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Abstract very difficult problem. Let us emphasize that the approxiorat
can possess self-intersections even though the origifsatdfas
MOS surfaces are rational surfacesi#" which provide rational en- none. Even in the case of curves this leads to challengingaem
velopes of the associated two-parameter family of sphevieseover, tational and time-consuming problems and the situatiowves e
all the offsets admit rational parameterizations as wedlcédtly, it has more complicated for surfaces, cf. [15, 16, 17]. The purpidse
been proved that quadratic triangular Bézier patche®’ih are MOS this paper is to identify an approach that avoids these prosl

surfaces. Following this result, we describe an algoritontbmputing The approximate techniques for offsets are now widely used

an exact rational envelope of a two-parameter family of sghegiven in CAD systems since they are capable of dealing with prob-
by a quadratic patch i®*". The main focus of this paper is giveng g appearing in technical practice mentioned above —dwt u
to geometric aspects of the algorithm. Since these patakesapable ally at the expense of great computational effort. Theesfibis

of producingC' smooth approximations of medial surface transmrm\ﬁorthwhile to investigate exact techniques as well, i@sttdy

of spatial domains, we use this algorithm to generate ratiapproxi- shapes with exact rational offsets. These can be subséguent
mations of envelopes of general medial surface transfofdme of the used for formulating suitable approximation techniquestee-
main advantages of this approach to offsetting is the faattttie trim- ¢, shanes. Compared to classical approximation tecksiqu
ming procedure becomes considerably simpler. not offsets but the base shape is approximated and it is guara
teed that all corresponding offsets are rational. Theegfonly
one approximation step is required even if more than onebffs
is needed. Moreover, all the offsets are at a constant distan

1 Introduction from each other.
Shapes with rational offsets have been studied for manyyear

Generating valid tool paths in NURBS form has become a um-the case of planar curves, the class of Pythagorean Hodo-
versal standard in technical applications such as CNC manthi graph (PH) curves as polynomial curves possessing ratidfial
in recent years. Hence, shape (curve, surface or volume) g8t curves and polynomial arc-length functions was intcedun
sets and corresponding algorithms have been widely studie@18]. A thorough analysis of PH curves has followed — see e.g.
Computer-Aided Design and Manufacturing, see [1, 2, 3, 8, 5[19, 20, 21, 12, 22]. Later, the concept of polynomial plaRgr
7, 8] and references therein for more details. However;fioe@ curves was generalized to space PH curves ([23, 24, 25, 26]) a
NURBS shapes do not possess rational offsets in general @nchtional PH curves ([27, 28, 29]). Analogously, the notaf
thus suitable approximation techniques, often based éonidt rational surfaces with rational offsets, the so called Rgtirean
curves or surfaces of relatively low degree, are used — gee Blormal vector (PN) surfaces, was introduced in [27]. More de
[9, 10, 11, 12, 13, 14]. Nevertheless, these offset appratian tails about PN surfaces can be found in [30, 31, 32]. For aesurv
techniques suffer from several shortcomings. First, oretiseof shapes with Pythagorean normals property (i.e., pOSgpSss
to approximate each offset independently. Moreover, the coational offsets) see [33].
structed approximation of offsets to the same base shap@aiay | ey it has been proved in [34] that surfaces with Linedd fie
have a constant distance to each other, which is not acdeaby¢ Normal vectors (LN surfaces), introduced in [35], praid
some applications, e.g. architecture. Second, althoughanal »ina| convolution surfaces with an arbitrary rationatface.
approximation of an offset is computed, the so called trimi g, .o gpheres admit rational descriptions, LN surfacesqsss
i.e., the detection and elimination of self-intersectiaesstill a exact rational offsets. This result was applied in [36] tmco

1corresponding author. E-maibert.j uett!l er @ ku. at, phone/fax: structing exact rational offsets of LN surfaces. As obsémes
+43 732 2468 9178 / 29162, Homepagewv. ag. j ku. at . cently ([37, 38]), all non-developable polynomial quadraur-
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faces belong to the class of LN surfaces and therefore possitsrature mostly does this in a different way, by first offsey
rational offsets. Motivated by the fact that approximatlmn the surfaces and then eliminating the self-intersectintsp&Ve
guadratic Bézier surfaces provides a good compromisedmetwbelieve that the medial surface-based approach is far niere e
curvature reproduction and computational cost and offerxa gant.

