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Improved Initialisation for Centroidal Voronoi Tessellation and Optimal Delaunay

Triangulation
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Abstract

Centroidal Voronoi tessellations and optimal Delaunay triangulations can be approximated efficiently by non-linear optimisation

algorithms. This paper demonstrates that the point distribution used to initialise the optimisation algorithms is important. Compared

to conventional random initialisation, certain low-discrepancy point distributions help convergence towards more spatially regular

results and require fewer iterations for planar and volumetric tessellations.
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1. Introduction

Centroidal Voronoi tessellations (CVTs) [1] and optimal De-

launay triangulations (ODTs) [2] are highly regular tessella-

tions of an Euclidean region. Each cell within a tessellation

contains a point sample, or site, to which the cell belongs. The

properties of CVTs and ODTs mean that their sites are spatially

very evenly distributed: as sites in a CVT or ODT tend to be

close to a regular hexagonal lattice, triangulating them results

in a large proportion of equilateral triangles. Such regular ar-

rangements are highly desirable for many applications, such as

solving partial differential equations using finite element anal-

ysis and the construction of response surfaces. Hence, CVT

and ODT generation is a problem studied widely in geometric

modelling and numerical analysis.

Given a set of sites in a Euclidean region, the Voronoi cell

of a site is the subset of the region closest to the site. The set

of all Voronoi cells is referred to as the Voronoi tessellation of

the region. A CVT is a special type of Voronoi tessellation in

which the site of each Voronoi cell is positioned at the cen-

troid of its cell [1]. This results in a very regular tessellation:

in a globally optimal 2D CVT, each Voronoi cell far from the

boundary of the region converges to a regular hexagon as the

number of sites goes to infinity [3]. An ODT is the triangu-

lation of a Euclidean region that minimises the interpolation

error of a given function [2]. Typically the function of a stan-

dard elliptic paraboloid is used. In this case, when the sites

are fixed, the optimal connectivity is given by the Delaunay tri-

angulation of these sites. Ignoring boundary effects, the inte-

rior triangles tend to be regular when the number of sites is
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sufficiently large. Given a fixed number of samples, the glob-

ally optimal distributed sites for CVTs and ODTs have a de-

terministic layout. In practice, a good approximation can be

obtained with an optimisation method which iteratively updates

some initial distribution of sites. The ODTs and CVTs resulting

from this have slightly different tessellation properties: when

triangulated, CVT approximation produces more nearly regu-

lar triangles in 2D meshes, while ODT approximation results in

fewer slivers (degenerate tetrahedrons [4]) in 3D meshes [5].

Point distributions produced by CVT and ODT methods are

uniformly dense and isotropic and, locally, neighbouring sam-

ples are very evenly spaced [6]. For geometric modelling and

graphics applications, such sampling is very useful as indicated

by the blue noise criterion: there are minimal spikes of energy

in the mid to high radial frequencies, meaning that no additional

structure is introduced by the sampling process [7]. Simpli-

cies generated from the sampling are also close to equilateral,

minimising numerical problems. Therefore, CVT and ODT ap-

proximations have been applied to various problems, including

remeshing [5, 8], dithering and finite element mesh generation.

CVT generation relies on probabilistic iterative solutions

such as Lloyd’s method [9]. Liu et al. [8] proved that the

piecewise CVT energy function is C2 continuous for convex,

compact, regions. Hence, it can locally be optimised by non-

linear numerical optimisation methods. Consequently they use

limited-memory BFGS (L-BFGS) to improve the efficiency of

CVT computation. They also describe methods to compute

a density-controlled CVT (where the metric is locally scaled

with respect to a density function) using L-BFGS and pre-

conditioned L-BFGS (P-L-BFGS), yielding fast convergence

even for large-scale problems. Efficient ODT computation uses

Chen’s method [2], which is similar to Lloyd’s iterative CVT

method and has been further improved by Alliez et al. [5].

