the similarities to cluster the leaf-
parts into congruence sets. For leaf-parts to be congruent, their geometric
entities must be matched consistently by a congruency mapping. For effi-
ciency, we first group the leaf-parts L into subsets according to whether a
congruency can exist at all (Line 02): e.g., parts in each group must have
the same number of vertices, number of faces of each geometric type, etc;
see [10]. Within each group G, the best congruency match for each pair of
leaf-parts L1, L2 ∈ G is computed by finding the mapping which maps the
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Algorithm C ← Congruencies(L, ET )
Input: L: leaf-part set

ET : validity interval bound
Output: C = {(Ck, ΓCk

, ECk
)}: set of congruencies between elements of L:

each Ck is a set of leaf-parts, matched using the point mappings
ΓCk

with validity interval ECk

01 C ← empty

02 L∗ ← CongruenceGrouping(L)
03 for each G ∈ L∗

04 for each (L1, L2) ∈ distinct pairs(G)
05 Γ[L1, L2]← BestConsistentMatch(L1, L2)
06 σ[L1, L2]← MatchError(L1, L2, Γ[L1, L2], ET )
07 C ← C ∪ConsistentClustering((G, Γ, σ), ET )

Algorithm 3: Detecting congruent leaf-parts

characteristic points of the leaf-parts entities consistently onto each other
with minimum matching error. From this match, their similarity σ[L1, L2]
is computed as described shortly (Lines 03-06). This is used to cluster the
leaf-parts into congruent sets (Line 07). Here, our ConsistentCluster-

ing algorithm is called with validity interval bound E∗ = ET . It is adapted
to cluster the leaf-parts Lk in each group G linked with the validity inter-
vals ELk

= [0, d∗
k) where d∗

k is the minimal inter-point distance between the
characteristic points of Lk. Γ stores the pairwise point matchings for each
resulting cluster and the similarity is given by σ.

To compute the similarity σ[L1, L2] between leaf-parts L1, L2 with char-
acteristic point sets P1, P2 we need their best match. Among all bijective
mappings γ : P1 → P2, mapping L1 to L2 consistently, we seek the one with
minimum matching error σγ = maxP,Q∈P1

|‖P − Q‖ − ‖γ(P ) − γ(Q)‖| To
find it, we follow [10]: we select a ‘large’ tetrahedron T1 from P1 and map
it to all possible tetrahedra in P2. Each mapping between these tetrahe-
dra determines an isometry, and hence a unique mapping from P1 to P2.
The mapping between the characteristic points of L1 and L2 thus determines
correspondence between their entities, from which we can check their con-
sistency. Clearly, the minimal σγ computed in this way must also be the
minimal tolerance Emin(L1, L2) for the congruency between L1, L2. For 2D
objects, e.g. planar faces, a triangle must be used instead of a tetrahedron.

Generally, for symmetric leaf-parts, more than one mapping between two
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congruent leaf-parts exists. We do not need to consider these here, as such
symmetries are detected as incomplete symmetries later (Section 8), and are
then considered for symmetric arrangements (Section 10).

Given L leaf-parts with at most p characteristic points per leaf-part, the
Congruencies algorithm is expected to take O(L2p2.5 log4 p) time: L(L −
1)/2 distinct leaf-part pairs are checked for congruency, each requiring the
same time as global symmetry detection: O(p2.5 log4 p) [29].

8. Detecting Incomplete B-Rep Symmetries

We now discuss the detection of common incomplete symmetries of a set
of congruent leaf-parts (Line 09, Algorithm 1). This algorithm is called once
for each congruence set in the congruency hierarchy.

8.1. Idea

We first describe the idea behind Algorithm 4. As the output incomplete
B-rep symmetries have to be present in all the leaf-parts in a congruence set
C, an efficient strategy is applied: we first detect symmetries of an exemplar
leaf-part, and then verify which of these are also present in all the other
leaf-parts in the set. Detecting symmetries within an exemplar leaf-part is
very similar to the overall design intent detection algorithm (Algorithm 1)
with the main difference that we are processing faces instead of leaf-parts;
it is further described in Section 8.3. The verification process is efficiently
achieved using the point mapping between the leaf-parts in the congruence
set. This mapping prescribes how the exemplars points must be mapped
onto the other leaf-parts. Therefore, they can be used to transfer the sym-
metry mappings from the exemplar part to the other parts. The transferred
symmetry is only valid if there is a non-empty validity interval for it.

For example, suppose in Fig. 5 that L1, . . . , L3 are congruent leaf-parts
given by mappings γk : L1 → Lk which map O1 to Ok, P1 to Pk, Q1 to
Qk and R1 to Rk for k = 2, 3, and L1 is the picked exemplar model. Let
σ = (O1, P1, Q1, R1) denote a cycle of L1 that builds a four-fold rotational
symmetry of L1 at a proper validity interval. To verify that the rotational
symmetry σ is also shared by other leaf-parts Lk, k = 2, 3 in the congruence
set, we only need to check that each point set γk(σ(L1)) (i.e. the characteristic
points) also builds a valid four-fold rotational cycle of Lk at a proper validity
interval, and all these intervals together share a common range with that of
L1.
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Figure 5: Finding common incomplete symmetries of a set of congruent leaf-parts

Algorithm I ←BRepSymmetries(C, ΓC , EC)
Input: C: set of congruent leaf-parts

ΓC : pairwise congruency matchings for C
EC : validity interval for congruencies of C

Output: I = {(Fk, µFk
, EFk

)}: incomplete symmetries of C

01 (L∗, I∗)← FindCachedSymmetry(C)
02 if empty(I∗)
03 L∗ ← first element(C)
04 I∗ = {(Fk, µFk

, EFk
)} ←FaceSymmetries(L∗, EC)

05 L∗ ← SymmetryCache(L∗, I∗)
06 for each (Fk, µFk

, EFk
) ∈ I∗

07 E∗ ← EFk

08 for each L ∈ C
09 E∗ ← E∗∩ ValidityInterval(L, L∗, µFk

, ΓC)
10 if not empty(E∗), I ←append(I, (Fk, µFk

, E∗))

Algorithm 4: Detecting incomplete symmetries of a congruence set

8.2. Algorithm Description

Our algorithm (Algorithm 4) takes as input a congruence set given by C,
ΓC , EC , and outputs the incomplete symmetries shared by all leaf-parts in
C. Each incomplete symmetry is represented by a set of faces Fk, a bijection
µFk

indicating how these faces are matched, and a corresponding validity
interval EFk

.
The algorithm first detects the incomplete symmetries of an exemplar

leaf-part L∗ selected from the congruence set. Any part may be chosen as the
exemplar, as we are only interested in symmetries shown by all leaf-parts in
the set. For efficiency, to avoid re-finding the symmetries of exemplars while
processing the congruency hierarchy, we cache all symmetries of exemplars.
Lines 01–05 detect incomplete symmetries in the exemplar, while Lines 06–10
find which of these are also present in all other leaf-parts in the set.
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To find incomplete symmetries we first check whether the current congru-
ence set contains a leaf-part with previously cached symmetries (Line 01).
If so, we use this leaf-part L∗ and its symmetries I∗ to check the other leaf-
parts. Otherwise, we arbitrarily select the first leaf-part in the congruence
set as L∗, find its symmetries I∗ as explained below, and cache these with
the leaf-part (Lines 02-05).