tra feature, i.e., the PN property, these patches were nd&9]i Modeling volumes directly by their MST (or even MOS
for formulating an algorithm for generating rational apgrma- patches) might become an interesting and also a practital vo
tions to offsets of general free-form surfaces. ume designing tool. However, it is not straightforward for a

Even though PH curves and PN surfaces admit rational offsét§xperienced user to design volumes this way. Even thdugh t
the usually most costly ingredient, the trimming, still de¢o be bisector surface is quite easy to control, we emphasizetitieat
performed as in the case of approximation techniques. Am-alMST is an object lying in 4-space.
native approach to the problem in the curve case based on thEhe remainder of this paper is organized as follows. Se@&ion
medial axis transform (MAT) of a planar domain, introduced fecalls some basic facts concerning medial surface tremsfo
[40], was formulated in [41] and [42]. There is a one-to-oae ¢ envelopes of two-parameter families of spheres and MOS sur-
respondence between the MAT in three-dimensional Minkow$&ces. Section 3 is devoted to quadratic triangular B&zigfaces
spaceR2! and the object boundary, i.e., for a given geometiie R*', their (isotropic) normals and isotropic Gauss images. In
object there is a unique MAT and conversely, the object canthi section, we also formulate and discuss an algorithnerier
directly reconstructed from its MAT. The main advantagethisf Velope computation for quadratic MSTs. The algorithm isithe
description follow from the dimensional reduction whilgpte demonstrated on several examples in Section 4. Finallyone c
logical properties are maintained. As observed in [42, #3, Clude the paper.
segment of the medial axis transform is an MPH (Minkowski
Pythagorean Hodograph) curve, then the associated bmanche o .
of the domain boundaries are segments of rational curves.iln Preliminaries
addition, all offsets of the domain boundaries have alse thj
property. A thorough analysis of MPH curves has followed |
[43, 44, 45, 46, 47, 48]. Moreover, using the MAT represe
tation makes the trimming procedure for the inner offsety ve
simple — only those parts of the MAT where the correspondiﬁ
circle radius is less than the offset distaideve to be trimmed.
For more details see e.g. [49, 50, 51, 52, 53, 54, 55].

The situation in three-dimensional space has become aracd-1 Medial surface transform
research area recently, since the so called MOS surfacespas 3rhe four—
tial analogy of MPH curves were introduced in [56]. The média
surface transform (MST) of a volume is the set of surfacelstic
(or curve segments) in four-dimensional Minkowski sp&ce!
such that each point of these surfaces/curves representeith (u,v) = u' Jv = w11 + usvs + uzvs — usvy (1)
ter and the radius of a maximal ball inscribed into the domain
The MST covers the structure of the domain and thus canviieereJ = diag(1, 1,1, —1). The hyperplane, = 0 is a three-
used in all sorts of geometric modelers (constructive sggidm- dimensional subspace, and the restriction of the innerymtid
etry (CSG) and boundary representation (B-rep)) as a usefll this hyperplane is the usual Euclidean inner product. Wa-ide
The distinguishing property of MOS surfaces is that if cdesed tify this hyperplane with théhree-dimensional Euclidean space
as the MST of a volume, the associated envelope and its ®ff$ebre precisely, any poink = (1,72, 23)" € R? is equiva-
admit exact rational parameterization. Later, it was pdowe |ently considered as a poist= (z1,z2,23,0)" € R31,

e recall the relation between the four—dimensional Mingkiw

paceR?! and the medial surface transform (MST) of a volume.

e then consider rational patches on sheets of the MST and the
mputation of the corresponding patches on the boundary su
e of the volume.

dimensional Minkowski spacB?! is the four—
imensional real affine space which is equipped with thefinde
nite inner product

[57] that quadratic triangular Bézier surfacef®in! possessthe For any pointp = (p17p27p37p4)T € R3, letp =
MOS property and a related study followed in [58, 59]. (pl,p%p?))T be its projection intdR?3. The set

Following the results of [57], [39] and [60], we describe & e
ficient algorithm for computing boundaries and trimmed eif§s By, ={xeR*: (p—x,p—x) <0} (2)

of volumes with piecewise quadratic medial surface tramsfo i , , , )
Considering general (free-form) medial surface transfoim IS theor|ented b,a"W'th cen.terp .and radiuglp,|. The sign of ,
R3!, we produce theirC' approximations using quadratiéhe rgdluso4 defines the orientation of thg ball. Its_, boundagry is
Bézier patches (cf. [61, 62]), which gives us an extra mtdhe_orlented spheré,, = 0B, which contains all points « R
—the MOS property. Thus we have a guarantee on the rati;pna?ﬁ‘t'Sfy'ng

of the volume boundaries as well as all offsets. The predente (p—x,p—x)=0. (3)
technique also simplifies the computation of self-intefises of - Any oriented ball ink? can be identified with a unique point in
inner offsets and the follow-up trimming procedure consathy.  the four-dimensional Minkowski spad®!.

