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Abstract

3D shape modeling is a crucial component of rapid prototyping systems that

customize shapes of implants and prosthetic devices to a patient’s anatomy.

In this paper, we present a solution to the problem of customized 3D shape

modeling using a statistical shape analysis framework. We design a novel

method to learn the relationship between two classes of shapes, which are

related by certain operations or transformation. The two associated shape

classes are represented in a lower dimensional manifold, and the reduced set

of parameters obtained in this subspace is utilized in an estimation, which is

exemplified by a multivariate regression in this paper. We demonstrate our

method with a felicitous application to estimation of customized hearing aid

devices.
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Figure 1: Exemplified Shape Estimation Problem.

1. Introduction

3D shape modeling and estimation is a crucial task in custom design of

anatomical shapes. A sample shape estimation problem in rapid prototyping

of hearing aid devices is depicted in Figure 1. For a comfortable fit, it

is important that the shape of the hearing aid matches the patient’s ear

geometry. The two classes of shapes, here patients’ 3D raw ear impressions

and the output hearing aid shapes, are normally related by certain operations

or a transformation F . Current practice involves mainly a manual design

even with a recent transfer of this process to a CAD environment. The

goal of this work is to automate the process of hearing aid shell design and

similar other prosthetic part design for increasing patient comfort, efficiency,

repeatability, and throughput in customized rapid prototyping systems.

1.1. Related Work

Our approach to solve this problem is to resort to an arsenal of shape

learning tools from the celebrated statistical shape theory (Kendall [1], Book-

stein [2], Dryden and Mardia [3], Cootes and Taylor [4] et al.). The classical
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Bookstein shape representation entails removing the translation, rotation,

and scale, and what remains constitute the interesting geometric properties

of a shape. After such a pre-alignment of shapes to a common coordinate

space, the structure of the shape variability can be investigated for instance

through a covariance analysis, and the principal components (PCs) can be

computed to obtain the modes of variation around a mean prototypical shape.

One of the first applications of PC analysis (PCA) to images was pre-

sented by Turk and Pentland [23] to model faces in a reduced PC space for

face recognition. In [6], a statistical shape model was built for the human ear

canal (as point clouds), where the correspondences were obtained by warp-

ing a template onto shapes, which are annotated with 18 landmarks by a

specialist. In [7] a smoother dense mesh was obtained by a Markov field reg-

ularization of the correspondence field. In these works, the ear canal model

is used for analysis of gender differences in its shape, and for its deformation

by mandibular movement [8]. Manual marking of landmarks is not suitable

for rapid prototyping systems, moreover, finding stable feature points in all

shapes is difficult due to individual variations. The correspondence problem

was alleviated in an Eulerian shape representation via signed distance func-

tions (SDFs) in [9] that used PCA, which we also follow in this work. It is

known that the SDFs do not form a vector space, and the PCA will not nec-

essarily result in SDFs in the 3D embedding space. However, the 3D shape

surfaces are on a 2D manifold, and only the zero level sets of their SDFs

contain the desired shape information, hence the analysis such as PCA will

still be valid as evidenced by the previous art [9]. A shape prior was built

to guide the segmentation of objects in images in [9], which is different from
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our problem. Variations on PCA such as kernel PCA [10, 11] and principal

factor analysis [12] were employed for statistical shape analysis, although

PCA is preferred in our work for its optimality in dimensionality reduction.

In a recent work [13], regression techniques are utilized to investigate de-

grees of correlation and dependence variation between shapes of different

structures within the brain. Our method is different in mathematical details

and includes deformation of predicted shapes via predicted difference shapes

and fitted planes, with a focus on shape generation for prosthetic devices.

In [14], Frèchet expectation was used to generalize univariate regression to

manifold-valued data to study the effect of aging on brain shape in patient

populations.

Another related body of work exists in computer graphics. For instance,

in SCAPE [24], given a sparse representation such as a partial view over a

human body, a method to obtain a complete mesh model of the body is pre-

sented. In addition, given marker motion capture data, a full 3D animation

of a moving person is produced. Separate models of body deformation for

pose and body shape changes in humans are learned in a reduced PC space.

