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Abstract

MOS surfaces are rational surfaces inR
3,1 which provide rational en-

velopes of the associated two-parameter family of spheres.Moreover,
all the offsets admit rational parameterizations as well. Recently, it has
been proved that quadratic triangular Bézier patches inR

3,1 are MOS
surfaces. Following this result, we describe an algorithm for computing
an exact rational envelope of a two-parameter family of spheres given
by a quadratic patch inR3,1. The main focus of this paper is given
to geometric aspects of the algorithm. Since these patches are capable
of producingC

1 smooth approximations of medial surface transforms
of spatial domains, we use this algorithm to generate rational approxi-
mations of envelopes of general medial surface transforms.One of the
main advantages of this approach to offsetting is the fact that the trim-
ming procedure becomes considerably simpler.

Keywords: Quadratic Bézier triangles, MOS surfaces, trimmed offsets

1 Introduction

Generating valid tool paths in NURBS form has become a uni-
versal standard in technical applications such as CNC machining
in recent years. Hence, shape (curve, surface or volume) off-
sets and corresponding algorithms have been widely studiedin
Computer-Aided Design and Manufacturing, see [1, 2, 3, 4, 5,6,
7, 8] and references therein for more details. However, free-form
NURBS shapes do not possess rational offsets in general and
thus suitable approximation techniques, often based on rational
curves or surfaces of relatively low degree, are used – see e.g.
[9, 10, 11, 12, 13, 14]. Nevertheless, these offset approximation
techniques suffer from several shortcomings. First, one needs
to approximate each offset independently. Moreover, the con-
structed approximation of offsets to the same base shape maynot
have a constant distance to each other, which is not acceptable in
some applications, e.g. architecture. Second, although a rational
approximation of an offset is computed, the so called trimming,
i.e., the detection and elimination of self-intersections, is still a
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very difficult problem. Let us emphasize that the approximation
can possess self-intersections even though the original offset has
none. Even in the case of curves this leads to challenging compu-
tational and time-consuming problems and the situation is even
more complicated for surfaces, cf. [15, 16, 17]. The purposeof
this paper is to identify an approach that avoids these problems.

The approximate techniques for offsets are now widely used
in CAD systems since they are capable of dealing with prob-
lems appearing in technical practice mentioned above – but usu-
ally at the expense of great computational effort. Therefore, it is
worthwhile to investigate exact techniques as well, i.e., to study
shapes with exact rational offsets. These can be subsequently
used for formulating suitable approximation techniques for free-
form shapes. Compared to classical approximation techniques,
not offsets but the base shape is approximated and it is guaran-
teed that all corresponding offsets are rational. Therefore, only
one approximation step is required even if more than one offset
is needed. Moreover, all the offsets are at a constant distance
from each other.

Shapes with rational offsets have been studied for many years.
In the case of planar curves, the class of Pythagorean Hodo-
graph (PH) curves as polynomial curves possessing rationaloff-
set curves and polynomial arc-length functions was introduced in
[18]. A thorough analysis of PH curves has followed – see e.g.
[19, 20, 21, 12, 22]. Later, the concept of polynomial planarPH
curves was generalized to space PH curves ([23, 24, 25, 26]) and
to rational PH curves ([27, 28, 29]). Analogously, the notion of
rational surfaces with rational offsets, the so called Pythagorean
Normal vector (PN) surfaces, was introduced in [27]. More de-
tails about PN surfaces can be found in [30, 31, 32]. For a survey
of shapes with Pythagorean normals property (i.e., possessing
rational offsets) see [33].

Later, it has been proved in [34] that surfaces with Linear field
of Normal vectors (LN surfaces), introduced in [35], provide
rational convolution surfaces with an arbitrary rational surface.
Since spheres admit rational descriptions, LN surfaces possess
exact rational offsets. This result was applied in [36] to con-
structing exact rational offsets of LN surfaces. As observed re-
cently ([37, 38]), all non-developable polynomial quadratic sur-
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faces belong to the class of LN surfaces and therefore possess
rational offsets. Motivated by the fact that approximationby
quadratic Bézier surfaces provides a good compromise between
curvature reproduction and computational cost and offers an ex-
tra feature, i.e., the PN property, these patches were used in [39]
for formulating an algorithm for generating rational approxima-
tions to offsets of general free-form surfaces.