As far as we are aware of the literature, this paper is the firstiVe consider a bounded volumé with a smooth boundary
paper which proposes a working method for offset trimmirdd/. The set of all balls with non—negative radius (i.e., witlmfo
which is based on the medial surface transform. Clearly,ihd negative orientation) which are containedlinis partially or-
very natural approach to address this problem. Still, thetiewy dered with respect to inclusion. The maximal elements efght



-y which — along with (3) — characterize the poigtef the envelope

- surfaces. Recall that € R? is a point in the hyperplane; = 0.
The substitution
X=p-— L @)
Ny

transforms the three equations (3) and (6) into a homogeneou
non-linear system of equations

(n,n) = 0 and (8)
<naaup> = 0, <nvavp> =0 (9)

for the vectom € R

The two equations (9) express the fact that the vestisror-
thogonalto the two—dimensional tangent plane of the surface
patchp with respect to the Minkowski inner product (1). The
first equation (8) restricts the solutionsisotropicvectors (vec-
tors of zero length with respect to the Minkowski metric) nSe-
guently, the non-trivial solutions of the system arei@ropic
normal vectorof the surface.

_ _ Summing up, the points of the envelope surfaces can be gen-
Figure 1: The bisector surface (blue) and two branches (red, 51 by

and green) of the envelope surface forming a boundary of a
volumeV . 1. finding all non—trivial isotropic normal vectors and

2. computingx from (7).

form themedial surface transforrfMST) of V, cf. Fig. 1. We Note thatany nontrivial solution of (8) satisfies # 0.
consider them as points in Minkowski space, which then form
the set MSTV) C R*!. 2.3 MOS surfaces
The medial surface transform of the volurire consists of .
components of dimensions two, one, and zero, which ared:al-,-é]e sub-determinarits
sheets seamsand junctions respectively. Their points corre- P — det Oupi  Oupi I 4
spond to maximal inscribed balls which — in the generic case — “% ~ ©© Oup; Oup; )’ bI= S0
touch the boundary in two, three, and four points, respelgtiv
The sheets meet in seams, and the seams meet in junctions. of the4 x 2 matrix (9. p, 9,p) formed by partial derivative vec-
In the remainder of this paper we consider a two-dimensiof@{lS can be used to express the solutions of the system J8)—(9

rational surface patch
P Pi2Poy + Pi3P3y +/CPas3

(10)

p: Q=R (u,v) — p(u,v) 4) ny(p) = Py Py + PysPsyy +V/CPyy . uER,
P31 Pyy + PsaPoy £ VO Py

with domainQ) C R? and parameters, v, which defines a ra- — (P4 + P2 + P)
tional parameterization of a subset of the interior of a thee (11)
Every ball By, . touches the boundadp” of the volume in with
two points. The contact points form two surface patches en th C =P, + P, + Py — P}, — P3, — P}, (12)
boundary. The centens’(u,v) of the balls form thebisector The number of linearly independent solutions depends on the
surfaceof these two surface patches — see Fig. 1. sign of C' as follows.

e If C > 0, then we obtain two families of solutions. The or-
thogonal complement space of the two-dimensional tangent
spheres plane, which is described by (9), intersects the quadratic
Given a patch (4) of the medial surface transform, we arg-inte  CON€ Of isotropic vectors (8) in two lines. We obtain two
ested in computing the associated patches of the boundary su Points of the envelope surfaces. The tangent plane is said to
face, see Fig. 1. These two patches are obtained astledope bespace-like
of the two-parameter family of spheres

2.2 Envelopes of two-parameter families of

e If C = 0, then we obtain one family of solutions. The or-
thogonal complement space of the two-dimensional tangent

{Spu ¢ (u,v) € QY. ) plane intersects the quadratic cone of isotropic vectors (8

in one line. We obtain one point of the envelope surfaces.