There are few results on improving the efficiency of the

optimisation methods or the regularity of the output sample

distribution by carefully choosing the initial site distribution.
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Figure 1: Two CVTs with 800 seeds in a square. Top row: random initialisation converging to an energy of 2.43704× 10−3. Bottom row: Hammersley initialisation

converging to an energy of 2.43135 × 10−3. (a) and (b) show non-hexagonal cells in the CVT highlighted in grey. While the difference of the energy is minor, there

is a significant improvement in the regularity of the Voronoi cells with the Hammersley initialisation when compared with the random initialisation. (c) and (d)

show the energy of the sites increasing with colour from blue to red to white. The histogram of the energy in each cell is illustrated on the right side and shows that

the energy with the Hammersley initialisation is more concentrated, mostly in the middle two bars. (e) and (f) show the dual triangulation of the CVT with colour

coding of the smallest angle in each triangle: blue indicates 40◦ and red indicates 60◦. The Hammersley initialisation improves the statistics of smallest angles

significantly.

Moriguchi [10] describes a method to improve the initialisa-

tion for CVTs by performing a greedy edge-collapsing decima-

tion on the input mesh and uses the vertices from the decimated

mesh as the set of input sites. It seems that this method re-

duces the number of iterations required to reach the same en-

ergy value. However, as results are only shown for 20 itera-

tions of Lloyd’s method on a single example mesh, it is diffi-

cult to evaluate how this initialisation behaves in general. Per-

forming mesh decimation to generate initialisation sites also

requires considerable computational effort, which may nullify

any speed improvement introduced during the optimisation pro-

cess. Moreover, it is not directly applicable to general bound-

ary representations or parametric surfaces. Finally, if the input

for this method is not a regular mesh, even the greedy edge-

collapsing method does not guarantee a regular distribution of

sites. In fact, if the number of sites required is similar to the

density of the input mesh – a situation common in remeshing –

the resulting initialisation of sites may be extremely poor, mak-

ing the method worse than random initialisation.

Intuitively, if the initialisation sites are close to the sites after

convergence, fewer iterations of the method will be required.

Thus, as the sites in a CVT and ODT are very regularly placed,

we note that using a more regularly spaced set of initialisation

sites has two advantages over a random distribution. Firstly,

it reduces the number of iterations required to achieve conver-

gence. Secondly, it allows the optimisation process to converge

to a more spatially regular set. In particular, a random sam-

pling tends to result in several regions of quite-regular hexagon

tessellation, separated by boundaries. Across these boundaries,

there exist clear mismatches in position and orientation between

the hexagonal tilings. In contrast, the initialisation approach in-

troduced here tends to produce far fewer boundaries, and often

provides a result comprising a single region. For example, see

Fig. 1, discussed in detail in Section 5, for the CVT of a square

generated using random and low-discrepancy initialisation.

Low-discrepancy, or quasi-Monte Carlo, sequences, whilst

not as spatially regular as CVT and ODT site distributions,

are point sets that have the lowest possible order of magni-

tude of discrepancy for an Euclidean region [11]. This means

that whilst they may have high levels of structure in the sam-

pling, as seen in radially averaged power spectrum density mea-

sures [12], they cover a region with a highly uniform density,

resulting in very few ‘holes’ in the distribution. In addition,

they are very fast and simple to compute. Thus, in this paper

we investigate how they may be used as initialisation sites for

CVT and ODT methods in 2D and 3D Euclidean space, for
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both uniform and user-defined site density functions. We fo-

cus in particular on CVT in 2D and then consider more general

cases.

In the remainder of this paper, we summarise CVT and ODT

generation methods (Section 2) and low-discrepancy sequences

(Section 3). We then show how to redistribute the sites in these

sequences to match a specified density (Section 4), and evaluate

and compare CVT and ODT generation with random and low-

discrepancy initialisation (Section 5). Finally, we draw conclu-

sions in Section 6.

2. Computation of CVT and ODT

In this section, we introduce CVT and ODT in more detail

and describe the algorithms used for their computation.