Even though PH curves and PN surfaces admit rational offsets,
the usually most costly ingredient, the trimming, still needs to be
performed as in the case of approximation techniques. An alter-
native approach to the problem in the curve case based on the
medial axis transform (MAT) of a planar domain, introduced in
[40], was formulated in [41] and [42]. There is a one-to-one cor-
respondence between the MAT in three-dimensional Minkowski
spaceR2,1 and the object boundary, i.e., for a given geometric
object there is a unique MAT and conversely, the object can be
directly reconstructed from its MAT. The main advantages ofthis
description follow from the dimensional reduction while topo-
logical properties are maintained. As observed in [42, 41],if a
segment of the medial axis transform is an MPH (Minkowski
Pythagorean Hodograph) curve, then the associated branches
of the domain boundaries are segments of rational curves. In
addition, all offsets of the domain boundaries have also this
property. A thorough analysis of MPH curves has followed in
[43, 44, 45, 46, 47, 48]. Moreover, using the MAT represen-
tation makes the trimming procedure for the inner offsets very
simple – only those parts of the MAT where the corresponding
circle radius is less than the offset distanceδ have to be trimmed.
For more details see e.g. [49, 50, 51, 52, 53, 54, 55].

The situation in three-dimensional space has become an active
research area recently, since the so called MOS surfaces as aspa-
tial analogy of MPH curves were introduced in [56]. The medial
surface transform (MST) of a volume is the set of surface patches
(or curve segments) in four-dimensional Minkowski spaceR

3,1

such that each point of these surfaces/curves represents the cen-
ter and the radius of a maximal ball inscribed into the domain.
The MST covers the structure of the domain and thus can be
used in all sorts of geometric modelers (constructive solidgeom-
etry (CSG) and boundary representation (B-rep)) as a usefultool.
The distinguishing property of MOS surfaces is that if considered
as the MST of a volume, the associated envelope and its offsets
admit exact rational parameterization. Later, it was proved in
[57] that quadratic triangular Bézier surfaces inR

3,1 possess the
MOS property and a related study followed in [58, 59].

Following the results of [57], [39] and [60], we describe an ef-
ficient algorithm for computing boundaries and trimmed offsets
of volumes with piecewise quadratic medial surface transforms.
Considering general (free-form) medial surface transforms in
R

3,1, we produce theirC1 approximations using quadratic
Bézier patches (cf. [61, 62]), which gives us an extra feature
– the MOS property. Thus we have a guarantee on the rationality
of the volume boundaries as well as all offsets. The presented
technique also simplifies the computation of self-intersections of
inner offsets and the follow-up trimming procedure considerably.

As far as we are aware of the literature, this paper is the first
paper which proposes a working method for offset trimming
which is based on the medial surface transform. Clearly, this is a
very natural approach to address this problem. Still, the existing

literature mostly does this in a different way, by first offsetting
the surfaces and then eliminating the self-intersecting parts. We
believe that the medial surface-based approach is far more ele-
gant.

Modeling volumes directly by their MST (or even MOS
patches) might become an interesting and also a practical vol-
ume designing tool. However, it is not straightforward for an
inexperienced user to design volumes this way. Even though the
bisector surface is quite easy to control, we emphasize thatthe
MST is an object lying in 4-space.

The remainder of this paper is organized as follows. Section2
recalls some basic facts concerning medial surface transforms,
envelopes of two-parameter families of spheres and MOS sur-
faces. Section 3 is devoted to quadratic triangular Béziersurfaces
in R

3,1, their (isotropic) normals and isotropic Gauss images. In
this section, we also formulate and discuss an algorithm foren-
velope computation for quadratic MSTs. The algorithm is then
demonstrated on several examples in Section 4. Finally, we con-
clude the paper.

2 Preliminaries

We recall the relation between the four–dimensional Minkowski
spaceR3,1 and the medial surface transform (MST) of a volume.
We then consider rational patches on sheets of the MST and the
computation of the corresponding patches on the boundary sur-
face of the volume.

2.1 Medial surface transform

The four–dimensional Minkowski spaceR3,1 is the four–
dimensional real affine space which is equipped with the indefi-
nite inner product

〈u,v〉 = u⊤Jv = u1v1 + u2v2 + u3v3 − u4v4 (1)

whereJ = diag(1, 1, 1,−1). The hyperplanex4 = 0 is a three-
dimensional subspace, and the restriction of the inner product to
this hyperplane is the usual Euclidean inner product. We iden-
tify this hyperplane with thethree-dimensional Euclidean space.
More precisely, any pointx = (x1, x2, x3)

⊤ ∈ R
3 is equiva-

lently considered as a pointx = (x1, x2, x3, 0)⊤ ∈ R
3,1.

For any pointp = (p1, p2, p3, p4)
⊤ ∈ R

3,1, let p′ =
(p1, p2, p3)

⊤ be its projection intoR3. The set

Bp = {x ∈ R
3 : 〈p − x,p− x〉 ≤ 0} (2)

is theoriented ballwith centerp′ and radius|p4|. The sign of
the radiusp4 defines the orientation of the ball. Its boundary is
theoriented sphereSp = δBp which contains all pointsx ∈ R

3

satisfying
〈p − x,p − x〉 = 0. (3)

Any oriented ball inR3 can be identified with a unique point in
the four-dimensional Minkowski spaceR3,1.