By differentiating equation (3) of the spheres we obtain two
y ged ®) P The tangent plane is said to bght-like.

equations

2These sub-determinants are the Pliicker coordinate ofrtaddf. [63]) in
(Oupsp—x) =0, (Oyp,p—x%x)=0, (6) the plane at infinity, which is spanned by the two derivatieetors.



e If C < 0, then we obtain no non-trivial solutions. The or- Let
thogor_1a| complement space of the two_-dimen_sional tangent d(n) = n"J(qe0qy — q11q;;)In (18)
plane intersects the quadratic cone of isotropic vectols on _ _
in the origin, which is the apex of the cone. The tange@ the determinant of the linear system (16). Further, let

plane is said to béme-like

du(n) = nTJ(q11 qu1 - qOQqIO)Jnv (19)
If the surface patch (4) describes a subset of the interiahd$ T dy(n) = n'J(qi0a{; — qo1959)In
sheet, therC'(u, v) > 0 is satisfied for al(u, v) € Q. All points
in the domain correspond to space-like tangent planes. be the two determinants generated by applying Cramer’s rule

Consequently, for alfu, v) € Q, two solutions (11) with two  First we describe the relation between the normuaénd the
associated points of the envelope surface exist. Moredver, number of solutions of the system (16).
bisector surface is regular since

e The set
[|0up’ x 0uP'||> = P35 + P35, + Piy > C. (13) S={n: dn)=0} (20)
Finally we recall a definition from [56] which generalizeseth IS called thesetS of singular normals It is a singular
notion of Minkowski Pythagorean hodograph (MPH) curves. If ~duadric surface 'W- S consists of all normals with no or
there exists a polynomiat(u,v) such thatC = o2, then the non-unique solutions of (16). Consequentlyait N\ S,
parameterization of the envelope surfaces, which is obtainy then the set of solutions consists of a single point inihe
combining (11) with (7), is rational. The given surfgeés then a plane.
MOS surfacei.e., aMedial surfacéObeying theSum of squares
condition o The set
C =0 « PL+P%+Ph=0"+P+Pi+P} (14) € ={n: d(n) = du(n) = dy(n) =0},  (21)

which is contained irf, is called theset of exceptional nor-

3 Quadratic patches as medial surface mals Itis a (possibly degenerate) cubic space curve, which
is defined as the intersection of three quadric surfaées.

transforms consists of all normals for which several solutions of (16)

) ] . ] . exist. Ifn € &, then the set of all solutions forms a line in
A quadratic patch ifiR** is defined by the power basis represen- the uv—plane.

tation

p(u,v) = §Q20U2+QI1UU+§QO2U2+Q10U+QO1U+QOOa (15) 3.2 The fibration of \/

. - Next we study the sets
with the coefficient vectorg;; € R4, where the parametets v

span a suitable domain. We will mostly work with the standard Fluwy =M EN: fulu,v) = gn(u,v) = 0} (22)

triangular domaim\ c R? given byu € [0,1] andv € [0,1 — ’

u]. According to the affine classification of quadratic patchgsnormals which satisfy the two equations (16) for giveruesl

[64], there exist 42 different types of quadratic patchesthie of (v, v). They will be called thdibers They form a partition of

remainder of this paper we exclude developable patchesdpla/ \ S into mutually disjoint subsets.

cones and parabolic cylinders) from our considerations.

e If the quadratic surface is regular @t, v), then the fiber
Fluw) is aline inN. Indeed, it is defined as the intersec-

3.1 Normals tion of the two linearly independent planes (9). At singular

The two equations (9) take the form points, the fiber is a plane (if rat®,p, 9,p) = 1) or even
the entire spacd/ (if both derivatives vanish). The latter
falu,v) = (n,qe)u+ (n,qi1)v+(n,qp) = 0, case occurs only for conical quadratic surfaces, which were
gn(u,v) = (n,qu)u+ (n,qe)v+ (n,qo) = 0. excluded.
(16)

For any given normah, they form a linear system for the param- e Any line which is contained in a fibeF(, . intersects the
eters(u, v). set& of exceptional normals in two (possibly conjugate—
The number of solutiongu,v) depends on the normai. complex) points (counted with multiplicities). Indeedeth
Since the system is homogeneous with respent twe consider two intersections of the line with the singular sesatisfy
the normals as points in a three-dimensional real projestdace the equations for the given valugs, v), hence these inter-

sections belong to the exceptional set, too.
N = P3(R). (17)

This three-dimensional space is the hyperplane at infifith@ Example 1 We discuss several examples which are taken from
four-dimensional Minkowski space. the affine classification of quadratic patches in [64].
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Figure 2: Left: Exceptional lines (thin blue), the curve
C(u,v) = 0 (thick blue) and the domain triangls. Right:
The curveSsy; (green), exceptional isotropic normals (green
points) and the exceptional sét (blue). Top row: Ex-
ample 1, patchp; (u,v); Middle row: Example 1, patch
p2(u, v); Bottom row: Example 1, patchs (u, v).