Similarly, in Allen et al’s work [25], a dense mesh is fitted to a sparse marker

data for various applications such as creating hole-free surfaces, and synthe-

sizing new human body shapes using PC modes. The latter application is

quite interesting as human features such as height, and weight of an indi-

vidual are correlated with its principal components, and this relation is used

to generate a new individual with prescribed features, e.g. a given height

and weight. The idea resembles our work, however, rather than directly re-

lating features, which are not readily available, to its shape representation,
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Figure 2: Each shape from the target class (gray) on the second row are related to the

reference shapes (dark blue) on the first row by a certain transformation.

we directly relate the two corresponding anatomical shapes of an individual,

which are tied to each other through a hearing aid designing process.

Our work is also similar in spirit to the image analogy problem [5], where a

new painting D is produced by the input photograph C, by copying matching

patches from a prior painting/photo pair A/B. The explicit relation between

the pairs is not learned however, which is our aim in this work.

1.2. Our Contribution

Our main contribution is the development of an automatic shape trans-

formation method to be used in various applications like customized design

of anatomical parts. We first introduce our shape estimation methodology

following a felicitous application to hearing aid design, in which a coupled

pair of shapes are involved as shown in Figure 2. The shapes in the first

class are the surface models of the raw ear impressions of patients, and the

shapes in the second class are the related processed canal model into which

the hearing aid components will be placed. The raw shapes are characterized

by the ear canal (long and thin structure on the top) and the external ear
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parts (round bowl-like structure in the bottom, called concha) [15], and the

processed shapes, which we call as the target shapes, are characterized by

mainly the canal geometry of the raw shapes.

As can be seen, these two shape classes are related to each other by

certain operations, and the problem at hand is, without knowing the trans-

formation between them and presented with an example set of shapes from

the two classes, to be able to learn the relation between these two shape

spaces explicitly. Our motivation is also tied to not having to resort to fea-

ture extraction, which often is more prone to errors with variations in the

shape geometry. For instance, problems with aperture feature detection in

ear impressions, were discussed in a feature-based alignment of ear canal

models work of Zouhar et al [27].

We note that the approach by Kilian et.al [16], who utilized Riemannian

metrics for both a rigid and an isometric deformation among shapes, would

be an alternatively applicable approach for our problem. The geodesic paths

in shape space with the devised metrics were computed to morph an initial

or boundary value shape into a set of shapes that sample the continuous path

in between the shapes. This would be quite useful if we already partitioned

the given shape space into a set of prototypes, obtained from a principled

and sufficiently narrow categorization of the shapes into meaningful clusters.

One could use the computed geodesic path between a prototype source and

target shape and then transfer the same deformation over the given shape to

obtain the output shape.

Here, first, a transformation is learned to generate a target shape given

a new shape from the first class. We investigate the structure of the shape
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variability, through a covariance analysis, and the PCs are computed to ob-

tain the modes of variation around the mean shape (Figure 3). We note that

SDF shape representation is used in this work, and PCA is performed on the

SDFs. One advantage of looking at PCs is that they can be geometrically

interpreted in terms of shape characteristics [29]. For the raw shapes, the

first three PCs account for 64.4% of the shape variability (the 4th PC ac-

counting for 72.8%), respectively, and primarily involve enlargement towards

external parts and canal expansion, widening and straightening vs. shrink-

age and bending in general. For the target/processed shape class, the first

three PCs account for 83.4% shape variability (the 4th PC accounting for

86.8%), measure similar effects. The 4th PCs measure an anisotropic scale

(thinning at the center of the shape vs a widening). A typical discrete shape

representation has on the order of 103 dimensions (e.g. a surface mesh with

∼ 5000 vertices, or an SDF grid with 106 voxels), and from such analysis,

one can see that the two shape classes, say R, and T , can be represented by

their first several PCs, and this suggests a projection onto a low dimensional

space spanned by these few PCs, say Rp, and Tp.