2.1. Computation of CVT

The inputs for CVT are a set of sites X = (x1, x2, . . . , xn) ∈

R
d, to be distributed with respect to a density function δ > 0

in the compact region Ω ⊂ R
d . We define the CVT energy

function CVT as [1]

F(X) =

n
∑

i=1

Fi(X) =

n
∑

i=1

∫

Ωi

δ(x)‖x − xi‖
2dσ (1)

where Ωi is the intersection of Ω and Vi, i.e. the Voronoi cell

of site xi. Minimising F(X) ensures that each subregion Ωi,

and thus each site xi, represents approximately the same sub-

volume of Ω in the uniform density case. The properties and

computation of CVT have been well studied [1, 13] and several

algorithms, including Lloyd’s method [9], the Lloyd-Newton

method [14] and the Quasi-Newton method [8] have been pro-

posed for computing a CVT for a given region. We briefly re-

view these methods for the reader’s benefit.

2.1.1. Lloyd’s Method

Lloyd’s method [9], the prevailing method before Liu et

al. [8], introduced a quasi-Newton method for CVT computa-

tion. As an iterative method, in each iteration, Lloyd’s method

moves each seed xi of the Voronoi regionΩi to the centroid ci of

Ωi, followed by updating the Voronoi tessellation of the seeds.

2.1.2. Lloyd-Newton Method

Du and Emelianenko [14] proposed an algorithm for com-

puting a CVT by solving the system of equations xi = ci,

i = 1, . . . , n, iteratively. As pointed out by Liu et al. [8], this

is equivalent to minimising the function F =
∑n

i=1 ‖xi − ci‖
2 and

the result is not always a CVT since the minimisation may get

stuck at a non-zero local minimum of F, in which case the xi

do not coincide with the centroids ci, i = 1, . . . , n.

2.1.3. Quasi-Newton Method

Liu et al. [8] prove that the CVT function F(X) is almost

everywhere C2, except for some configurations seldom met in

practice. Based on the C2 property, they apply a quasi-Newton

method, the P-L-BFGS method, to minimise the CVT function

F(X) directly. This method uses the Hessian when available,

constructed from the gradients of previous iterations. This is

the fastest method currently available.

2.2. Computation of ODT

Compared to CVT, ODT is a more recent concept, proposed

by Chen and Xu [2]. A computational framework is proposed

in the same paper, which is the only existing method for com-

puting ODT.

2.2.1. Chen’s Method

The framework of Chen’s method is similar to Lloyd’s

method; it is also iterative. In each iteration, two steps are per-

formed: (1) compute the Delaunay triangulation of the seeds;

(2) move the seed xi to

Σxi∈S j
Vol(Sj)c(S j)

Σxi∈S j
Vol(Sj)

,

where S is a d-dimensional simplex for a d-dimensional prob-

lem and c(S) is the centre of the circumsphere of the simplex

S. In step (2) the algorithm moves the seed to a weighted com-

bination of the centres of circumspheres of all simplices ad-

jacent to the seed. To assure the monotonic decrease of the

objective function, in each iteration, only one vertex is moved

and then the Delaunay triangulation is immediately updated af-

ter the movement. This algorithm is extremely slow. Alliez et

al. [5] enhance it by moving all vertices in one iteration.

2.3. Summary of Existing Methods

Lloyd’s method and the quasi-Newton method both gener-

ate CVTs; the latter represents the state of the art and is hence

used in this paper. For ODT we choose the enhanced algorithm

of Alliez et al [5] for efficient computation. In this paper we

investigate the effect of random and Hammersley initialisation

for both of these methods based on timing and regularity of the

results.

3. Low-discrepancy Sequences

In this section we introduce the notion of discrepancy, the

low-discrepancy sequences used in this work, and how we ap-

ply them to CVT and ODT initialisation. A uniform distribution

is one in which any position for a point is equally likely: their

positions are chosen according to a uniform probability distri-

bution; there is an equal likelihood for a single point being at

any position. However, uniformity only refers to the probabil-

ity of each point considered individually, and thus, the posi-

tion of these points is independent of the position of any other

points, i.e. their position is uncorrelated. In practice, this of-

ten leads to areas of the domain which are over-sampled, and

areas which are under-sampled; samples can appear clustered

with large inter-cluster holes. Low-discrepancy sequences have

correlated positions: the probability of a point being at some

position is dependent on its location in the sequence and, in

turn, the positions of its neighbours. This means that the qual-

ity, in particular the spatial coverage, of the whole point set is

3



considered, rather than a single, independent point, resulting in

a more even coverage of a region. The spatial correlation can

be measured by discrepancy, which allows us to quantitatively

assess the size of gaps in the coverage. Sequences with low

discrepancy are desirable for this reason.