1. Let us consider a non-hyperplanar patch given by

.
pi(u,v) = ((u+ %)2 +v,0?%, (u+ 2)v,u+ %) .

The exceptional set consists of three lines (see Fig. 2, bot-
tom row).

3.3

So far we studied solutions of the system of equations (9 for
guadratic patch (15). Now we will analyze the consequentes o
the additional equation (8) for isotropic normals.

The set of isotropic normals (i.e., the set of normals satigf
(8)) forms an oval quadri& in the three-dimensional projective
spaceN. Without loss of generality we may assume that the
isotropic normals satisfy, = 1. The oval quadric of isotropic
normals can then be identified with the unit sphere

Isotropic normals

0= (n,n) =n}+n3+ni— 1. (23)
We analyze the relation between the isotropic normals aed th
number of solutions of the system (8)—(9).

e The intersection curve of the s8tand the isotropic quadric
> is the spherical quartic cunég; = SN of isotropic sin-
gular normals cf. Fig. 3 (right). It consists of all isotropic
normals with no or non-unique solutions of (9). Conse-
quently, ifn € ¥\ Sy, then the set of solutions consists
of a single point in theiw—plane.

The intersection points of the sphere of isotropic normals
with the exceptional curvé, & = £ N X are the — at most

6 —exceptional isotropic normal$ig. 3 (right). Ifn € &,
then the set of all solutions forms a line in the-plane. We
obtain at most 6 lines in thev—plane, which will be called
the exceptional linesn the parameter domain — see Fig. 3
(left).

Consider a fibef,, .,y at a regular poinp(u, v). If C(u,v)

is positive, zero, or negative, then the fiber intersect the
unit sphere in two, one, or no points. The curve defined
by C(u,v) = 0 in the parameter domain thus corresponds
to a spherical curv€y, where the fibers touch. This is the
curve of isotropic normals at points with light—like tangen
planes- see Fig. 3 (right).

The exceptional set of this patch is a cubic space curve (8ed The isotropic Gauss images

Fig. 2, top row).
2. Letus consider another non-hyperplanar patch

= () ok
u2+u+v2+2v+%,

2 2,1 1\ T
utt+u—v +Z,—’U—§) .

p2(u,v)

Let us assume that the domdof the surface patch contains
only points satisfying”(u,v) > 0. Consequently, all tangent
planes are space-like, and all points are regular. Thig@stson
is satisfied for surfaces which represent a patch of theiantef
a sheet of the MST.

For each poin{u,v) we obtain two isotropic normals satis-
fying ny = 1by choosingu = —1/(P% + P + P) in (11).

The exceptional set is formed by a conic and a line in thihiey are exactly the two intersections of the filigy; .,y with 3.

case (see Fig. 2, middle row).

3. Letus consider a hyperplanar patch

ps(u,v) =

ﬁ (289u2 + 17u(17v + 40) + 289v% + 85v + 75,
—289u? — 289uv + 289v? 4 595v + 325,

289u2 + 17u(17v + 20) — 5(51v + 25),

(17u — 15)(17u — 17Tv — 5)) ',

Thus, the isotropic normals define a one-to-two mapping
Q- (u,v) = {nJr(ua ’U), n_ (u,v)} = f(u,v) nx. (24)

The set of all isotropic normals defines fhetropic Gauss image
I' = n4 () of the given quadratic patch with domdin

If we consider the two isotropic normals along an exceptiona
line in the parameter domain, then we have the following two
possibilities.



e Case 1: One isotropic normal is constant along the line,
while the second isotropic normal varies. The constant
isotropic normal is an exceptional one with the property tha
several fibers¥, . intersectin it. ' B

e Case 2: Both isotropic normals are constant along the line.
All points (u,v) of the exceptional line possess the same
fiber ..., and this fiber intersects the sphetein two
exceptional isotropic normals. Consequently, the fiber is
contained ir€.

Figure 4: Left: exceptional lines (thin blue), the curve
C(u,v) = 0 (thick red) and the domain triangls. Right:

The two components of the isotropic Gauss image (red and
blue), the curveSs, (green) and exceptional isotropic nor-
mals (green points).