The idea here is that the higher order PCs usually account for local,

smaller and nonlinear variations that can introduce noise into a global es-

timation, hence performing a shape estimation over a reduced dimensional

manifold effectively filters out noise and outlier effects and generates an ef-

ficiently well-transformed shape as close as possible to the expected output

shape geometry. This is as opposed to a higher sensitivity of feature-based

methods to noise and variations in shapes, for instance as in extracting fea-

tures to devise rules for a rule-based shape design.
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Figure 3: The first four principal components (PCs) and their variations around the mean

(mean=0 variation) for both the reference and target shape spaces.

We can also view this analysis as the two related shape spaces modeled

by Gaussian shape probability densities hence with only a mean prototypical

shape together with its principal modes, i.e. the shape variations. Then a

joint probability density could be written as:

P (R ,T)=
exp(− 1

2
(R−mR)TΣ−1

R (R−mR)− 1
2

(T −mT )TΣ−1
T (T −mT ))√

2π|Σ R|
√

2π|Σ T |
(1)

where m are prototypical mean shapes for each class. If we further model

the two shapes separately by their respective Gaussian probability densities,

then what remains is two linear shape spaces independently represented. A

likelihood probability for the target shape class can be written in this case

simply as:

P (T |R ) =
exp

(
−1

2
(T −m T )TΣ −1

T (T −m T )
)√

2π|Σ T |
(2)
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Our main observation was that through the likelihood function, the main de-

scriptor that characterizes each shape space, i.e. the covariance matrices, can

be tied to each other (ΣT = FΣΣR) as we are interested in estimating a simple

transformation F to explain the relationship between the two shape classes:

F ◦Rp = Tp. An intuitive approach here is to carry out a multivariate regres-

sion analysis between the PCs to obtain a linear transformation between the

two low dimensional shape spaces. Thus, the relationship between the two

approximated shape spaces is incorporated into the multivariate regression

formulation to introduce a coupling effect and to suppress most of the higher

order variations and nonlinear effects. The estimated transformation matrix

along with an auxiliary class of difference shapes introduced will provide a

proof of concept for a desired shape estimation framework, and achieve a

good performance.

Modeling of the relationship between two classes of shapes on a linear

manifold will be described in Section 2 exemplified by the Hearing Aid Ap-

plication. As a preprocessing we design a biased registration for shapes that

significantly differ in geometry, as described in Section 2.2 followed by the

shape estimation details in Section 2.3-2.5. The results are presented in

Section 3 followed by conclusions and discussions in Section 4.

2. Shape Estimation for Hearing Aid Shell Rapid Prototyping

In this section, we explain the details of our general shape estimation

methodology, exemplified on a particular rapid prototyping application, which

is automatic estimation of the hearing aid shells from individual patient ear

impression surfaces.
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2.1. Data Description

The design process starts with a rough mold of the patient’s ear, so called

undetailed shell (shape), that is then detailed by a specialist [17]. The

detailing process includes cutting unused parts based on the desired shell

style and the geometry of the patient’s mold (Fig 4), rounding edges and

other operations needed to fit the electronics in the shell. This is a time-

consuming process that is based on the skills and experience of the specialist.

Alternatively, the specialist can carry out the detailing on digitized ear shells

using CAD software systems, which are still not-fully automatic. The initial

motivation of our work was to remove this bottleneck in rapid prototyping

systems for hearing aid devices, however, these ideas can be applied to similar

shape estimation problems.

In our learning approach, digitized undetailed ear molds and their corre-

sponding manually detailed molds, the latter of which are used in training

and validation and referred to as the ”Ground Truth” (GT) shapes, are ac-

quired from a specialist. A 3D point cloud is obtained and triangulated to

build a polygonal mesh surface, which is then transferred into an SDF rep-

resentation. For conversion from a triangulated mesh to a voxelized SDF

shape, the mesh is first placed over a fixed volumetric grid (e.g. a voxel grid

of 1003 in this work), so that inside and outside of the shape can be marked

over the grid at each voxel. After placement over to the volumetric grid, the

voxels over the shape surface are marked as zero, and distances from each

voxel coordinate to the surface are computed utilizing fast marching [21]. To

construct the SDF, finally, positive distances are used outside the shape and

negative distances are used inside the shape.
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Figure 4: Ear impression: a typical raw (undetailed) shape (blue); target (detailed) shape

with cutting planes (red).