We consider a bounded volumeV with a smooth boundary
δV . The set of all balls with non–negative radius (i.e., with non–
negative orientation) which are contained inV is partially or-
dered with respect to inclusion. The maximal elements of this set
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Figure 1: The bisector surface (blue) and two branches (red
and green) of the envelope surface forming a boundary of a
volumeV .

form themedial surface transform(MST) of V , cf. Fig. 1. We
consider them as points in Minkowski space, which then form
the set MST(V ) ⊂ R

3,1.
The medial surface transform of the volumeV consists of

components of dimensions two, one, and zero, which are called
sheets, seamsand junctions, respectively. Their points corre-
spond to maximal inscribed balls which – in the generic case –
touch the boundary in two, three, and four points, respectively.
The sheets meet in seams, and the seams meet in junctions.

In the remainder of this paper we consider a two-dimensional
rational surface patch

p : Ω → R
3,1 : (u, v) 7→ p(u, v) (4)

with domainΩ ⊆ R
2 and parametersu, v, which defines a ra-

tional parameterization of a subset of the interior of a sheet.
Every ballBp(u,v) touches the boundaryδV of the volume in
two points. The contact points form two surface patches on the
boundary. The centersp′(u, v) of the balls form thebisector
surfaceof these two surface patches – see Fig. 1.

2.2 Envelopes of two-parameter families of
spheres

Given a patch (4) of the medial surface transform, we are inter-
ested in computing the associated patches of the boundary sur-
face, see Fig. 1. These two patches are obtained as theenvelope
of the two-parameter family of spheres

{Sp(u,v) : (u, v) ∈ Ω}. (5)

By differentiating equation (3) of the spheres we obtain two
equations

〈∂up,p − x〉 = 0, 〈∂vp,p − x〉 = 0, (6)

which – along with (3) – characterize the pointsx of the envelope
surfaces. Recall thatx ∈ R

3 is a point in the hyperplanex4 = 0.
The substitution

x = p− p4

n4
n (7)

transforms the three equations (3) and (6) into a homogeneous
non-linear system of equations

〈n,n〉 = 0 and (8)

〈n, ∂up〉 = 0, 〈n, ∂vp〉 = 0 (9)

for the vectorn ∈ R
3,1.

The two equations (9) express the fact that the vectorn is or-
thogonal to the two–dimensional tangent plane of the surface
patchp with respect to the Minkowski inner product (1). The
first equation (8) restricts the solutions toisotropicvectors (vec-
tors of zero length with respect to the Minkowski metric). Conse-
quently, the non–trivial solutions of the system are theisotropic
normal vectorsof the surface.

Summing up, the pointsx of the envelope surfaces can be gen-
erated by

1. finding all non–trivial isotropic normal vectors and

2. computingx from (7).

Note that any nontrivial solution of (8) satisfiesn4 6= 0.

2.3 MOS surfaces

The sub–determinants2

Pij = det

(

∂upi ∂vpi

∂upj ∂vpj

)

, i, j = 1, . . . , 4, (10)

of the4× 2 matrix (∂up, ∂vp) formed by partial derivative vec-
tors can be used to express the solutions of the system (8)–(9),

n±(µ) = µ









P12P24 + P13P34 ±
√

CP23

P21P14 + P23P34 ±
√

CP31

P31P14 + P32P24 ±
√

CP12

−(P 2
23 + P 2

31 + P 2
12)









, µ ∈ R,

(11)
with

C = P 2
12 + P 2

31 + P 2
23 − P 2

14 − P 2
24 − P 2

34. (12)

The number of linearly independent solutions depends on the
sign ofC as follows.

• If C > 0, then we obtain two families of solutions. The or-
thogonal complement space of the two-dimensional tangent
plane, which is described by (9), intersects the quadratic
cone of isotropic vectors (8) in two lines. We obtain two
points of the envelope surfaces. The tangent plane is said to
bespace-like.

• If C = 0, then we obtain one family of solutions. The or-
thogonal complement space of the two-dimensional tangent
plane intersects the quadratic cone of isotropic vectors (8)
in one line. We obtain one point of the envelope surfaces.
The tangent plane is said to belight-like.

2These sub-determinants are the Plücker coordinate of the line (cf. [63]) in
the plane at infinity, which is spanned by the two derivative vectors.
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• If C < 0, then we obtain no non-trivial solutions. The or-
thogonal complement space of the two-dimensional tangent
plane intersects the quadratic cone of isotropic vectors only
in the origin, which is the apex of the cone. The tangent
plane is said to betime-like.

If the surface patch (4) describes a subset of the interior ofa MST
sheet, thenC(u, v) > 0 is satisfied for all(u, v) ∈ Ω. All points
in the domain correspond to space-like tangent planes.