Discrepancy became an important concept since it was

demonstrated that as the discrepancy of a sequence decreases,

so does the approximation error of a (quasi) Monte Carlo evalu-

ation of a multivariate integral [15]; more importantly, the num-

ber of samples needed to achieve a given accuracy increases

more slowly for low discrepancy samples than for random sam-

ples, as the desired accuracy increases. This observation has

lead to the use of low discrepancy sequences in many differ-

ent fields, such as computer graphics [16], surface representa-

tion [17], area computation [18] and volume computation [19].

The discrepancy D∗(P) of a point set P of N points with respect

to a function f : Ω → R can be thought of as the difference

between the point-sampled numerical approximation of the in-

tegral
∫

Ω
f (x) dx and its actual value,

∣

∣

∣

∣

∣

∣

∣

1

N

∑

x∈P

f (x) −

∫

Ω

f (x) dx

∣

∣

∣

∣

∣

∣

∣

≤ D∗(P)var( f ), (2)

where var( f ) is the variance of the integrand [20]. Discrepancy

is often thought of as the Monte Carlo approximation error as

defined by Eq. 2, but can also be loosely considered as a se-

quences deviation from a uniform sampling of a domain [11].

By Eq. 2, lowering the discrepancy D∗(P) reduces the inte-

gral approximation error. Whilst there are various techniques

to measure the discrepancy of a sample set, we use the com-

mon star discrepancy D∗
δ
(P) of a set P with respect to a density

function δ,

D∗δ(P) = sup
γ⊆Ω

∣

∣

∣

∣

∣

∣

∣

∣

|P ∩ γ|

N
−

∫

γ
δ(x)dx

∫

Ω
δ(x)dx

∣

∣

∣

∣

∣

∣

∣

∣

,

where Ω is the domain sampled with P and | · | the number of

points in a discrete set. The subsets γ are usually restricted

to axis-aligned rectangles in Ω [11], but other classes of shape

may be used [12].

The Niederreiter and Sobol low-discrepancy sequences are

believed to be optimal [11] for sampling axis-aligned rectan-

gular regions, and use a lattice structure to enforce point dis-

tribution uniformity. However, they are generally avoided for

situations where sampling with non-axis-aligned shapes is re-

quired [21]. The Hammersley [22] and Halton [23] sequences

use the van der Corput sequence [24] for construction, and

whilst having the lowest possible order of magnitude of dis-

crepancy [11], they do not scale well in higher dimensions [11].

However, in low dimensions, they are more geometrically reg-

ular than the lattice-based methods.

Experimentally, we have found that the Hammersley se-

quence produces the best results for CVT and ODT initialisa-

tion, when compared to the Halton, Niederreiter and Sobol se-

quences, all three of which performed in a very similar way for

CVT and ODT initialisation. For this reason, we only compare

pseudorandom sampling with the Hammersley sequence and

1

10

1

10

Figure 2: A pseudorandom distribution (left) and the Hammersley sequence

(right), both shown with 100 point samples.

omit the other results here. Moreover, true random sampling

was investigated, seeded using atmospheric noise [25], but was

found to lead to similar results than pseudorandom sampling

and therefore details are also omitted.

3.1. The Hammersley Sequence

The Hammersley low-discrepancy sequence (see Fig. 2)

achieves the lowest possible order of magnitude of discrep-

ancy [11] and also performed best for ODT and CVT initial-

isation in initial experiments. The van der Corput sequence, ψb,

is a method to partition or sample the unit interval by maximis-

ing the distance between sample points, resulting in a uniform

distribution on that interval. The premise is that a positive in-

teger i can be expanded in base b by reflecting the b-ary repre-

sentation of the digits, resulting in a fractional number in [0, 1).