O

These Gauss images are either two spherical triangles o bia
gles, or a biangle and a triangle, all with curved boundaribg
biangles occur if one of the domain boundaries is an exceaitio
line. Next we compute rational spherical patches

Figure 3: Left: Exceptional lines (thin blue), the curve
C(u,v) = 0 (thick blue) and the domain triangle. Right: n*: A —X:(s,t)—n*(s,t) (25)
The two components of the isotropic Gauss image (red and

blue), the curveSs, (green), exceptional isotropic normals which cover the Gauss images. In the case of a biangle, one may
(green points) and the cun; (black). use singular patches where the singular point coincides tivét

image of the exceptional line. These rational sphericattped
are found using stereographic projection (see Fig. 5).
Finally, letT, C ¥ be the isotropic Gauss image without This step is similar tp Algoritr_\m 2 in_[39]. As the main_differ
isotropic normals along the exceptional lines, andlgtbe the €NC€ We have to consider two isotropic Gauss images insfead o

parameter domain without exceptional lines. The isotrogic ONIY 0ne Gauss image.
mals map each connected componenflgfto two connected
components of, — see Fig. 3. When restricted to one of the two
isotropic normals, this mapping is bijective.

3.5 Envelope computation /\)

We describe an algorithm for computing the exact rational en - ———— /A

velope of a 2-parameter family of spheres given by a quadrati

patch (15) over). Its input is a quadratic Bézier triangle (15),

where all points are assumed to be space-like,G@éu, v) > 0

holds for all(u, v) € A. The algorithm proceeds in four steps.  Figure 5: Left: Stereographic projection of one component

of the isotropic Gauss image (black) and circumscribed

Step 1: Subdivision along exceptional lines Compute the ex-  triangle (green). Right: One component of the isotropic

ceptional lines and triangulate the domain such that thegxc Gauss image (red) and its covering patch (green).

tional lines are edges of the triangulation. For each timofthe

triangulation, apply a linear reparameterization of thadratic

patch such that the parameter domain is again the standane tr

gle A. If the exceptional lines do not intersect the interior a&f thStep 3: Envelope computation For each spherical rational

parameter domain, then no subdivision is required (seedfig. patchn* we compute one segment of the envelope from (7),
This step is similar to Algorithm 1 in [39], but the role of thavheren is replaced withn* and the parameters:, v) of the

parabolic lines is played by the exceptional ones. The meget patchp are replaced with

steps are applied to all quadratic patches which are gestblgt dy(0*(s, 1)) dy(n* (s, 1))

Step 1. For these patches, at most one of the three boundary u(s,t) = u7 v(s,t) = %,

curves is an exceptional line. d(n*(s, 1)) d(n*(s, 1))

(26)

cf. (18) and (19). This gives rational triangular patchedegree
Step 2: Covering the isotropic Gauss images For each of the 10. The surface patches obtained by applying the substituti
patches obtained in Step 1, compute the isotropic GausssnafP6) to (15) are MOS surfaces.



In the case of a biangular isotropic Gauss image, the usedof MST approximation and trimming of
a spherical patch with a singular point ensures that thelepge
surface possesses a regular rational parameterizatiaoh igh offset surfaces

obta!ned aftgr omitting a common factor of numerator and qge giscuss the approximation of patches on the sheets of the
nominator, similar to the Example presented in Section 4.3,@31- of a general volume by piecewise quadratic surfacess Thi
[39]. approximate representation of the MST is then used for a com-
putation of trimmed offset surfaces.

More precisely, we consider a surface pasch0, 1] — R?

_Step 4'. Tnmmmg The spherical patchas’, which cover the which represents a part of the boundary of the doméaiand
isotropic Gauss images, are generally larger than thesgeispa .
. I . . which corresponds to a patch of a sheet of the MST. Conse-
i.e., they may contain isotropic normal vectors which doaast

) . quently, for each poiné(u, v) there is a maximal inscribed ball
respond to isotropic normal vectors of the MST patch afer which touches the boundasy’ in this point and in another point.

Sz:elr;ﬁi}nv;lael i?]i?qi;cl)itir:sStrrtleﬁslu:gnagnf;Fr)r?rop”ate subset given by We use the approach described ir.‘. [65] for numerica!ly com-
puting the centers(u,v) and the radiir(u, v) of the maximal
inscribed balls, i.e., for evaluating the points of the M8Sing
this method, the surface-surface bisector problem is redite
. ) ) that of finding the common zero-set of two suitable four-ari
which can be derived from (26), see Fig. 6. functions in parametriavst-space. The most important advan-
tage of this alternative representation is that the degyeesn-
straint equations are considerably lower than those ofideetor
surfaces in theyz-space. See [65] for more details.