We only keep those symmetries of the exemplar L∗ verifiably present in
all other leaf-parts (Lines 07–10), to within tolerance. Given the congruency
mappings from ΓC , we can convert the symmetry mapping µ for the exem-
plar to a potential symmetry mapping µL of any other leaf-part L ∈ C; we
compute its validity interval EµL

as described in Section 9. If the intersection
of all the validity intervals involved is not empty, a validity interval exists at
which the exemplar’s symmetry is present in all leaf-parts.

8.3. Detecting Incomplete Leaf-part Symmetries

We now describe the algorithm for finding incomplete leaf-part symme-
tries (Line 04, Algorithm 4). Our definition of incomplete symmetries of B-
rep models (Section 3.2) requires detection of incomplete symmetries formed
by a part’s faces. This is the same problem as finding Type I symmetric
arrangements of a leaf-part’s faces. Hence, our face symmetry algorithm
(Algorithm 5) finds such arrangements of faces. It is very similar to the
overall design intent detection algorithm (Algorithm 1) with the difference
that we are processing faces instead of leaf-parts, and only output Type I
symmetric arrangements.

We first find a hierarchy of congruent faces (Line 01). To detect con-
gruent faces the Congruencies algorithm in Algorithm 3 is used, except
triangles replace tetrahedra for planar faces, when the plane containing the
faces is considered to determine the complete mapping in 3D. As in the main
design intent detection algorithm, we then process the congruency hierar-
chy top-down using a FIFO queue Q to detect the global symmetries S[C]
and Type I symmetric arrangements A[C] for each cluster C of congruent
faces (Line 02–08). We only need global symmetries of faces, instead of in-
complete symmetries, in this case, so we use a global symmetry detection
algorithm [29] (Line 05). We then look for Type I symmetric arrangements if
the symmetries of the current cluster are not the same as those of its parent
cluster (Lines 06–08). Firstly, incomplete cycles of the centroids of the faces
in the cluster are found (Line 07, Section 9) and then these cycles are used to
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Algorithm A←FaceSymmetries(L, E)
Input: L: leaf-part B-rep model

E: validity interval bound
Output: A = {(Fk, µFk

, EFk
)}: face symmetries of L given by a set of faces

Fk with the symmetry mapping µFk
and its validity interval EFk

01 C ← Congruencies(Faces(L), E)
02 S ← empty, A← empty, Q ← roots(C)
03 while not empty(Q)
04 (C, ΓC , EC)← pop(Q), Q ← append(Q,children(C))
05 S[C]← GlobalFaceSymmetries(C, ΓC , EC)
06 if S[C] 6= S[parent(C)]
07 I ← IncompleteCycles(Centroids(C), EC)
08 A[C]← TypeI(C, ΓC , EC , S[C], I)
09 A← MergeCompatibleCycles(A)

Algorithm 5: Detecting incomplete symmetries of faces in a leaf-part

find Type I symmetric arrangements (Section 10). The symmetric arrange-
ments are represented as face cycles {(Fk, µFk

, EFk
)} formed by the faces

Fk of L. Finally, these are merged into compatible symmetry transforma-
tions (Line 09, Section 11). Merging has to be done here in order to identify
global symmetries as preparation for detecting symmetric arrangements of
leaf-parts.

9. Detecting Incomplete Symmetry Cycles

We now describe the detection of incomplete symmetry cycles in point sets
using the ideas from Section 3; this is needed by the symmetry and symmetric
arrangement detection algorithms. The algorithm is a core element of out
design intent detection approach, and essentially decides which regularities
we can detect. An overview was originally reported in [23]; here we give the
complete algorithm with previously unpublished details.

9.1. Idea

The underlying idea is to expand an (approximate) isosceles triangle point
by point to build up a symmetry cycle. A similar process was proposed by
Brass [5] for detecting exact, complete, rotational symmetries by merging
isosceles triangles. We previously extended it to approximate, complete,
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rotational and rotation-mirror cycles [24]. By careful analysis of all possi-
ble expansion point locations, and reasoning about the potential symmetry
structure, incomplete cycles of all seven basic symmetry types in 3D can be
detected, as presented here.

Point Expansion for Exact Cycles. The idea behind the cycle detection algo-
rithm is now introduced. We first describe the exact 2D case. Let P1, P2, P3 ∈
R

2 be an isosceles triangle with ‖P1 − P2‖ = ‖P2 − P3‖ and ‖P1 − P3‖ ≥
‖P1−P2‖ (Fig. 6(a)). These three points partially define an isometry, under
which P1 moves to P2, and P2 to P3. To completely define an isometry, we
have to find an image for P3. This image exists if there is a point P4 such
that

‖P4 − P3‖ = ‖P2 − P1‖, ‖P4 − P2‖ = ‖P3 − P1‖. (1)

Two possible locations exist: P4 and P ′
4 in Fig. 6(a). Let us choose P4

and consider a further point P5. Replacing P1, P2, P3, P4 by P2, P3, P4, P5 in
Eq. (1) under the additional condition ‖P5 − P2‖ = ‖P4 − P1‖, we can only
get a Cn symmetry. Similarly taking P ′

4 instead of P4 can only lead to a Z

symmetry. The special case of translational symmetry arises if P1, P2, P3 are
collinear.

In 3D, the fourth point P4 satisfying Eq. (1) can lie anywhere on a circle
C (Fig. 6(b)). Different locations of P4 induce symmetries of different types.
If P1, P2, P3, and P4 are all coplanar, all further expansion points in this cycle
must also be coplanar (see [24]), and a cycle of type Cn, Z or T can exist.
Other locations of P4 on the circle C may give a regular tetrahedron, if all
distances involved are equal, or Sn or W symmetries, depending on the next
expansion point P5. As illustrated in Fig. 6(c), by replacing P1, P2, P3, P4 by
P2, P3, P4, P5 in Eq. (1) with the additional condition ‖P5−P2‖ = ‖P4−P1‖,
P5 can still lie on either side of the plane defined by P2, P3, P4: the angle
between faces P3, P4, P5 and P2, P3, P4 is equal to that between P2, P3, P4

and P1, P2, P3. If P5 lies on the same side as P1, the cycle and its further
expansion produce an Sn symmetry, otherwise it gives W symmetry.

Thus, all seven elementary symmetries can be identified during the ex-
pansion process via equality of certain distances, and differing locations of
certain subsequent points given the first three points. Having found the first
few expansion points, the locations of all further expansion points are then
fixed by certain distance equalities.