Consequently, for all(u, v) ∈ Ω, two solutions (11) with two
associated points of the envelope surface exist. Moreover,the
bisector surface is regular since

||∂up
′ × ∂vp

′||2 = P 2
23 + P 2

31 + P 2
12 ≥ C. (13)

Finally we recall a definition from [56] which generalizes the
notion of Minkowski Pythagorean hodograph (MPH) curves. If
there exists a polynomialσ(u, v) such thatC = σ2, then the
parameterization of the envelope surfaces, which is obtained by
combining (11) with (7), is rational. The given surfacep is then a
MOS surface, i.e., aMedial surfaceObeying theSum of squares
condition

C = σ2 ⇐⇒ P 2
12 +P 2

31 +P 2
23 = σ2 +P 2

14 +P 2
24 +P 2

34. (14)

3 Quadratic patches as medial surface
transforms

A quadratic patch inR3,1 is defined by the power basis represen-
tation

p(u, v) =
1

2
q20u

2+q11uv+
1

2
q02v

2+q10u+q01v+q00, (15)

with the coefficient vectorsqij ∈ R
4, where the parametersu, v

span a suitable domain. We will mostly work with the standard
triangular domain△ ⊂ R

2 given byu ∈ [0, 1] andv ∈ [0, 1 −
u]. According to the affine classification of quadratic patches
[64], there exist 42 different types of quadratic patches. In the
remainder of this paper we exclude developable patches (planes,
cones and parabolic cylinders) from our considerations.

3.1 Normals

The two equations (9) take the form

fn(u, v) = 〈n,q20〉u + 〈n,q11〉v + 〈n,q10〉 = 0,
gn(u, v) = 〈n,q11〉u + 〈n,q02〉v + 〈n,q01〉 = 0.

(16)
For any given normaln, they form a linear system for the param-
eters(u, v).

The number of solutions(u, v) depends on the normaln.
Since the system is homogeneous with respect ton, we consider
the normals as points in a three-dimensional real projective space

N = P 3(R). (17)

This three-dimensional space is the hyperplane at infinity of the
four-dimensional Minkowski space.

Let
d(n) = n⊤J(q20q

⊤
02 − q11q

⊤
11)Jn (18)

be the determinant of the linear system (16). Further, let

du(n) = n⊤J(q11q
⊤
01 − q02q

⊤
10)Jn,

dv(n) = n⊤J(q10q
⊤
11 − q01q

⊤
20)Jn

(19)

be the two determinants generated by applying Cramer’s rule.
First we describe the relation between the normalsn and the

number of solutions of the system (16).

• The set
S = {n : d(n) = 0} (20)

is called theset S of singular normals. It is a singular
quadric surface inN . S consists of all normals with no or
non-unique solutions of (16). Consequently, ifn ∈ N \ S,
then the set of solutions consists of a single point in theuv–
plane.

• The set

E = {n : d(n) = du(n) = dv(n) = 0}, (21)

which is contained inS, is called theset of exceptional nor-
mals. It is a (possibly degenerate) cubic space curve, which
is defined as the intersection of three quadric surfaces.E
consists of all normals for which several solutions of (16)
exist. If n ∈ E , then the set of all solutions forms a line in
theuv–plane.

3.2 The fibration of N
Next we study the sets

F(u,v) = {n ∈ N : fn(u, v) = gn(u, v) = 0} (22)

of normals which satisfy the two equations (16) for given values
of (u, v). They will be called thefibers. They form a partition of
N \ S into mutually disjoint subsets.

• If the quadratic surface is regular at(u, v), then the fiber
F(u,v) is a line inN . Indeed, it is defined as the intersec-
tion of the two linearly independent planes (9). At singular
points, the fiber is a plane (if rank(∂up, ∂vp) = 1) or even
the entire spaceN (if both derivatives vanish). The latter
case occurs only for conical quadratic surfaces, which were
excluded.

• Any line which is contained in a fiberF(u,v) intersects the
set E of exceptional normals in two (possibly conjugate–
complex) points (counted with multiplicities). Indeed, the
two intersections of the line with the singular setS satisfy
the equations for the given values(u, v), hence these inter-
sections belong to the exceptional set, too.

Example 1 We discuss several examples which are taken from
the affine classification of quadratic patches in [64].
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Figure 2: Left: Exceptional lines (thin blue), the curve
C(u, v) = 0 (thick blue) and the domain triangle△. Right:
The curveSΣ (green), exceptional isotropic normals (green
points) and the exceptional setE (blue). Top row: Ex-
ample 1, patchp1(u, v); Middle row: Example 1, patch
p2(u, v); Bottom row: Example 1, patchp3(u, v).

1. Let us consider a non-hyperplanar patch given by

p1(u, v) =
(

(

u + 3
2

)2
+ v, v2,

(

u + 3
2

)

v, u + 3
2

)⊤

.

The exceptional set of this patch is a cubic space curve (see
Fig. 2, top row).