After generating a set of values (centers of the balls and
radii), we use it to construct an approximation of the MST
by a quadratic spline surfad@ : [0,1]> — R*!, which is
defined over a criss-cross triangulation of the domain. See
[66, 67, 62, 61] for more information on this type of splinefu
tions. Alternatively, one may use quasi-interpolation moels,
such as the techniques described in [68, 69, 70]. If the grid i
sufficiently fine, then the piecewise quadratic approxiorats

Figure 6: Left: Trimmed parameter domain of the enve- gyaranteed to possess only space-like tangent planes, thiac

lope patches bounded by brown, orange and yellow curvesgirst derivatives of the MST are approximated, too. In aduiti

Right: Bisector surface (blue) and two branches of the en-the approximation order of these methods is 3, as provedre.g.

velope patch (red and green). [67, 68].

Next, a relation between the error in the medial surface ap-
proximation and the approximation of the associated domain

Summing up, the envelope surface consists of the trimmsslindaries can be derived as follows, cf. [47]. The Haus$dorf
patches which are generated by applying steps 2, 3 and 4 taj@llance between two spheres with non—negative radii,
triangular patches obtained from Step 1 of this algorithm.  equalsAr + Ac, whereAr = |r; — 75| is the difference of the

The computation of the exceptional lines leads to a polyrmadii, andAc is the distance between the centers. Consequently,
mial equation of degree 6, hence the solutions cannot belfiounthe bound on the Euclidean distance between two surfacep
a closed form. Consequently, even if the coefficients oftipeii in Minkowski spaceR?! implies an upper bound on the Haus-
patch are rational, then the parameterizations of the epesl dorff distance between the associated spatial domains,
which are generated by the algorithm do not possess ratioral
efficients. HD(Qp, Qq) < ﬂ(u max P (u,v) = Q(u,v)[|= (28)

Parameterizations with rational coefficients can be geeera T
by using a simplified version of the algorithm, which omits thwhere||.|| . denotes the Euclidean norm. Thus, the results on the
subdivision step and uses spherical patches coveringdtiefsc - approximation order of the MST imply analogous results fer t
Gauss images which do not necessarily possess singulas pe#ausdorff distance of the associated spatial domains.
at the exceptional isotropic normals. However, the resgla-  Finally, combining relation (28) and the approximationerd
rameterizations of the envelope surfaces may possessainguof the quadratic spline approximak of the MST described
ties and points where the both numerators and the denominasbve yields the following result: The approximation ordér
of (26) vanish simultaneously. the envelope algorithm presented in this paper is equal 1a 3.

We have implemented the algorithm using floating pointher words, anytime we double the number of control poimts i
numbers. In order to avoid numerical problems, we usedch direction, the bound on the error is reduced by therfacto
the Bernstein-Bézier representations of the trianguéchpes. of 8.

Bounds on the error introduced by an approximate computatio Now, we can apply the exact envelope computation method,
of the exceptional lines and several examples have been preich was described in the previous section, to each polyno-
sented in [60]. mial segmenp of the quadratic spline surfad®. Recall that

u(s,t) >0 Aw(s,t) >0 A 1—u(s,t)—uv(s, t) >0, (27)




Figure 7: The bisector surface (blue) and the two branchéseoénvelope (red and green) in Example 2, along with
the trimmed inner offsets (light red and light green) — witheelf-intersection (top right) and with self-intersecti
(bottom left and right).

the trimmed inner offsets of the boundary surface of a domaiB. For a given distancé, compute the corresponding exact
can be obtained by 1) subtracting the offsetting distanaen fr trimmed offsets of the boundary surface of the volume rep-
the 4th component of the MST (which represents the radius of resented byP by lifting the corresponding medial surface
the maximal inscribed balls) and 2) restricting the modifiésIT transform in the direction of its last coordinat@:, v) and
to points with non-negative fourth components. Consedyeéht restricting the domain to points satisfyingu, v) > 6.
the piecewise quadratic approximatiBhof the MST is avail-
able, we can use it for computing exact trimmed offsets of tBgample 2 We consider the volum& < R? bounded by the
boundary surface of the volume which is represente®byVe two surface patches
implemented this by adding another trimming procedure to ou
algorithm, which restricts the piecewise quadratic MSTHe t s1(u,v)
domain where the radius is non—negative.

Finally, we summarize the main steps of the algorithm for
computing trimmed offsets of general free-form volurivewith
single-sheeted medial surfaces transforms.