2.2. Biased Shape Registration

For the method presented here, there are two shape alignment problems:

(i) all the reference, i.e. undetailed, shapes in the data population should

be aligned. This is needed to factor out rigid pose variations in a shape

population to prevent their influence in the PC analysis. (ii) The undetailed

shapes must be aligned with the corresponding target detailed shapes in

order to compute an auxiliary difference shape, which will be used in further

refinement of the shape estimated directly from the shape regression step.

Iterative closest point-ICP algorithms are widely used for automatic global

rigid alignment [28]. Based on a variant of ICP, the rigid alignment of all the

undetailed shapes were carried out by the method presented in [27] before

they were converted to a voxelized signed distance transform representation.

As a rigid transformation model, 3D rotation and 3D translation parameters

were used, and each undetailed shape in the training set was first registered to

an arbitrarily chosen undetailed shape in the set. After the first step, an av-

erage template shape was computed, and all the shapes were registered to the

average shape. The groupwise registration of all undetailed shapes clearly

will not perfectly align all of the undetailed ear impressions. However, as
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pointed by Leventon et al [9], an SDF representation provides tolerance to

slight misalignment of shape pose because even if there is slight misalignment

between voxels of two shapes, their distance map values will still be highly

correlated.

For the second alignment problem, we utilized a a variational approach,

where, a rigid registration is typically based on a sum of squared distances

cost between the two shapes, Φu and Φd:

E(g) =

∫
Ω

Xα(Φu(X ),Φd(g(X )))[Φu(X )− Φd(g(X ))]2dX . (3)

Here, g is a rigid transformation g(X ) = RX + T , X ∈ R3, with param-

eters gi of 3D rotation matrix R , and 3D translation T . Φu and Φd are the

undetailed and detailed shell SDFs defined over the domain Ω. Here,

Xα =

 0, min(|Φu|, |Φd|) > α

1, min(|Φu|, |Φd|) < α
(4)

is a characteristic function to take into account in the energy domain those

points that are in a band around each shape, where the band radius α needs

to be fixed according to the expected maximum distance between two shapes

[18].

Applying the rigid registration with min indicator function (Eq.3-4) to our

problem leads to failure in most cases as seen in Figure 5 b, e and h, even with

”good” heuristic α parameter values. The reason is that the detailed shape

Φd is significantly smaller than the undetailed shape, and parts of Φu that do

not exist in the detailed shell still influence the registration. In order to avoid

this problem, we use a ”biased” energy in a similar variational formulation.

We propose a modified indicator function with a distance restricted to a band
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Registration of detailed ear impressions to undetailed: (a,d,g) shapes before

registration; (b,e,h) shape (red) after original registration; (c,f,i) shape (red) after biased

registration by Eq.(6).

around both Φd and Φu, but constrained mainly by the smaller of the two

shapes:

Xβ(Φu,Φd) =

 0, max(|Φu|, |Φd|) > β

1, max(|Φu|, |Φd|) < β
(5)

Deriving the energy functional with the max indicator function, we obtain

the corresponding biased rigid registration equation:

∂gi
∂t

=

∫
Ω

Xβ
(
Φu(X),Φd(g(X))

) [
Φu(X)− Φd(g(X ))

]
〈
∇Φd(gX),

∂g(X)

∂gi

〉
dX (6)
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where t is an iteration parameter to update the registration parameters gi,

and < ·, · > indicates the inner product operation in R3. Figure 5 depicts

results in ear shell registration, where the biased alignment was successful in

(c), (f), and (i). We note that our biased registration idea resembles another

variant of ICP-based registration for point cloud alignment by [26]. In that

work, corresponding point pairs were rejected based on a maximum distance

threshold between the points. Our biased registration incorporates the same

idea into an energy between shapes represented by SDFs, and achieves the

same desired constraint in a different setting.

2.3. Shape Regression

After alignment of the shapes, i.e. their SDFs, a covariance analysis is

carried out over ΣR and ΣT separately, and the PCs are computed respec-

tively. The shapes are projected onto a lower dimensional linear manifold

via projection matrices PR and P T formed with a handful of PCs. For in-

stance, the number of modes needed to explain 97% of the variability in the

data resulted in a dimension k = 19, which is the number of PCs retained.