25



P

P’

P’5

P

P1

2P
3P

5

4

4

(a) Expansion from
three points in 2D

C

P4

P3

P4

P1 P4

P2

(b) Expansion from
three points in 3D

ß
ß

P1

2P

P P53
P’

5

4P
ß

(c) Expansion from four
points in 3D

Figure 6: Different expansion points of cycles yield different symmetry types

Extension to Approximate Cycles. Unfortunately, the exact expansion pro-
cess cannot be applied directly to the approximate case, due to the difficulty
of choosing a tolerance to determine equality of distances, and possible ac-
cumulation of errors as a cycle is built up. To avoid these problems, we
add further constraints when determining each successive expansion point.
We require approximate equality of all point-pair distances that should be
equal in the exact case, such that this approximate equality forms an equiv-
alence relation on all these distances (Section 3.1). E.g., to determine the
expansion point P5 from the seed set (P1, P2, P3, P4) in Fig. 6(a), we require
‖P5−P4‖ =ǫ ‖Pk+1−Pk‖, k = 1, 2, 3, ‖P5−P3‖ =ǫ ‖Pl+2−Pl‖, l = 1, 2 and
‖P5 − P2‖ =ǫ ‖P4 − P1‖. This determines the elements of each equivalence
class Gr(C), 1 ≤ r ≤ R of distances, for a seed set C = {P1, . . . , Pc} of c
points. From the definition of minimal and maximal tolerances (Section 3.1)
we get

Emin(C) = max1≤r≤R(Dr
max(C)−Dr

min(C)),
Emax(C) = min1≤r≤R−1(D

r+1
min (C)−Dr

max(C)),
(2)

where Dr
min(C) is the minimum and Dr

max(C) the maximum distance in class
Gr(C). Combining Eq. (2) with the existence of the validity interval (see
Section 3.1) yields a condition on the next expansion point P of C: Emin(C ∪
{P}) < Emax(C ∪ {P}).

The main issue for the computation of Emin(C ∪ {P}), Emax(C ∪ {P}) is
to determine which class Gr(C ∪ {P}) the distances Lk = ‖P − Pc−k+1‖, k =
1, . . . , c belong to. A method for doing this is given in [24] for Cn and Sn

symmetries. Cycles for W,T,Z symmetries can be handled as special cases:
we must have Lk ∈ Gk, as all involve translation.

More than one acceptable candidate expansion point may exist in the
input point set, so we must consider all possibilities. We choose the one
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minimising Emin(C ∪ {P}) to avoid adding any point that would violate the
cycle separation condition (C2) (Section 3.1). If the exact case allows more
than one location for the next expansion point (for different symmetry types
as explained above), we must consider every possibility separately. Thus, all
potential fourth expansion points, and the best fifth expansion point for each
location in 3D have to be considered.

9.2. Algorithm Description

Based on the ideas described above, the algorithm on detecting incom-
plete cycles in a point set is devised in Algorithm 6, and now further ex-
plained. This algorithm takes as input a set of distinct 3D points P and a
validity interval bound E∗. We assume no two input points have the same
position. It outputs all cycles (Ck, ECk

) where Ck are the ordered points of
the cycle, with validity interval ECk

. Their symmetry types are determined
later when merging the cycles into symmetries (Section 11).

To find the set I of all cycles in P , every distinct point triple C in P
is considered for cycle generation (Line 02). A FIFO queue Q (Line 03) is
used to store all expansions of the current triple with their validity intervals,
so as to consider all possible expansion points. For each triple C of points
P1, P2, P3, we first compute its validity interval EC (Line 04). Assuming
without loss of generality that ‖P1 − P3‖ is the largest distance, the validity
interval is the intersection of the overall validity interval bound E∗ and the
interval [0, |‖P2 − P1‖ − ‖P3 − P2‖|) given by the distance matching error.
If C satisfies the validity condition and also does not appear consecutively
in a previously detected cycle, checked by calling Contained (Line 05),
it is added to Q for further expansion (Line 06). For the initial triple the
validity condition is simply that the intersection of its validity interval EC and
the validity interval bound E∗ is not empty. Contained can be efficiently
implemented by an O(|P|3) Boolean lookup table representing all triples of
points as |P| is typically small. As cycles are found, entries corresponding to
all consecutive triples in a cycle are set to true.

Each cycle C with validity interval EC in Q is expanded one point at
a time (Lines 07–29). We first collect in M all valid potential expansion
points P ∗ (Line 09), i.e. all points P which can be added to C such that
the validity interval of the expanded cycle is not empty: Emin(C ∪ {P}) <
Emax(C ∪ {P}). If no such point exists, we have found an incomplete cycle
C, which is appended to the output and processed no further (Lines 10–12).
Otherwise, depending on the number of points in C, alternative locations for
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Algorithm I ← IncompleteCycles(P , E∗)
Input: P : 3D point set

E∗: validity interval bound
Output: I = {(Ck, ECk

)}: incomplete cycles of P

01 I ← empty

02 for each C = (P1, P2, P3) ∈ distinct triples(P)
03 Q ← empty // FIFO queue of cycles
04 EC ←MatchingError(P1, P2, P3) ∩ E∗

05 if not empty(EC) and not Contained(C, I)
06 Q ← append(Q, (C, EC))
07 while not empty(Q)
08 (C, EC)← pop(Q)
09 M ← {P : Emin(C ∪ {P}) < Emax(C ∪ {P}), P ∈ P \ C}
10 if empty(M)
11 I ← append(I, (C, EC))
12 continue // go to Line 07
13 if |C| = 3
14 if RegularTriangle(C)
15 I ← append(I, (C, EC))
16 A←M
17 else if |C| = 4
18 if RegularTetrahedron(C)
19 I ← append(I, (C, EC))
20 (M1, M2)← SplitAtPlane(M, C)
21 A← {arg min{Emin(C ∪ {P}) : P ∈M1},

arg min{Emin(C ∪ {P}) : P ∈M2}}
22 else

23 A← {arg min{Emin(C ∪ {P}) : P ∈M}}
24 for each P ∗ ∈ A
25 C∗ ← C ∪ {P ∗}, EC∗ ← EC∗ ∩ E∗

26 if not Ambiguous(C∗, EC∗)
27 if Complete(C∗), I ← I ∪ {(C∗, EC∗)}
28 else Q ← append(Q, (C∗, EC∗))
29 I ← append(I,TwoCycles(distinct pairs(P)))

Algorithm 6: Detecting incomplete cycles in a point set
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expansion points are considered to find all possible expanded cycles from C
(Lines 13–23). In each case we determine the actual expansion points for C
from the list M of potential expansion points, and store them in a list A to
construct the expanded cycles later. If |C| = 3 (Lines 14–16), we first check
for the special case where C is a regular triangle and if found, append it to
I as it is a complete symmetry cycle. To test whether three points form
a regular triangle the incomplete cycle conditions (C1) to (C3) are verified
directly based on the point distances. Independently, all points in M are
added to A as in the |C| = 3 case all potential expansion points give an
expanded cycle. If |C| = 4 (Lines 17–21), points in M are put into two
subsets M1, M2 according to which side of the plane P2, P3, P4 they lie in.
The point minimising Emin(C∪{P}) for each of these two sets is chosen as an
expansion point and added to A (Line 21). Also for |C| = 4 there is a special
case giving a complete symmetry: the points may form a regular tetrahedron
(Lines 18–19). As for the regular triangle, the incomplete cycle conditions
can be verified directly via the distances. For all other cases (Lines 22–23),
i.e. |C| ≥ 5, a unique expansion point minimising the matching error is
selected.

Next, each expansion point P ∗ in A is used in turn for expanding C
(Lines 24–28). If the cycle is complete, and unambiguous, i.e. fulfils condition
(C3) (Section 3.1), it is added to the output. Otherwise, only if the new cycle
is unambiguous, it is added to the queue of cycles being considered further.
A cycle C with c points describes a complete cycle if ‖Pc−P1‖ =ǫ ‖Pl−Pl+1‖
for 1 ≤ l ≤ c − 1. An efficient method to verify unambiguity of a complete
cycle, which can also be applied to incomplete cycles, is given in [24].