_ 1..\T
= (u,v,3uv) . (29)
so(u,v) = (u,v, %(u2 +0v?) + 1) ,

(u,v) € [-1,1]%, and approximate the associated MST by a
piecewise quadratic surface consisting of 12 triangulacipess.

Algorithm 1 Computation of trimmed offsets of general freel "€ Maximum distance error is equal @8% of the diame-

form volumes)’ with single-sheeted medial surfaces transforn{§! Of the bounding box. For each of these patches we param-
eterize the envelope surfaces as described in the prevémds s

1. Compute the centexsand the radii- of the maximal in- tion. All 12 patches of the approximation quadratic spline-s

scribed balls ol for evaluating the points of the MST andace possess only space-like points and no additional siibdi
choose a suitable parameterization. sions of the parameter domains are needed. Finally, Figowssh

the two branches of the approximating envelope (red anchyjree
2. Construct an approximation of the MST by a quadratice quadratic spline approximation of the medial surfadeg(p
spline surfacé. and the two branches of inner offsets (light red and lighegje



N
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Figure 8: The bisector surface (blue) and the two branchéseoénvelope (red and green) in Example 3, along with
the trimmed inner offsets (yellow and purple) — without satersection (top right) and with self-intersection (fooh
left and right).

In case of the self-intersecting inner offset, the trimmegians proximated by 144 triangular patches and no additional isubd
on the envelope are illustrated. visions are needed. Fig. 10 (right) presents the two branche

_ o inner offsets (yellow and purple) of the NURBS surface which
Example 3 We consider another volume iR*. Similarly to are trimmed according to their self-intersection

the previous example, we approximate its MST by a quadratic

spline which consists of 24 triangular patches. The maximum

distance error is equal tb.83% of the diameter of the bound-% Conclusion
ing box. Again, for each of these patches we parameterize the

envelope. All patches possess only space-like points aratlno
ditional subdivision is needed. Fig. 8 shows the two braadie
the approximating envelope (red and green), the quadialtiees
approximation of the medial surface (blue) and two brandfe
inner offsets (yellow and purple) which are trimmed if théf-se
intersection occurs.

In this paper we presented an algorithm for computing bound-
aries and trimmed offsets of volumes given by piecewise
Squadratic medial surface transforms. Since polynomiadicptéc
patches ilR?:! belong to the class of MOS surfaces and are capa-
ble of producingC! approximations to free-form surfaces con-
sidered as medial surface transforms, our algorithm carsbeeé u

Next, we present two additional examples which reflect sofig& Computing rational approximations of volume boundsiad

of the difficulties of real-world situations. all their offsets.
By approximating the MST surface, three main advantages

Example 4 We consider a volume bounded by a watch-shapac to be expected. First, the offsets of the approximation s
NURBS surface of degre@, 2) given by a control net of x 13 face corresponding to the MST are represented exactly aad in
control points and a plane (see Fig. 9 (left), the single e globally consistent way. Second, only one approximatiep &

of the NURBS surface are distinguished by color). The assegquired. Once this is done, all offsets are available. d e
ciated MST was approximated by 64 triangular patches andtrimming procedure is significantly simpler since it is ashéd
additional subdivisions are needed. Fig. 9 (right) showestvo by imposing a polynomial inequality.

branches of the approximating envelope (red and green)rend t Currently, we can handle objects with an MST consisting of
two branches of inner offsets (yellow and purple). Innesef§ only one sheet. It is a challenging problem to generalize thi
are trimmed because of their self-intersection. method so that it can be applied to topologically more comple

] situations.
Example 5 We consider a volume bounded by a NURBS sur-

face of degred2,3) given by a control net oft x 6 control

points, a plane and two canal surfaces (see Fig. 10 (le&), &cknowledgments B. Bastl and M. Lavicka were supported

single patches of the NURBS surface are distinguished liyrcoby Research Plan MSM 4977751301. B. Bastl, B. Juttler
the visible parts of the canal surfaces are displayed withbata- and M. Lavicka were supported by grant AKTION 2009/5
metric lines to improve contrast). The associated MST was §elEB060905).



Figure 9: Left: A volume bounded by a watch-shaped NURBSamerfof degre€2,2) and a plane; Right: Two
branches of the volume boundaries (red and green) in Exafy@ng with the inner offsets (yellow and purple).
Since the volume is symmetric, we present only one quarter.

Figure 10: Left: A volume bounded by a NURBS surface of ded8), a plane and two canal surfaces; Right:
Trimmed inner offsets (yellow and purple), see Example 5.0étted the offsets of the canal surfaces to emphasize

the offsets corresponding to the NURBS surface.
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