On this reduced space, an explicit mapping between the undetailed and the

detailed shape spaces is sought. With N undetailed training shapes, each

was represented by its weights, Rp = wu = PR(R −m R), with R = Φu.

Then the N × k weight matrix W u is formed whose ith row is the vector

wu
i representing the ith undetailed shape. Similarly, W d represents the

weight matrix for the projected detailed shapes Tp’s. We would like to find a

model that best describes the relation between the two shape classes in this

highly reduced dimensional space, i.e., a mapping F between the two shape
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representations as:

F ◦W u = W d . (7)

The nature of the mapping depends on the complexity of the transformation

sought. As expected, not all PC combinations will provide linear relations.

Nonlinear local variations between the shapes show up for higher order PCs,

which are the eigen shapes whose eigen values are smaller than the largest k

eigen values. Although one could opt for sophisticated mappings between the

two shape spaces, a linear relationship between the reduced representation of

the two classes of shapes is chosen in order to mitigate the uncertainties in the

higher order local relations. As such, a lower dimensional space discards the

higher order and nonlinear variations of the shapes, and facilitates a linear

relationship. In order to find a general multivariate regression between all

the modes, we construct a linear least squares optimization problem:

W u F d = W d (8)

where F d is a transformation matrix that ”encodes the detailing process”:

it transforms the undetailed shape class into the detailed shape class. The

solution to this regression problem is simply given by:

F d = (W u TW u )−1W u TW d (9)

where W u , is of size N×k, where N > k. Therefore, it is an overdetermined

system, and the inverse of W u TW u exists. It was inverted by an SVD

decomposition [19] to obtain F d .

2.4. Auxiliary Shape Regression

For a customized design, the resulting detailed shell should conform ex-

actly to the input patient data. A solution is to recover the ear canal geome-
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(a) (b) (c) (d)

Figure 6: Two sample Aux shapes Ai’s superimposed over the undetailed shapes in (b)

and (d) obtained from the absolute difference of the pair of shapes: undetailed (dark blue)

and the detailed GT (gray) rendered together in (a) and (c), respectively. The difference

of the SDF values (hence unitless), is represented as a color map, where the lowest value,

0, is depicted by red color and increases towards blue.

try from the undetailed shell in between regions defined by the cutting planes,

or practically the ”cuts”, performed by the specialist. For this purpose, we

build a statistical model for a class of auxiliary shapes (Aux Shapes), to help

deform the estimated model towards the patient ear canal anatomy as de-

picted in Figure 6. The Aux field Ai are formed as the difference of shapes

in the two training sets, i.e. Φu
i −Φd

i , and indicates where the two shapes

match as expected after the input shape’s modifications. In Fig. 6, it can

be observed that the Aux shapes have mostly zero value in the canal region,

and non-zero values in the top canal and concha regions.

Using each detailed/undetailed shape pair in the training set we obtain

an aux field A = [A1 , ...,AN ] on which we perform a covariance analysis to

obtain a set of aux weights W a
i for each shape. We relate the aux weights

and undetailed weights via:

W u F a = W a (10)
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and estimate F a through multivariate linear regression. In the end, along

with the ”detailing” transformation matrix F d , a second regression matrix

F a is estimated to ”encode the crucial cutting operations of detailing”.

2.5. Automatic Shape Generation

After the training phase, a new undetailed shape is given as input to the

system, and the expected output is a corresponding detailed shell similar to

one that would have been produced by a specialist. The flowchart in Figure 7

summarizes our automatic shape generation method: the new undetailed

shape is registered to the mean shape from the training data as explained

in Section 2.2. The weight vector for the new undetailed shape is computed

by projection onto its PCs, then the weight vector for the detailed shape is

estimated through multiplying it by the stored regression matrix in Eq.(9)

to construct a regressed shape as in Fig 8-a. Next, aux shape weights are

estimated via the regression matrix F a in Eq. (10) to construct A. In Fig 8-b,

the A field is displayed over the regressed detailed shape.