Lastly, each input point pair forms a trivial cycle, corresponding to a
mirror, an inversion and a C2 symmetry, so we add them all (Line 29).
These pairs are considered later when detecting symmetry types and merging
compatible cycles. The validity interval for each pair is simply [0, d), where
d is the distance between the point pair.

This algorithm takes O(Cn4) time, where C is the maximal number of
elements in a cycle, and n is the number of points in P : all triples of points
are taken as initial seeds, and then each remaining point is considered as an
expansion point in an iterative expansion process.

29



10. Detecting Symmetric Arrangements

We now discuss detecting Type I and II symmetric arrangements (defined
in Section 3.2) of congruent leaf-parts (Line 12, Algorithm 1).

10.1. Detecting Type I Symmetric Arrangements

The algorithm for detecting Type I symmetric arrangements of congruent
leaf-parts (Algorithm 7) takes as input a congruence set C with congruency
mappings ΓC and validity interval EC , global symmetries G of the congru-
ent shape of congruence cluster C and incomplete cycles I of the centroids
of the leaf-parts in C. It outputs A = {(Ak, ΞAk

, EAk
)}: the symmetric

arrangement of leaf-parts Ak with mappings ΞAk
between them, such that

the leaf-parts form an (incomplete) cycle with corresponding validity interval
EAk

.

10.1.1. Idea

If a set of leaf-parts has a symmetric arrangement, so do their centroids.
Thus we first seek cycles of the leaf-part centroids. These induce location
cycles for corresponding characteristic points, one from each leaf-part, related
by the congruency mappings; see, e.g., Fig. 4(a). However, although we know
the congruency correspondence between the leaf-part points from ΓC , these
cannot be directly applied to produce location cycles: these mappings only
represent the best match between leaf-parts. Multiple matchings arising from
global symmetries of the leaf-parts are not represented.

For example, suppose in Fig. 7 that L1, . . . , L5 are congruent leaf-parts
given by mappings γk : L1 → Lk which map O1 to Ok, P1 to Pk, Q1 to
Qk and R1 to Rk for k = 2, . . . , 5, and that their centroids B1, . . . , B5

make a valid cycle. Directly employing γk produces the point sequences:
(O1, . . . , O5), (P1, . . . , P5), (Q1, . . . , Q5) and (R1, . . . , R5). Clearly, none of
these represent a cycle (as indicated by the dashed line). Global symmetries
of the leaf-parts also have to be considered: we need to swap O3 and Q3, P3

and R3, which is permissible using the (approximate) C2 symmetry of L3:
(O3, Q3), (P3, R3). Valid location cycles can then be constructed by further
ruling out inconsistent points from L5 (as explained later): (O1, O2, Q3, O4),
(P1, P2, R3, P4), (Q1, Q2, O3, Q4), (R1, R2, P3, R4). These are compatible
with (B1, B2, B3, B4), and give the symmetric arrangement of the leaf-parts
L1, . . . , L4.

Thus, to successfully detect symmetric arrangements of leaf-parts from
location cycles induced by centroid cycles, we must take into account global
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Figure 7: Detecting symmetric arrangement of congruent leaf-parts must consider location
cycles as well as its centroid arrangements

symmetries of leaf-parts. Specifically, given a generic point P 1
l ∈ L1, we

must consider putting it in correspondence with all points of leaf-part Lk

which come from γk(g(P 1
l )) for all global symmetries g ∈ G. We also add the

identity to G, as clearly γk(P
1
1 ) has to be considered. Then, if a compatible

set of location cycles exists, we have a Type I symmetric arrangement of the
involved leaf-parts.

Furthermore, we must consider cases in which only a subset of all leaf-
parts involved in a centroid cycle is symmetrically arranged, as for some only
the centroids and not the actual leaf-parts may be symmetrically arranged.
E.g., in Fig. 6, only L1, . . . , L4 form a symmetric arrangement with L5 be-
ing ruled out. This means we seek sub-cycles of the centroid cycle which
yield symmetric arrangements of a leaf-part subset, which can be verified
by the compatibility of their location cycles. We need not consider leaf-part
subsets that correspond to points of the centroid cycle with fixed index dif-
ferences: such sub-cycles are actually also detected as another incomplete
centroid cycle in I, as the incomplete cycle detection algorithm also finds
cycles completely contained in another cycle. Potential symmetric arrange-
ments formed by the corresponding leaf-parts are detected when considering
these cycles instead.

10.1.2. Algorithm Description

Using these ideas, we get the algorithm in Algorithm 7 for detecting Type
I symmetric arrangements. It is carefully designed to avoid combinatorial
explosion of cases when considering symmetric leaf-parts, and to detect leaf-
parts that may have symmetric arrangements corresponding to sub-cycles of a
centroid cycle. We consider each centroid cycle (B, EB) ∈ I in turn (Line 01).
First the points of the leaf-parts involved in B are extracted as P k

l : the l-th
points of the k-th leaf-part in cycle B such that P k

l is mapped onto P j
l by

the congruency mapping in ΓC for leaf-part j (Line 02); see Fig. 8. Then we
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Algorithm A ← TypeI(C, ΓC , EC ,G, I)
Input: C: congruent leaf-parts with N points each

Γc: congruency mappings
EC : congruency validity interval
G: global symmetries
I: incomplete cycles of the centroids of C

Output: A = {(Ak, ΞAk
, EAk

)} : Type I symmetric arrangements of leaf-
part sets Ak given by mappings ΞAk

at validity interval EAk

01 for each (B, EB) ∈ I
02 {P k

l } ← Points(B, C) // P k
l : l-th point of k-th part

03 W ←empty, A ←empty

04 Q ← ((1, 1), . . . , (1, N)) // P k
1 indices of 1st leaf-part

05 while (k, l)← pop(Q)
06 Dk

l ←LocationCycles(P k
l ,B, C, ΓC , EC ,G)

07 W ← append(W,Dk
l )

08 Q← append(Q, (k + |Dk
l | − 1, l))

09 I = {Rm} ← Intervals
(
⋂∗

l

(
⋃∗

k

(

[k, k + |Dk
l | − 1], l

)))

10 for each Rm = [a, b] ∈ I
11 for each l ∈ {1, . . . , N}
12 Fm

l ← (P a
l , . . . , P b

l )
13 Fm

0 ← CentroidSubCycle(B, Rm)
14 Em ← E (

⋃

l F
m
l ) ∩ EC

15 if not empty(Em)
16 A ← append(A, (LeafParts(C,B, Rm),Map(Fm

l ), Em))

Algorithm 7: Detecting Type I symmetric arrangements of congruent leaf-
parts

detect the cycle Dk
l starting from some P k

l which matches a sub-cycle of the
centroid cycle B (Lines 03–08). As a Type I symmetric arrangement must
have compatible location cycles that have the same number of points, we find
the consecutive leaf-parts that are mapped onto each other by combining the
detected cycles Dk

l (Line 09). For each set of these sub-indices, we check
the compatibility of their corresponding location cycles to detect symmetric
arrangements (Lines 10–16).