2. Let us consider another non-hyperplanar patch

p2(u, v) =
(

−u2 + u
(

v + 1
2

)

+ v2 + v + 1
4 ,

u2 + u + v2 + 2v + 3
4 ,

u2 + u − v2 + 1
4 ,−v − 1

2

)⊤
.

The exceptional set is formed by a conic and a line in this
case (see Fig. 2, middle row).

3. Let us consider a hyperplanar patch

p3(u, v) =
1

400

(

289u2 + 17u(17v + 40) + 289v2 + 85v + 75,
−289u2 − 289uv + 289v2 + 595v + 325,
289u2 + 17u(17v + 20)− 5(51v + 25),

(17u − 15)(17u− 17v − 5))
⊤

,

The exceptional set consists of three lines (see Fig. 2, bot-
tom row).

3.3 Isotropic normals

So far we studied solutions of the system of equations (9) fora
quadratic patch (15). Now we will analyze the consequences of
the additional equation (8) for isotropic normals.

The set of isotropic normals (i.e., the set of normals satisfying
(8)) forms an oval quadricΣ in the three-dimensional projective
spaceN . Without loss of generality we may assume that the
isotropic normals satisfyn4 = 1. The oval quadric of isotropic
normals can then be identified with the unit sphere

0 = 〈n,n〉 = n2
1 + n2

2 + n2
3 − 1. (23)

We analyze the relation between the isotropic normals and the
number of solutions of the system (8)–(9).

• The intersection curve of the setS and the isotropic quadric
Σ is the spherical quartic curveSΣ = S∩Σ of isotropic sin-
gular normals, cf. Fig. 3 (right). It consists of all isotropic
normals with no or non-unique solutions of (9). Conse-
quently, if n ∈ Σ \ SΣ, then the set of solutions consists
of a single point in theuv–plane.

• The intersection points of the sphere of isotropic normals
with the exceptional curveE , EΣ = E ∩ Σ are the – at most
6 – exceptional isotropic normals, Fig. 3 (right). Ifn ∈ E ,
then the set of all solutions forms a line in theuv–plane. We
obtain at most 6 lines in theuv–plane, which will be called
the exceptional linesin the parameter domain – see Fig. 3
(left).

• Consider a fiberF(u,v) at a regular pointp(u, v). If C(u, v)
is positive, zero, or negative, then the fiber intersect the
unit sphere in two, one, or no points. The curve defined
by C(u, v) = 0 in the parameter domain thus corresponds
to a spherical curveLΣ where the fibers touchΣ. This is the
curve of isotropic normals at points with light–like tangent
planes– see Fig. 3 (right).

3.4 The isotropic Gauss images

Let us assume that the domainΩ of the surface patch contains
only points satisfyingC(u, v) > 0. Consequently, all tangent
planes are space-like, and all points are regular. This assumption
is satisfied for surfaces which represent a patch of the interior of
a sheet of the MST.

For each point(u, v) we obtain two isotropic normals satis-
fying n4 = 1by choosingµ = −1/(P 2

23 + P 2
31 + P 2

12) in (11).
They are exactly the two intersections of the fiberF(u,v) with Σ.
Thus, the isotropic normals define a one-to-two mapping

Ω → Σ : (u, v) 7→ {n+(u, v),n−(u, v)} = F(u,v) ∩ Σ. (24)

The set of all isotropic normals defines theisotropic Gauss image
Γ = n±(Ω) of the given quadratic patch with domainΩ.

If we consider the two isotropic normals along an exceptional
line in the parameter domain, then we have the following two
possibilities.
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• Case 1: One isotropic normal is constant along the line,
while the second isotropic normal varies. The constant
isotropic normal is an exceptional one with the property that
several fibersF(u,v) intersect in it.

• Case 2: Both isotropic normals are constant along the line.
All points (u, v) of the exceptional line possess the same
fiber F(u,v), and this fiber intersects the sphereΣ in two
exceptional isotropic normals. Consequently, the fiber is
contained inE .

Figure 3: Left: Exceptional lines (thin blue), the curve
C(u, v) = 0 (thick blue) and the domain triangle△. Right:
The two components of the isotropic Gauss image (red and
blue), the curveSΣ (green), exceptional isotropic normals
(green points) and the curveLΣ (black).

Finally, let Γ0 ⊂ Σ be the isotropic Gauss image without
isotropic normals along the exceptional lines, and letΩ0 be the
parameter domain without exceptional lines. The isotropicnor-
mals map each connected component ofΩ0 to two connected
components ofΓ0 – see Fig. 3. When restricted to one of the two
isotropic normals, this mapping is bijective.

3.5 Envelope computation

We describe an algorithm for computing the exact rational en-
velope of a 2-parameter family of spheres given by a quadratic
patch (15) over△. Its input is a quadratic Bézier triangle (15),
where all points are assumed to be space-like, i.e.,C(u, v) > 0
holds for all(u, v) ∈ △. The algorithm proceeds in four steps.