The bases bi are chosen pairwise co-prime. The Hammersley

sequence is deterministic, but, as the first co-ordinate i/N de-

pends on the size of the point set N, adding a single point alters

the entire distribution. Thus, N cannot be increased incremen-

tally, but must be defined prior to construction. For N samples,

we compute a component of the co-ordinate using:

ψb(i) =

k−1
∑

j=0

ai jb
−i−1, (3)

where i = 0, . . . ,N − 1. ai j represents the j’th bit of the b-

ary representation of i, and b the base chosen for the sequence.

In order to define the correct summation range, we compute

the number of bits required for the b-ary representation, k =

⌈logb N⌉, and thus j = 0, . . . , k−1. This defines a d-dimensional

Hammersley point:

p = ( i
N
, ψb1

(i), . . . , ψbd
(i)). (4)

4. Initialisation for CVT and ODT

In this section, we discuss the algorithms for generating ran-

dom and Hammersley point samples, which we use as initialisa-

tion sites for CVT and ODT methods. In particular we discuss

the initialisation for density-controlled CVT. Note that there is

no method in the literature to generate an ODT with respect to

a density function.
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It is interesting to note that Romero et al. [6] briefly tried

Hammersley points as an initialisation for CVT, but did not ex-

pect, and therefore notice, the improvement in performance and

quality in their results.

Note that using a hexagonal grid to initialise the distribu-

tion instead of pseudorandom or Hammersley points would also

be an option. However, generating such a distribution which

places an exact number of sites in a given shape is quite dif-

ficult. In addition, due to the local optimality of the initial

packing within a hexagonal grid, there is little possibility for

seeds to change position, which may be a hindrance when sam-

pling shapes with complex boundaries (especially as the gradi-

ent used in the optimisation may become too small, resulting in

immediate convergence). Moreover, using a regular grid ceases

to be useful when a non-uniform density function is desired, as

there is no simple way to generalise it to such a case. Also,

generating a regular grid is not computationally cheaper than

generating Hammersley points.

The k-means algorithm [9] is the discrete analog of the Lloyd

method for clustering n points into k clusters; the clusters parti-

tion these n points into k subsets. The k-means algorithm min-

imises the sum of the distance from each point to the centroid of

the cluster it belongs to. Previously, several attempts at careful

initialisation [26, 27] have been made to improve the k-means

algorithm. However, these methods apply only to a discrete set

of n points, but not a continuous domain and they are oblivious

to the geometric properties of CVT and ODT and therefore take

no special consideration of the regularity of results in CVT and

ODT optimisation.

4.1. Initialisation for Constant Density

The Hammersley sequences used in this work are constructed

using Eq. 4,

p = ( i
N
, ψ2(i)) ∈ R2,

in 2D and

p = ( i
N
, ψ2(i), ψ3(i)) ∈ R3

in 3D, for i = 0, . . . ,N − 1 and N points. To generate points

in the Hammersley sequence, we use the simple algorithm

described by Wong et al. [28] which requires approximately

log2( j) bitwise shifts, multiplications and additions. This al-

gorithm focuses on generating the Hammersley sequence in the

plane and the sphere, and is therefore extended slightly follow-

ing [29] to allow us to also sample in 3D. We use the prime

bases b1 = 2 and b2 = 3 in order to generate samples with the

most uniformly distributed pattern, and shift i/N by 0.5 to cen-

tre the sequence [28]. To generate pseudorandom numbers, the

C++ Standard Library random number generator is used.