We now explain how to find the set W of the Dk
l location cycles from

the centroid cycle B (Lines 03–08). To detect potential maximal location
cycles corresponding to sub-cycles of B, we aim to expand each point of
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the leaf-parts to a location cycle without checking sub-cycles of already de-
tected cycles. A queue Q is used to store the points for expansion. It is
initialised with the indices of the characteristic points P 1

1 , . . . , P 1
l of the first

leaf-part L1 in B (Line 04). A maximal location cycle Dk
l for each point

P k
l in Q is found (Line 06) using a LocationCycles algorithm which is

similar to IncompleteCycles (Algorithm 6). However, it involves fewer
computations as the point sequence is already known from B. Hence, for
a starting point P k

l , the r-th point only comes from γk+r−1(g(P 1
l )) for all

global symmetries g ∈ G. Thus, only a few characteristic points from leaf-
part Lk+r−1 have to be considered for expansion, based on the centroid cycle
and the leaf-part’s global symmetries: Lines 02, 09 of Algorithm 6 must be
modified for LocationCycles. Specifically, in Line 02, we only consider
(P1, P2, P3) = (P k

l , γk+1(g(P 1
l ))), γk+2(g(P 1

l )), and in Line 09, we replace P\C
by {γk+r−1(g(P 1

l ))} for the r-th expansion point. Unlike IncompleteCy-

cles, only one cycle can be found in this expansion step for each P k
l by

further requiring their consistency with B. The detected cycle Dk
l is stored

in W (Line 07). If there is a point at which the detected location cycle cannot
be expanded further (i.e. Dk

l is a sub-cycle not expanded to the end of the
B cycle), this point may be a starting point for another location cycle, so its
index is added to Q for further processing (Line 08).

We find the location cycles by expanding characteristic points of the leaf-
parts in sequence of the centroid cycle, to find sub-cycles of consecutive
indices. Note that the Dk

l cycles are essentially intervals [k, k + |Dk
l | − 1] of

leaf-part indices k in B for each leaf-part point index l. Each location cycle
must have the same number of points for a symmetric arrangement, so we
find the common maximal consecutive index intervals Rm of the leaf-part
indices k for different locations l in the location cycles Dk

l (Line 09). See also
Fig. 8: the centroid cycle induces an order on the leaf-parts Lk, associated
with their characteristic points P k

l . Location cycles, indicated in the figure
by solid lines between the P k

l , describe the matching between the P k
l induced

by centroid cycle. In order for the leaf-pars La, . . . , La+c (for some leaf-part-
index a and integer c) to form a symmetric arrangement, there has to be a
location cycle for each characteristic point P k

a of the first leaf-part that spans
up to at least leaf-part La+c. In Fig. 8, only the leaf-parts La to La+c with
characteristic points inside the dashed box form a symmetric arrangement.
Such leaf-part index intervals Rm can be found by taking the intersection
of the union of the location cycle intervals. However, note that only one
location cycle Dk

l per starting point index l may be used to find a single Rm
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interval, otherwise incompatible location cycles would be combined by the
union operation. Hence, in Line 09 the intersection of the union of the Dk

l

intervals only intersects intervals with different l indices (Fig. 8).
For each such leaf-part index interval Rm = [a, b] (Line 10) we then find

the corresponding location cycles Fm
l for characteristic points with index l

from leaf-parts a, . . . , b (Lines 11–12). We also add the centroid sub-cycle
corresponding to Rm (Line 13) to check the compatibility of the cycles Fm

l

and the corresponding centroid sub-cycle, over all characteristic point indices
l, by computing their validity interval (Line 14). If the validity interval is
not empty, a symmetric arrangement of the corresponding leaf-part set exists,
which, with associated tolerance and point mappings from the cycles Fm

l , is
output in A (Line 16).

This algorithm takes O(LN2) time for each cycle B ∈ I, where L is the
number of leaf-parts and N is the number of characteristic points per leaf-
part. We detect all potential location cycles {Dk

l } (Lines 05–08). During
expansion, in the worst case, each point of the leaf-parts in B has to be con-
sidered (there are at most LN). For each such point we have |G| possibilities,
where |G| is the number of global symmetries of the congruence set. Thus
we have LN |G|, and as |G| ≤ max(2N, 120) [28], the time taken is O(LN2).

10.2. Detecting Type II Symmetric Arrangements

Determining symmetric arrangements of Type II is performed in a similar
way to detecting those of Type I. The difference is that the location cycles
and B are compatible for Type I while they are linked by a translation for
Type II. This requires different computations for the validity intervals of the
location cycles in Line 14, Algorithm 7. Determining location cycle relations
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for Type II is equivalent to requiring corresponding inter-point distances of
different location cycles to be in the same distance equivalence class: e.g., in
Fig. 4(b), ‖Pk−P(k+1) mod 4‖, ‖Qk−Q(k+1) mod 4‖, k = 1, 2, 3, 4, should all be
in the same distance classes.

Validity intervals for Type II are computed as follows. Let {Fm
l } be the

compatible location cycles detected by the algorithm in Algorithm 7. As in
Eq. (2), let Hm

l be the distance classes for Fm
l , and let Dm

min,l = min(Hm
l ),

Dm
max,l = max(Hm

l ) be the minimum and maximum distances for each cycle.
For Type II, for the same index m (giving a set of compatible location cycles),
the distances in Hm

l for different location cycles (i.e. different l) lie in the
same distance class. Hence, for the union Fm = ∪lF

m
l of compatible cycles,

we have Dm
min(F

m) = maxl(D
m
min,l) and Dm

max(F
m) = minl(D

m
max,l) as the

largest smallest and the smallest largest distance. From these, using Eq. (2),
we can then find the validity interval [Emin(F

m), Emax(F
m)).

11. Merging Compatible Cycles

The symmetry and symmetric arrangement detection algorithms consider
symmetry cycles only. The last step of the DesignIntent algorithm (Al-
gorithm 1) merges compatible cycles which can be represented by a single
isometry. To do so, we first must detect the possible symmetry types for
each cycle (it may have more than one symmetry type as it is approximate
and may be incomplete). In the second step we cluster cycles of the same
symmetry type to find the incomplete symmetries.

Two-cycles are trivially assigned to the groups for mirror, inversion and
C2 symmetry. Limited space precludes an exhaustive list of all other cases,
and we just outline the basic ideas. Instead of trying to find the optimal
isometry for a cycle [6], we determine symmetry types by considering the
relative locations of the centres of the circles formed by each consecutive
triple of points in C. In 2D, for Cn these centres lie on the same side of
all edges joining consecutive points, whereas they lie alternately on opposite
sides for successive triples for Z. If they do not consistently fit either pattern,
we assign Cn and Z as possible symmetry types. For a given symmetry type,
e.g. Cn, determining the valid values of n for an incomplete cycle is done
by first computing the least squares fitting circle to C, and then computing
the angles between successive points. Each angle is divided by 2π and the
nearest integer above and below are included in a list. The overall minimum
and maximum values in the list give the permissible range for n. If n is
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larger than a user-specified maximal rotation order believed to be present in
the object, we also select translational symmetry. For a complete cycle with
Cn symmetry, n is uniquely determined. Allowing the same points to have
more than one possible symmetry type is necessary, as it is important not
to rule out any possible symmetry type too soon, losing information. Cycle
clustering helps to rule out inappropriate symmetries.