Step 1: Subdivision along exceptional lines Compute the ex-
ceptional lines and triangulate the domain such that the excep-
tional lines are edges of the triangulation. For each triangle of the
triangulation, apply a linear reparameterization of the quadratic
patch such that the parameter domain is again the standard trian-
gle△. If the exceptional lines do not intersect the interior of the
parameter domain, then no subdivision is required (see Fig.4).

This step is similar to Algorithm 1 in [39], but the role of the
parabolic lines is played by the exceptional ones. The next three
steps are applied to all quadratic patches which are generated by
Step 1. For these patches, at most one of the three boundary
curves is an exceptional line.

Step 2: Covering the isotropic Gauss images For each of the
patches obtained in Step 1, compute the isotropic Gauss images.

Figure 4: Left: exceptional lines (thin blue), the curve
C(u, v) = 0 (thick red) and the domain triangle△. Right:
The two components of the isotropic Gauss image (red and
blue), the curveSΣ (green) and exceptional isotropic nor-
mals (green points).

These Gauss images are either two spherical triangles or bian-
gles, or a biangle and a triangle, all with curved boundaries. The
biangles occur if one of the domain boundaries is an exceptional
line. Next we compute rational spherical patches

n⋆ : △ → Σ : (s, t) 7→ n⋆(s, t) (25)

which cover the Gauss images. In the case of a biangle, one may
use singular patches where the singular point coincides with the
image of the exceptional line. These rational spherical patches
are found using stereographic projection (see Fig. 5).

This step is similar to Algorithm 2 in [39]. As the main differ-
ence we have to consider two isotropic Gauss images instead of
only one Gauss image.

Figure 5: Left: Stereographic projection of one component
of the isotropic Gauss image (black) and circumscribed
triangle (green). Right: One component of the isotropic
Gauss image (red) and its covering patch (green).

Step 3: Envelope computation For each spherical rational
patchn⋆ we compute one segment of the envelope from (7),
wheren is replaced withn∗ and the parameters(u, v) of the
patchp are replaced with

u(s, t) =
du(n⋆(s, t))

d(n⋆(s, t))
, v(s, t) =

dv(n⋆(s, t))

d(n⋆(s, t))
, (26)

cf. (18) and (19). This gives rational triangular patches ofdegree
10. The surface patches obtained by applying the substitution
(26) to (15) are MOS surfaces.
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In the case of a biangular isotropic Gauss image, the use of
a spherical patch with a singular point ensures that the envelope
surface possesses a regular rational parameterization, which is
obtained after omitting a common factor of numerator and de-
nominator, similar to the Example presented in Section 4.3 of
[39].

Step 4: Trimming The spherical patchesn∗, which cover the
isotropic Gauss images, are generally larger than these images,
i.e., they may contain isotropic normal vectors which do notcor-
respond to isotropic normal vectors of the MST patch over△.
Hence, we need to restrict△ to an appropriate subset given by
polynomial inequalities resulting from

u(s, t) ≥ 0 ∧ v(s, t) ≥ 0 ∧ 1 − u(s, t) − v(s, t) ≥ 0, (27)

which can be derived from (26), see Fig. 6.

Figure 6: Left: Trimmed parameter domain of the enve-
lope patches bounded by brown, orange and yellow curves.
Right: Bisector surface (blue) and two branches of the en-
velope patch (red and green).

Summing up, the envelope surface consists of the trimmed
patches which are generated by applying steps 2, 3 and 4 to all
triangular patches obtained from Step 1 of this algorithm.

The computation of the exceptional lines leads to a polyno-
mial equation of degree 6, hence the solutions cannot be found in
a closed form. Consequently, even if the coefficients of the input
patch are rational, then the parameterizations of the envelopes
which are generated by the algorithm do not possess rationalco-
efficients.

Parameterizations with rational coefficients can be generated
by using a simplified version of the algorithm, which omits the
subdivision step and uses spherical patches covering the isotropic
Gauss images which do not necessarily possess singular points
at the exceptional isotropic normals. However, the resulting pa-
rameterizations of the envelope surfaces may possess singulari-
ties and points where the both numerators and the denominator
of (26) vanish simultaneously.

We have implemented the algorithm using floating point
numbers. In order to avoid numerical problems, we used
the Bernstein-Bézier representations of the triangular patches.
Bounds on the error introduced by an approximate computation
of the exceptional lines and several examples have been pre-
sented in [60].

4 MST approximation and trimming of
offset surfaces

We discuss the approximation of patches on the sheets of the
MST of a general volume by piecewise quadratic surfaces. This
approximate representation of the MST is then used for a com-
putation of trimmed offset surfaces.