2.5.1. Plane Estimation For Constraining Shapes

The regions of estimated A that have non-zero distance values correspond

to “cuts” that would have been made by the specialist. Those cuts usually

produce flat surfaces. Since the estimated detailed shapes do not always have

flat surfaces where the A shape is non-zero, a clustering algorithm will be

used to group points over the A surface. First, we threshold the A field to

obtain a mask shape M as follows:

M (X ) =

 0, if A(X ) > maskCutOff

1, else

17



Figure 7: Flowchart describing the proposed automatic shape generation method.

Here, a typical value for the threshold: maskCutOff = 1, which is fixed

for all the experiments. A point cloud is formed from the coordinates over

the domain of the M shape: X c = {Xi s.t. M(X ) = 0}, i.e. where M

equals 0. Hence, the possible ”cut” regions are collected in the constructed

point cloud, which usually contains two sets of clustered points: one over the

bottom of the canal and one over the tip of the canal regions. A noise re-

duction operation precedes the point cloud formation via two morphological

operations, openings and closings to eliminate isolated points over the mask

field M. Next, a k-means clustering algorithm is applied to the created point

cloud with k = 2 clusters. Two separate planes are fitted to these clustered

regions as shown in Figure 8-b3, where green and blue colored regions corre-

18



Figure 8: Detailed shape found through regression is depicted (in red/dark) on: (a1) the

undetailed shape; (a2) the GT detailed shape (in grey/light). (b1) estimated Aux shape;

(b2) the resulting clustering with 2 clusters; (b3) the fitted planes. Morph of an initial

detailed surface (c1) towards the undetailed surface constrained by planes, final result

(c2).

spond to the top and bottom ”cut” regions. Each plane is represented by its

normal Np and its distance to the origin, d. To fit a plane to a cluster of

points X c = [X0 , ...,Xn ] in a least-squares sense, we minimize the following

sum:

E(Np , d) =
n∑
i=0

(<Np ,Xi > −d)2 (11)

to estimate the plane normal Np and the location of its center d [20]. In the

implementation, this can be achieved by using PCA of the point cloud, and

choosing the two highest eigen value directions to define the plane tangent

vectors and the smallest eigen value’s eigen vector to define the plane normal.

Due to noise in clustered data points and estimation error, the fitted

planes are sometimes not perfectly aligned with the surface of the estimated

detailed shape Φd. In order to further align a fitted plane, we want to update

the orientation of the plane to better match the orientation of the detailed

shape surface near the plane. Therefore, to estimate a rotation matrix Rj

applied to the plane, we design an energy functional that will maximize the
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global alignment between the rotated plane normal and the shape surface

normal as follows:

E(Rj ) =

∫
Ωj

< Rj Np (X ),∇Φd(X ) > dX , (12)

where Ωj indicates either of the clustered regions at the top or bottom of

the canal (e.g. the green and red colored regions in Figure 9), hence index

j ∈ {t, b} . We maximize this energy via a variational approach by deriving

it with respect to parameters of Rj , and obtain the update equation for the

rotation of the plane normal as:

∂Rj

∂t
=

∫
Ωj

< ∇Φd,
∂Rj (X )

∂rji
Np > dX (13)

where rji , (i = 1, 2, 3), are the rotation parameters of the plane, in an expo-

nential coordinate representation of the 3D rotation. Two 3D rotations Rj

are estimated for both of the planes. We show sample plane evolutions in Fig-

ure 9 to illustrate the further correction on the orientation of the estimated

plane via updates of the rotation parameters in Eq. (13). The corrected plane

orientations with respect to the geometry of the shape can be observed.