Incomplete symmetries are found by clustering cycles, sharing the same
symmetry type, induced by the same isometry at a compatible tolerance
level. This is done using the consistent clustering algorithm (Algorithm 2)
where now the Ik are cycles with associated validity intervals and E∗ is
the overall bound from RFT selection. Within the algorithm, we need to
compute Emin(C1 ∪ C2) for two cycles C1, C2. Let C1 = {P1, . . . , P|c1|}, C2 =
{Q1, . . . , Q|c2|} be two cycles of the same symmetry type and let C = C1 ∪
C2. Taking a concrete case, suppose that the symmetry type is Cn in 2D
and both cycles have the same orientation; other symmetry types can be
handled similarly. By definition, Emin(C) is the minimal tolerance such that
‖P − Q‖ =ǫ ‖µ(P ) − µ(Q)‖ for all P, Q in C. This is already satisfied for
P, Q ∈ C1 at Emin(C1) and P, Q ∈ C2 at Emin(C2). We consider all pairs P, Q
where P ∈ C1 and Q ∈ C2, and then allocate distances between such pairs
to distance equivalence classes as in Section 9. We then find the maximal
difference between two such distances in each class, and finally take the
maximum e∗ of these differences over all classes. Consequently, Emin(C) =
max(e∗, Emin(C1), Emin(C2)). Emax(C) is computed similarly.

12. Experiments

We have tested our algorithm on various B-rep models. Approximate
models were generated from them by perturbing each face (see below). Reg-
ularities detected by our algorithm in these approximate models were com-
pared with regularities present in the exact model indicated by a human.
We ran our algorithm on a 3.4GHz Pentium 4 processor with 1GB RAM.
RFT construction and congruence detection were implemented in C++ us-
ing OpenCASCADE; other parts were implemented in Matlab.

To generate an approximate model from a given model, we perturbed
the unit normal direction of each planar face and the axis direction of each
cylinder by adding a random vector in [−L, L]3, and then translating it by
a random vector in [−sL, sL]3, where L indicates the noise level (by default
set to 0.1) and s is the area of the face or the radius of the cylinder. Radii
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Model V F L TT TC TR RD RS

Angle-Bracket: Fig. 9 124 67 27 0.73s 0.04s 3.55s 66 13
Monster: Fig. 1 438 198 60 81.62s 17.98s 28.34s 64 5
ANC: Fig. 15(a) 236 124 46 13.34s 0.35s 6.82 31 7

Table 1: Results for example models; V : number of vertices; F : number of faces; L:
number of detected leaf-parts; TD: RFT decomposition time; TC : congruence detection
time; TR: regularity detection time; RD: number of detected regularities; RS : number of
spurious regularities.

of cylinders were also perturbed by a random value in [−sL, sL]. The re-
sulting perturbed faces were intersected to produce new approximate edges
and vertices based on the original model’s topology. We refer to such models
in the section simply as approximate models at noise level L = 0.1; other
noise levels were also considered as described below. Perturbing models like
this gives us exact control of the level of noise present and with that enable
comparison with other results. As our algorithms work on relatively high
level CAD models and not measured point clouds, using real scanner data
is less important. Also note that typically in real noise levels are lower than
those considered here.

E.g., for the Monster in Fig. 1, where minimal and maximal distances
between points of the original model were 7 and 385 units respectively, the
maximum distance between an original and perturbed vertex was 2 units
using this method.

Our algorithm outputs design intent as a congruency hierarchy with as-
sociated symmetries and symmetric arrangements at each level, at various
tolerance levels: certain output regularities may be complete subsets of other
regularities. It is hard to display such structures, and often in our experimen-
tal results the intended regularities are described by the top-level regularities.
Hence, we only show top-level regularities here. Output and timing results
are summarised in Table 1 for each model.

12.1. Angle-Bracket Example

We first consider the Angle-Bracket model in Fig. 9. The exact model has
a dominant mirror symmetry which is broken on the left side (see the close-
up in Fig. 9(b)): the 10 cylindrical holes come in two groups of 5 identical
cylinders. Cylinders in one group are blended while the others are not, and
the blended cylinders have larger radii than the unblended ones. Moreover,
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(a) Complete model (b) Close-up view of holes

Figure 9: Angle-Bracket model

a C4 and a T symmetric arrangement are exhibited by cylindrical holes in
the top. On the left, two Z symmetric arrangements are formed by the five
cylindrical holes with and without blends respectively. Minimal and maximal
inter-point distances between the model vertices are 2.8 and 520.7.

The RFT at validity interval [0.0, 2.8) units shown in Fig. 10 consists
of 27 leaf-parts, clustered into seven maximal congruence sets: B1, B2,
B3, D1, D2, {H1, . . . , H12, V1, . . . , V5}, {T1, . . . , T5}. The regularities found
are listed in Table 2: 72 symmetries were found, 13 of which are spu-
rious (i.e. not exactly present in the exact model), while all the regu-
larities determined as present in the exact model were detected. In de-
tail, for each symmetry type we give the number of regularities found, and
how many of these are spurious. We also list the detected regularities as
merged cycles of leaf-parts, e.g. the dominant mirror symmetry is listed
as {(B1), (B2), (B3), (D1), (D2), (H1, H2), . . . , (H11, H12)}, indicating that its
cycles consist of pairs of cylinders (H1, H2), etc. and the mirror is also present
in individual leaf-parts such as (B1). Similarly for the Z regularity on the
left side we have {(V1, V2, . . . , V5), (T1, T2, . . . , T5)} as the two leaf-part cycles;
this regularity and the location cycles for {(V1, V2, . . . , V5), (T1, T2, . . . , T5)}
are shown in Fig. 11. Note that here for clarity, we ignore M and C2 regu-
larities consisting of only a single cycle.

All intended regularities have been found, as well as a few unexpected
and spurious symmetries, some of which are illustrated in Fig. 12; the others
are similar. The former are mainly C2 symmetries between various leaf-
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Figure 10: RFT decomposition of the Angle Bracket model in Fig. 9

parts H1, . . . , H12 and V1, . . . , V5. Such symmetries may be present in the
exact model, but their presence may well be unintentional. The spurious
symmetries are generally Cn,n > 2 symmetries (see the last three examples
in the second row of Fig. 12). These clearly do not form an exact symmetry
in the exact model and are inconsistent with the translational arrangement.
They are detected because when considered as incomplete symmetries, they
are within a valid tolerance.

To test the algorithm’s robustness to increasing noise levels, we also tested
it with the Angle-Bracket model with noise levels of 0.0, 0.1, . . . , 0.3 units.
The number of detected symmetries may increase or decrease as the noise
increases. However, only on reaching 0.3 units of noise were certain intended
symmetries not found; the particular symmetries lost varied on repeating
the experiment. However, this is quite a high noise level, and we assert
that our algorithm is thus robust in presence of moderate noise, as hoped.
In particular, expected symmetries are found at the levels of noise beyond
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Figure 11: Z regularity and location cycles for {(V1, V2, . . . , V5), (T1, T2, . . . , T5)} detected
in the Angle Bracket after RFT construction
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Figure 12: Unexpected and spurious symmetries in the Angle Bracket model. Each black
point represents one cylinder in H1, . . . ,H12 or V1, . . . , V5

those which might be expected in CAD data exchange and reverse engineering
applications (less than 0.1 units).