More precisely, we consider a surface patchs : [0, 1]2 → R
3

which represents a part of the boundary of the domainV and
which corresponds to a patch of a sheet of the MST. Conse-
quently, for each points(u, v) there is a maximal inscribed ball
which touches the boundaryδV in this point and in another point.

We use the approach described in [65] for numerically com-
puting the centersc(u, v) and the radiir(u, v) of the maximal
inscribed balls, i.e., for evaluating the points of the MST.Using
this method, the surface-surface bisector problem is reduced to
that of finding the common zero-set of two suitable four-variate
functions in parametricuvst-space. The most important advan-
tage of this alternative representation is that the degreesof con-
straint equations are considerably lower than those of the bisector
surfaces in thexyz-space. See [65] for more details.

After generating a set of values (centers of the balls and
radii), we use it to construct an approximation of the MST
by a quadratic spline surfaceP : [0, 1]2 → R

3,1, which is
defined over a criss-cross triangulation of the domain. See
[66, 67, 62, 61] for more information on this type of spline func-
tions. Alternatively, one may use quasi-interpolation methods,
such as the techniques described in [68, 69, 70]. If the grid is
sufficiently fine, then the piecewise quadratic approximation is
guaranteed to possess only space-like tangent planes, since the
first derivatives of the MST are approximated, too. In addition,
the approximation order of these methods is 3, as proved e.g.in
[67, 68].

Next, a relation between the error in the medial surface ap-
proximation and the approximation of the associated domain
boundaries can be derived as follows, cf. [47]. The Hausdorff
distance between two spheres with non–negative radiir1, r2

equals∆r + ∆c, where∆r = |r1 − r2| is the difference of the
radii, and∆c is the distance between the centers. Consequently,
the bound on the Euclidean distance between two surfacesP, Q
in Minkowski spaceR3,1 implies an upper bound on the Haus-
dorff distance between the associated spatial domains,

HD(ΩP, ΩQ) ≤
√

2 max
(u,v)∈[0,1]2

||P(u, v) − Q(u, v)||E (28)

where||.||E denotes the Euclidean norm. Thus, the results on the
approximation order of the MST imply analogous results for the
Hausdorff distance of the associated spatial domains.

Finally, combining relation (28) and the approximation order 3
of the quadratic spline approximantP of the MST described
above yields the following result: The approximation orderof
the envelope algorithm presented in this paper is equal to 3.In
other words, anytime we double the number of control points in
each direction, the bound on the error is reduced by the factor
of 8.

Now, we can apply the exact envelope computation method,
which was described in the previous section, to each polyno-
mial segmentp of the quadratic spline surfaceP. Recall that
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Figure 7: The bisector surface (blue) and the two branches ofthe envelope (red and green) in Example 2, along with
the trimmed inner offsets (light red and light green) – without self-intersection (top right) and with self-intersection
(bottom left and right).

the trimmed inner offsets of the boundary surface of a domain
can be obtained by 1) subtracting the offsetting distance from
the 4th component of the MST (which represents the radius of
the maximal inscribed balls) and 2) restricting the modifiedMST
to points with non-negative fourth components. Consequently, if
the piecewise quadratic approximationP of the MST is avail-
able, we can use it for computing exact trimmed offsets of the
boundary surface of the volume which is represented byP. We
implemented this by adding another trimming procedure to our
algorithm, which restricts the piecewise quadratic MST to the
domain where the radius is non–negative.

Finally, we summarize the main steps of the algorithm for
computing trimmed offsets of general free-form volumesV with
single-sheeted medial surfaces transforms.

Algorithm 1 Computation of trimmed offsets of general free-
form volumesV with single-sheeted medial surfaces transforms.

1. Compute the centersc and the radiir of the maximal in-
scribed balls ofV for evaluating the points of the MST and
choose a suitable parameterization.

2. Construct an approximation of the MST by a quadratic
spline surfaceP.

3. For a given distanceδ, compute the corresponding exact
trimmed offsets of the boundary surface of the volume rep-
resented byP by lifting the corresponding medial surface
transform in the direction of its last coordinater(u, v) and
restricting the domain to points satisfyingr(u, v) ≥ δ.

Example 2 We consider the volumeV ⊂ R
3 bounded by the

two surface patches

s1(u, v) =
(

u, v, 1
3uv

)⊤
,

s2(u, v) =
(

u, v, 1
3 (u2 + v2) + 1

)⊤
,

(29)

(u, v) ∈ [−1, 1]2, and approximate the associated MST by a
piecewise quadratic surface consisting of 12 triangular patches.
The maximum distance error is equal to3.28% of the diame-
ter of the bounding box. For each of these patches we param-
eterize the envelope surfaces as described in the previous sec-
tion. All 12 patches of the approximation quadratic spline sur-
face possess only space-like points and no additional subdivi-
sions of the parameter domains are needed. Finally, Fig. 7 shows
the two branches of the approximating envelope (red and green),
the quadratic spline approximation of the medial surface (blue)
and the two branches of inner offsets (light red and light green).
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Figure 8: The bisector surface (blue) and the two branches ofthe envelope (red and green) in Example 3, along with
the trimmed inner offsets (yellow and purple) – without self-intersection (top right) and with self-intersection (bottom
left and right).