2.5.2. Final Shape Morphing

After we estimate and correct the cutting planes in the detailing process,

finally, we morph the regressed detailed shape, i.e. the result of regression in

Eq.(9), completely towards the true patient geometry. The estimated planes

form a new binary mask Mp to indicate the desired regions that drive the

propagation of the estimated detailed shape towards the undetailed shell Φu,

except at the parts that are detected as “cuts” with Mp. The final part

of our algorithm involves a surface evolution by using the popular level set
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Figure 9: Sample plane evolutions for estimated detailed shapes: initial planes (left), after

2 iterations (middle), after 3 iterations (right). Color maps: (top) the continuous Aux

field A is shown, where red color represents low distances which increase towards green-

yellow-blue colors; (bottom) after thresholding the Aux field to obtain a mask field M,

and k-means clustering, two clusters remain: here blue color indicates the canal bottom

cluster, green color indicates the canal top cluster, and red color indicates the rest.

framework [21]. We define a partial differential equation (PDE) inspired by

[22] for shape morphing modified by the plane mask Mp in our problem. The

detailed surface is then deformed by the following PDE:

∂Φ̃d(X )

∂t
= Mp(X )Φu(X )|∇Φ̃d(X )|+ κ(X )∇Φ̃d/|∇Φ̃d(X )| (14)

with an initial condition Φd, which is the regression result, κ is the mean

curvature over the surface, and Φ̃d is the final shape generated as the output

of our algorithm. Figure 8-c shows the morphing of the Φ̃d, driven by the

sign of the Φu and continues to propagate until it reaches the planes via the

mask Mp(X ) and flattens out.
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3. Results

The hearing aid dataset utilized for the experiments includes 34 unde-

tailed and the corresponding detailed shapes. Cross validation tests were

performed as 34 leave-one-out experiments, where in each test, 33 of the

shapes were used in the training and the remaining single shape was used in

the testing phase. Table 1 presents average performance measures for these

experiments. The Dice measure between two shapes A and B represented

in the voxel domain is defined as 2#(A
⋂
B)/(#A+ #B), where # denotes

the number of voxels on and inside a shape A. The average Dice measure

and its standard deviation (std) between the GT, i.e. result of manual de-

sign, and the regressed detailed shells (result of Sec.2.3) show about 70± 7%

overlap, which to a degree can justify using a linear transformation for re-

lating undetailed and detailed shapes. The final deformed shapes showed

85± 5% overlap with the GT shape. The average absolute distance between

the zero level sets of the ground truth and the estimated detailed shells for

regressed shapes were 1.50± 0.60mm, whereas for the deformed final shape,

it was 0.43±0.25mm, which showed improved proximity. The manual design

specifications allowed for maximum of 0.5mm error for a comfortable fit to

patient’s anatomy. The maximum distance between the GT and estimated

shapes were 5.0 ± 1.7mm for the regressed result, and 3.6 ± 0.9mm for the

final shape. Although the specifications for manual design are set to 0.5mm,

the errors are unexceptionally contained within the patient’s ear geometry by

construction of the method, hence will not produce spiky or outward bulging

shapes.

A popular method to compare two different studies is called the Bland-
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Cross Validation/Average ± Std Regressed Shapes Final Shapes

Dice measure (%) 70.76 ± 7.55 85.03 ± 5.69

Mean Absolute Distance (mm) 1.50 ± 0.60 0.43 ± 0.10

Max Absolute Distance (mm) 4.98 ± 1.72 3.59 ± 0.94

Table 1: Dice measure, Mean Absolute Distance, and the Maximum Absolute Distance

between the estimated and the GT shapes for all 34 leave-one-out tests.

Altman method, which aims to measure consistency of the measurements

[30]. The method states that for two clinical methods to be consistent, the

average difference between the results of two measurements should be zero

and that 95% of the difference should be less than two standard deviations.

Figure 10 shows a scatter plot of the shape volume measurements resulting

from the manual and automatic shape estimation. Most of the points are

within two standard deviations which indicates that the manual and auto-

matic results are consistent despite the fact that there is a consistent bias

toward over-estimation of the target shape with the automatic method.

This is a natural outcome of the last step of our method in which the

regressed shape deforms to the reference shape constrained by both the two

estimated cut planes and the reference shape. However, this over-estimation,

without exception occurs at the cut regions, and still fits inside the patient

anatomy as depicted by color maps of distances to the GT shapes in Fig-

ures 11. Similarly, some qualitative results for the hearing aid dataset, de-

picted in Figure 12 make the same point. The errors as expected are dis-

tributed around the cut regions: the top and the bottom of the canal, how-

ever, the estimated shapes are observed to be in good agreement with the
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Figure 10: Bland-Altman plot for comparing volume measurements between the GT and

the estimated shapes.