From this example one disadvantage of our algorithm becomes apparent:
as the cylinders at the left side do not all have the same radius and some have
blends, their regular translational arrangement is not detected. Even if the
decomposition method could identify and remove the blends, the cylinders
would still have different radii and hence not be part of the same congruence
set for symmetric arrangement detection. Strictly, we do not look for such
regularities, but it is likely to be important for this model to detect this. It
would require a change in the model decomposition approach, but also more
importantly our notion of symmetric arrangements would have to be gener-
alised to non-congruent shapes. One could consider all point combinations
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Type Found Spurious Detected Regularities
M 21 0 Dominant mirror (1): {(B1), (B2), (B3), (D1), (D2),

(H1, H2), . . . , (H11, H12)}.
Mirrors between top holes (12): {(H1, H3), (H2, H4)},
{(H1, H5), (H3), (H2, H6), (H4)}, {(H1, H7), (H3, H5),
(H2, H8), (H4, H6)}, {(H1, H9), (H3, H7), (H5), (H2, H10),
(H4, H8), (H6)}, {(H3, H9), (H5, H7), (H4, H10), (H6, H8)},
{(H5, H9), (H7), (H6, H10), (H8)}, {(H7, H11), (H8, H12)},
{(H5, H11), (H6, H12)}, {(H3, H11), (H4, H12)}, {(H1, H11),
(H2, H12)}, {(H9, H10), (H11, H12)}, {(H9, H11), (H10, H12)}.
Mirrors on left side (4): {(V1, V5), (V3), (V2, V4), (T1, T5),
(T3), (T2, T4), (B2)}, {(V1, V3), (V2), (T1, T3), (T2)}, {(V2, V4),
(T2, T4), (V3), (T3)}, {(V3, V5), (V4), (T3, T5), (T4)}.
Mirror between left and top sides (1): {(V1, H1), (V3, H3),
(V5, H5)}.
Additional mirrors in rectangular blocks (3): two in {(B1)},
{(B2)}.

C2 35 7 All mirrors on top with rotation centre their centroid (12).
Additional C2 on top (6): {(H2, H8), (H4, H6)}, {(H1, H7),
(H3, H5)}, {(H4, H10), (H6, H8)}, {(H3, H9), (H5, H7)},
{(H2, H10), (H4, H8), (H6)}, {(H1, H9), (H3, H7), (H5)}.
C2 in blocks: three in {(B1)}, three in {(B2)}.
Left side (10): {(V1, V4), (V2, V3)}, {(V2, V5), (V3, V4)},
{(T1, T4), (T2, T3)}, {(T2, T5), (T3, T4)}, {(V1, V2), (T1, T2)},
{(V2, V3), (T2, T3)}, {(V3, V4), (T3, T4)}, {(V4, V5), (T4, T5)},
{(V1, V5), (V3), (T2, T4)}, {(T1, T5), (T3), (V2, V4)}.
Spurious (7): {(V1, H2), (V3, H4), (V5, H6)}, {(V1, V3),
(V4, H1)}, {(V2, H3), (V4, H5)}, {(V2, H2), (V4, H3)},
{(V2, H12), (V3, H11)}, {(V2, H11), (V3, H12)}, {(V5, H11),
(H3, H4)}.

T 1 0 Top holes: {(H1, H3, H5, H7, H9), (H2, H4, H6, H8, H10)}.
Z 2 0 Side holes: {(H1, H4, H5, H8, H9), (H2, H3, H6, H7, H10)},

{(V1, V2, . . . , V5), (T1, T2, . . . , T5)}.
C4 1 0 Right-most top holes: {(H9, H10, H12, H11)}.
C8 4 4 Symmetric arrangements of top holes: {(H1, H4, H6, H7)},

{(H2, H3, H5, H8)}, {(H3, H6, H8, H9)}, {(H4, H5, H7, H10)}.
C12 2 2 Symmetric arrangements of top holes: {(H1, H4, H6, H8, H9)},

{(H2, H3, H5, H7, H10)}.

Table 2: Regularities detected in the approximate Angle-Bracket model

or even all decompositions, but this would clearly be too computationally
expensive.
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Figure 13: An exemplar leaf-part for each congruence set of the Monster model

12.2. Monster Example

Intermediate results of running our algorithm on the Monster model
(Fig. 1) are shown in Fig. 2. The exact model has a major C4 symme-
try broken by sets of congruent blocks on two sides; these together form a
translational arrangement. C8 and C16 symmetries are present in the centre
of the model formed by the small cylinders and the cylindrical slots respec-
tively. Detailed results of running our algorithm on an approximate Monster
model at noise level 0.1 are given in Table 3; we use [X] to refer to the whole
set of congruent leaf-parts represented by some exemplar X in the model.
An exemplar from each congruence set is shown in Fig. 13. All together, 59
symmetries were found, only 5 of which are spurious. All the symmetries
expected from the exact model were detected.

We do not list all 12 M and 8 C2 regularities formed by translational sym-
metric arrangements of side blocks E,D; they are similar in nature to those
listed for the Angle-Bracket example. Various regularities are formed by com-
binations of different kinds of leaf-parts arranged with the same symmetry:
Fig. 14 shows one example for a C4 regularity. The 5 spurious symmetries
are of two types. The first type comprises alternative interpretations. E.g.
E,D were interpreted both as M,C2 and as C4, but only the former two are
intended, and the other interpretation is spurious. Other spurious symme-
tries do not exist: the M and C2 symmetry found for H are invalid as the
faces of H come from the cylinders K, L with different radii, but they were
found to be approximately equal.
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12.3. ANC Example

We also tested our algorithm on the ANC model shown in Fig. 15. The
regularities are simpler to detect in this example due to the simplicity and
small number of leaf-parts: we only describe the results briefly. Fig. 15(c)
shows detected cylindrical leaf-parts, and Fig. 15(d)-(f) give the major sym-
metries found out of the 31 regularities found. 6 regularities were spurious,
coming from the mirror and C2 symmetries of regularities shown in Fig. 15(f).
All symmetries present in the exact model were detected. Note that the part
in Fig. 15(d) is not the original model, but comprises those sub-parts sharing
the dominant mirror symmetry. The C12 symmetry of the cylindrical holes
in the top face, with three cylinders missing, was also detected.

To demonstrate the utility of hierarchically detecting symmetries, we
show in Fig. 16 the result of detecting symmetric arrangements of the nine
congruent cylinders in the top face, where for simplicity we only show the
centroids. From left to right these leaf-parts were generated with noise levels
of 1/10, 1/5, 1/2 units to indicate the effect of increasing noise on the cycles
detected. On the left, besides the maximal symmetric arrangement C12, two
C6 and one C3 symmetries were found. The results in the middle are simi-
lar, and all intended symmetries were detected. The results on the right are
different. Two C12 symmetries and one C3 symmetry were detected. The
larger noise in this case has obscured the design intent. Generally it is useful
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Type Detected Spurious Detected Regularities
M 34 1 Mirror parallel to two edges (2): two involving

{A, [B], C, [D], [E], [F ], [H], [I], G, J, K, L}.
Biangular direction mirror (2): two involving
{A, [F ], [H], [I], G, J, K, L}.
Others related induced by C8 rotation (4): four involving
{[I], [H], G, J, K, L}.
Others related induced by C16 rotation (8): eight involving
{[H], G, J, K, L}.
Mirror between top and bottom (1): one involving
{[D], [E], [F ]}.
Various arrangements between side slots (9): nine involving
subsets of Dl and El.
Additional mirrors in congruence sets (8): C, A, two of H, two
of B, two of F , of which one of H is spurious.

C2 23 2 Various arrangements of side slots (8): eight involving subsets
of Dl and El.
Rotation of complete model (1): one of
{A, [B], C, [D], [E], [F ], G, [H], [I], J,K, L}.
Additional rotations in congruence sets (14): two in A, three
in B, two in C, three in D, three in E, one in F , two in H, of
which two in H are spurious.