In case of the self-intersecting inner offset, the trimmed regions
on the envelope are illustrated.

Example 3 We consider another volume inR3. Similarly to
the previous example, we approximate its MST by a quadratic
spline which consists of 24 triangular patches. The maximum
distance error is equal to1.83% of the diameter of the bound-
ing box. Again, for each of these patches we parameterize the
envelope. All patches possess only space-like points and noad-
ditional subdivision is needed. Fig. 8 shows the two branches of
the approximating envelope (red and green), the quadratic spline
approximation of the medial surface (blue) and two branchesof
inner offsets (yellow and purple) which are trimmed if the self-
intersection occurs.

Next, we present two additional examples which reflect some
of the difficulties of real-world situations.

Example 4 We consider a volume bounded by a watch-shaped
NURBS surface of degree(2, 2) given by a control net of6× 13
control points and a plane (see Fig. 9 (left), the single patches
of the NURBS surface are distinguished by color). The asso-
ciated MST was approximated by 64 triangular patches and no
additional subdivisions are needed. Fig. 9 (right) shows the two
branches of the approximating envelope (red and green) and the
two branches of inner offsets (yellow and purple). Inner offsets
are trimmed because of their self-intersection.

Example 5 We consider a volume bounded by a NURBS sur-
face of degree(2, 3) given by a control net of4 × 6 control
points, a plane and two canal surfaces (see Fig. 10 (left), the
single patches of the NURBS surface are distinguished by color;
the visible parts of the canal surfaces are displayed without para-
metric lines to improve contrast). The associated MST was ap-

proximated by 144 triangular patches and no additional subdi-
visions are needed. Fig. 10 (right) presents the two branches of
inner offsets (yellow and purple) of the NURBS surface which
are trimmed according to their self-intersection

5 Conclusion

In this paper we presented an algorithm for computing bound-
aries and trimmed offsets of volumes given by piecewise
quadratic medial surface transforms. Since polynomial quadratic
patches inR3,1 belong to the class of MOS surfaces and are capa-
ble of producingC1 approximations to free-form surfaces con-
sidered as medial surface transforms, our algorithm can be used
for computing rational approximations of volume boundaries and
all their offsets.

By approximating the MST surface, three main advantages
are to be expected. First, the offsets of the approximation sur-
face corresponding to the MST are represented exactly and ina
globally consistent way. Second, only one approximation step is
required. Once this is done, all offsets are available. Third, the
trimming procedure is significantly simpler since it is achieved
by imposing a polynomial inequality.

Currently, we can handle objects with an MST consisting of
only one sheet. It is a challenging problem to generalize this
method so that it can be applied to topologically more complex
situations.
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Figure 9: Left: A volume bounded by a watch-shaped NURBS surface of degree(2, 2) and a plane; Right: Two
branches of the volume boundaries (red and green) in Example4, along with the inner offsets (yellow and purple).
Since the volume is symmetric, we present only one quarter.

Figure 10: Left: A volume bounded by a NURBS surface of degree(2, 3), a plane and two canal surfaces; Right:
Trimmed inner offsets (yellow and purple), see Example 5. Weomitted the offsets of the canal surfaces to emphasize
the offsets corresponding to the NURBS surface.
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[20] B. Jüttler. Hermite interpolation by Pythagorean hodograph curves
of degree seven.Math. Comp., 70:1089–1111, 2001.

[21] R.T. Farouki. Pythagorean–hodograph curves. In J. Hoschek,
G. Farin, and M.-S. Kim, editors,Handbook of Computer Aided
Geometric Design, pages 405–427. Elsevier, 2002.

[22] F. Pelosi, M.L. Sampoli, R.T. Farouki, and C. Manni. A control
polygon scheme for design of planarC

2 PH quintic spline curves.
Computer Aided Geometric Design, 24:28–52, 2007.

[23] R.T. Farouki and T. Sakkalis. Pythagorean-hodograph space
curves.Adv. Comput. Math., 2:41–66, 1994.

[24] R.T. Farouki, C. Manni, and A. Sestini. SpatialC
2 PH quintic

splines. In T. Lyche, M.L. Mazure, and L.L. Schumaker, editors,
Curve and Surface Design: St. Malo 2002, pages 147–156. Nash-
boro Press, 2003.

[25] R.T. Farouki and T. Sakkalis. Rational space curves arenot “unit
speed”.Computer Aided Geometric Design, 24:238–240, 2007.
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