GT shapes, particularly in the canal region.

Limitations: In Figure 13, for the pair of shapes (a,b), note that the

canal of the patient is short, therefore the top part of the shell was not cut

at all. Our algorithm hence could not estimate the cutting plane at the top,

and fitted two planes to the bottom. This single cut plane situation can

be corrected by detecting the proximity of the estimated planes. Similarly,

the experiment in (c,d) shows the importance of correctly estimating the

orientation of the cutting plane. With a non-perfect bottom plane as in (d),

the resulting shape deformed all the way towards the cutting plane beyond

the GT shape. Further improvement on plane estimation could be carried

out, however, we suspect that such variations will occur even in cases when

a specialist does the detailing twice on the same shell, or even when two

different specialists were to design the same person’s shell. However, such

data were not available due to high demand, and time-to-market restrictions
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(a) (b) (c) (d)

Figure 11: Typical errors in the shape estimation are made in the bottom of the canal due

to slight misestimation in the position and orientation of the cutting planes.

in the product line (that is, two different specialists did not work on the same

person’s data).

Generally, a good idea to overcome the limitations of a full automatic

approach is to devise a hybrid solution where the specialist provides control

over the cutting planes, and if necessary intervenes to correct them, as the

cutting plane errors seem to be the bottleneck of automatic detailing of hear-

ing aids. As depicted in Figure 14, such an interaction can be inserted into

our framework as the steps of shape regression, cut plane estimation, and

final morphing constrained by the cut planes are separately executed.

Our experiments demonstrated a proof of concept of the presented method

to generate a detailed shell close to that would be produced by a specialist,

and good overall performance measures are obtained in all the tests. Further

large scale validation is necessary for a rapid prototyping application.

4. Conclusions and Discussions

We presented a general framework to automatically generate a target

shape from a reference shape via learning the relation of these two shape
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(a) (b)

(c) (d)

Figure 12: (a,b,c,d) Undetailed input shape (left) and estimated detailed shape with a

colormap that depicts the distance to the GT detailed shape which is overlaid over the

former two with a transparent dark color.

classes on a much lower dimensional manifold than the original shape space.

As a specific application, our system learns how to detail a hearing aid shape

by estimating a mapping from a patient’s digitized ear mold to the detailed

shell. Further refinement of the shape is achieved by deforming the estimated

shell towards the undetailed shell in regions where the shapes should fit us-

ing an auxiliary difference shape class. This component could be modeled

according to the set of operations and rules required by the specifics of the

customized design application. The mapping between two shape classes was

estimated through a linear multivariate regression to avoid local nonlinear ef-

fects. This framework contains several known components such as variational

registration, PCA for shape analysis, and linear regression, however, it is the
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(a) (b) (c) (d)

Figure 13: (a,c) Blue/dark the undetailed input shape; (b,d) Light gray GT detailed shape,

Red/dark the estimated detailed shape (superimposed on the transparent undetailed shape

view). The two estimated cutting planes are also shown.

first time they are combined for a novel automatic shape transformation.

Possible future extensions include replacing some components of this work

with other dimensionality reduction techniques such as kernel PCA or nor-

malized PCA. However, a more interesting development involves a nonlin-

ear manifold approach. This is part of our current work, in which the two

related shape spaces are modeled via non-parametric probability densities

[31] rather than the underlying independent Gaussian probability densities

in Eq.(1) which were indirectly coupled via an estimated mapping in this

paper. Another direction for improvement of the shape estimation method-

ology is to use anatomical features or an atlas over the ear impression surfaces

to guide the estimation process. Furthermore, various other applications of

our technique to custom design of various anatomical parts such as dental

implants and prosthetic hips can be specifically designed.
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(a) (b) (c)

Figure 14: Interaction: Errors in the cut plane orientation estimation in (a) can be cor-

rected by a modification provided by the specialist at the top of the canal in (b), and at

the canal bottom in (c).
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