C4 3 2 Symmetry induced by the bottom block A:
{A, [F ], [I], [H], G, J, K, L}; see also Fig. 14.
Rotations in congruence sets: D, E, both are spurious.

C8 1 0 Symmetry induced by the holes [I]: {[I], [H], G, J, K, L}.
C16 1 0 Symmetry induced by small blocks [H]: {[H], G, J, K, L}.
T 1 0 Symmetric arrangements of side blocks on both sides:

{[D], [E]}.
Z 1 0 Symmetric arrangements of side blocks induced by their trans-

lational symmetry: {[D], [E]}.

Table 3: Regularities detected in the approximate Monster model

for such symmetries to be detected hierarchically, to assist a post-processing
step to decide which one was indeed intended by the designer.

12.4. Discussion

Our experiments show that overall most regularities detected by our al-
gorithm are those actually intended in the models. We attribute this to our
robust concept of approximate regularity coupled with the use of RFT de-
composition. Spurious regularities arising from various sources are few, at
realistic noise levels. In all examples, no regularities indicated by a human
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(a) Top view (b) Bottom view (c) Detected cylindrical
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1

M 2
C2

1C
M

M
C3

3

(f) Spurious leaf-part sym-
metries

Figure 15: Some regularities detected in the ANC model

as significant were missed. We thus claim that our approach provides a good
balance between (i) detecting all regularities, potentially including many spu-
rious regularities, and minor, exact but irrelevant regularities implied by the
major regularities, and (ii) detecting only a few top level regularities, poten-
tially missing many desired regularities.

Our regularities are based on incomplete cycles determined by unambigu-
ously matching point distances. However, due to this unambiguity condition,
the presence of noisy points or cycles may disrupt a generally well-defined
regularity if no unambiguous match is possible. Fig. 17 gives a simple 2D
example, where the twelve points in the dashed box form a translational
symmetry T and the other three points P1, P2, P3 disrupt this symmetry.
Using our point expansion process, three cycles C1, C2, C3 of five points will
be found, respectively containing P1, P2, P3. However, these three cycles are
not compatible with each other due to the big difference between distances d1

and d3, even though a smaller tolerance still allows three cycles to be found.
Consequently, symmetry including all three cycles will not be detected. How-
ever, we have not seen such cases in practice: noise levels do not typically

45
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Figure 16: Incomplete symmetry hierarchies detected at different noise levels
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Figure 17: Potential symmetry may be missed by cycle merging

vary significantly over a single model.
Some spurious regularities are also caused by the fact that we seek incom-

plete cycles. An incomplete cycle is less reliable than a complete cycle due
to the missing positions (and with them the inter-point distances) and its
symmetry type is not always uniquely determined. Our symmetry definition
actually limits the incomplete cases to be considered such that the overall
number of incomplete cycles remains small, but includes those common in
engineering objects.

A significant aspect of our algorithm is that using RFT decomposition
allows regularity detection to work without checking all possible relations
between all model entities. An algorithm considering and comparing all pos-
sible pieces of the object would certainly find considerably more spurious
regularities (e.g. [19]). However, such decomposition already interprets the
model in a certain way which might prevent the algorithm from finding cer-
tain regularities, if the decomposition is inappropriate. E.g., consider the
four leaf-parts L1 to L4 created by the crossed slots of the model in Fig. 18.
L4 is not congruent to L1, . . . , L3 which means an incomplete C4 symmetry
containing three leaf-parts is found instead of four. A different decomposition
would be more suitable in this case. Unfortunately, for every model there is in
principle an infinite number of possible decompositions. The particular RFT
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Figure 18: A four-fold rotational symmetric arrangements was not detected due to the
interpretation of RFT construction

decomposition approach taken here seems to be very successful in practice,
but if desired, it could be replaced with some other feature-detection-based
decomposition method.

Compared with the previous beautification approach in [19] for detecting
global symmetries (a comparison with the local regularities in [19] is beyond
the scope of this paper), our method can handle much more complex models,
and results in many fewer spurious symmetries. Examples given here include
models with up to 438 vertices and 198 faces, and result in at most 66 detected
incomplete, local symmetries while the previous work only included highly
symmetric models with up to 60 faces and 250 vertices and found 180 global
symmetries, but no local symmetries. The initial decomposition used in the
current method finds a suitable high-level sub-part structure. The potential
cost may be loss of regularities made of different entities from different leaf-
parts.

In summary, the experiments show that our algorithm for detecting design
intent in approximate models extracts most intended regularities from the
model and few spurious regularities. The method is very robust towards
realistic levels of noise. Initial model decomposition requires a simple user
choice of a suitable decomposition, which restricts which regularities can
be detected. In principle this means that certain regularities may not be
found, yet experiments show that this approach generally yields the intended
symmetry structure as indicated by a human. As approximate symmetries
are detected, unavoidably some spurious regularities are also found, but their
number is small. The output is clearly suitable for modelling and analysis
tasks, and may be useful for shape search and indexing.
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13. Conclusions

This paper gives a novel solution to detecting design intent of approx-
imate B-rep models using symmetry. It considers symmetries in a wide
mathematical sense, including all the seven elementary types, which may
be present approximately, locally, incompletely or compatibly. To achieve
this goal, models are first hierarchically decomposed into simpler, more sym-
metric sub-parts. Design intent is then detected as congruencies, symmetries
and symmetric arrangements of the leaf-parts in this decomposition. Doing
so avoids finding many spurious regularities, reliably resolves ambiguities be-
tween regularities, and reduces inconsistencies. Yet the decomposition also
limits what can be found in terms of which model types can be processed and
how these are decomposed into simpler sub-parts. The detection algorithms
are based on a single principle using distances between points for adaptive
tolerance interval selection, and hence produce consistent, well-defined ap-
proximate regularities. The strict conditions may mean that certain regu-
larities are not detected even if we have not observed this in general under
typical noise levels. Experiments show that detected relations reveal signifi-
cant design intent.

Despite such good results there is scope for future work to increase the
range of regularities detected and the types of models that can be handled.
We consider the following as particularly interesting directions:

(1) Our current methods are limited to CAD models bounded by planar,
spherical, cylindrical, conical and toroidal surfaces and do not consider more
general curved geometries. Extending our approach is currently hampered
by the difficulty of extending the geometry of free-form surfaces required for
constructing RFTs of more general models. Work on identifying DP-features
on free-form solids [25] may help to extend this.

(2) Symmetry detection has attracted researchers from various fields, and
much good work has been proposed, covering different topics, e.g. [8, 29,
39, 31]. However, this work is focused on the detection of “single” point
symmetry, e.g. reflection, rotation or translation. This paper steps fur-
ther considering their combinations as glide symmetry or rotation-reflection
symmetry. More work is required to detect more general notions of symme-
try, and symmetry groups formed by combining symmetry transformations,
e.g. wallpaper groups and tetrahedral symmetry. Detecting such regularities
would simplify the output regularities by representing them in terms of com-
bined transformations instead of elementary symmetries. This could lead to
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more efficient detection, and also help to better represent a model’s intended
structure.

(3) The design intent detection work covered in this paper as well as other
previous work, e.g. [41, 19], aims to detect potential geometric regularities
in the rebuilt approximate model for downstream processing. However, re-
producing the original model for CAD/CAM systems and rebuilding a likely
construction history should also be considered.
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