As an example of the sequence construction, we present the

case of generating N = 5 points in R
2 in base b = 2. Using

Eq. 3, Table 1 shows the sequence expansion. Column ai shows

the integer input for i and its binary expansion. Columns 2–4

show the expansion of the digits. Column 5 shows the x value of

the co-ordinate, and 6, the y value; the summation of columns

2–4.

ai ai22−2−1 ai12−1−1 ai02−0−1 (i + 0.5)/N ψ2(i)

0→ (000) 0 0 0 0.1 0

1→ (001) 0 0 0.5 0.3 0.5

2→ (010) 0 0.25 0 0.5 0.25

3→ (011) 0 0.25 0.5 0.7 0.75

4→ (100) 0.125 0 0 0.9 0.125

Table 1: Generation of 2D Hammersley point set for N = 5 and b = 2. The

final two colums represent x and y positions for a point.

4.2. Density Controlled CVT Initialisation

For a non-constant density function δ in Eq. 1 the initiali-

sation for CVT generation has to be done more carefully. Du

and Wang [30] show that the energy of a seed x in a CVT is

inversely proportional to the density function, i.e.,

∫

Vi

‖x‖2dσ ∝ (1/δ)d+2/d,

for a d-dimensional Voronoi cell Vi. So initialising the optimi-

sation with respect to this relation is advantageous because it

avoids long-distance migration of sites during the optimisation

process, which would slow down convergence and potentially

inhibit any improvement over the random initialisation in the fi-

nal distribution. To adjust the Hammersley and pseudorandom

sequences, we introduce a function which maps a set of uni-

formly distributed sites X to a set X′ of sites that are distributed

according to the density function δ. This function should ide-

ally preserve the geometric properties of X, such that we can

still improve the CVT by using the Hammersley sequence as an

initialisation.

One approach is to use an error diffusion strategy [31]. How-

ever, this method produces an initial distribution which only ap-

proximately follows the prescribed density. We improve upon

this by implementing a discrete approximation of the inverse

density (if an analytic expression is not given) in order to ini-

tialise a CVT with respect to δ: X′ = CDFδ(X), where CDF

represents the cumulative density function. As δ is defined on

the whole d-dimensional region, we integrate over each inde-

pendent component of this joint function to get a piecewise

quadratic approximation of the CDF for each component of the

joint δ. Then for each coordinate of the uniformly distributed

site xi, we compute the previous and next values, ai and bi, of

the respective CDF along the axis, bounding the co-ordinate of

xi on that axis. We then solve the quadratic bounded by ai and bi

for the co-ordinate of xi, resulting in a new co-ordinate. Solving

this for each component of xi gives us a new site x′
i

distributed

with respect to δ. Doing this for the set of all uniformly dis-

tributed sites X gives us a set of sites X′ distributed according

to δ.

Currently, our method does not extend to density controlled

initialisation for non-regular domains. A näive solution to this

problem would be to compute the CDF in a bounding box of

the domain, and reject samples not within this domain. This

process may then be accelerated with a quad-tree data structure.

However, we have not currently investigated this, and it may

be considered as future work. In Section 5.4, we show results
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Two CVTs with 1, 500 seeds in a square. Left column: random initial-

isation, converging to an energy of 1.29685× 10−3; right column: Hammersley

initialisation, converging to an energy of 1.29328 × 10−3.

for our inverse method in order to produce density-controlled

CVTs.

5. Experimental Results

In this section, we compare CVT and ODT generation us-

ing pseudorandom and Hammersley initialisations. Other low-

discrepancy sequences performed well, too, but Hammersley

was consistently better and hence these results are omitted.

Since the criteria to measure the quality of the results are dif-

ferent in 2D and 3D domains, we categorise the experiments

accordingly.

In 2D we investigate three properties of the CVTs and ODTs,

focusing mainly on CVTs. Firstly, the regularity of Voronoi re-

gions, or the regularity of the vertices in the dual triangle mesh,

is highly important in computer graphics [32]. We assess this

regularity by drawing the Voronoi tessellation of the output sites

and by highlighting any non-six-sided Voronoi cell in grey (de-

noted (a) and (b) in the figures with pseudorandom and Ham-

mersley initialisation respectively). Fewer than six edges im-

plies a non-regular tessellation, which is undesirable. Accord-

ing to Gersho’s conjecture [33], asymptotically the energy of

each seed within a CVT should be the same in 2D. Therefore,

secondly, we show the energy value of each site (denoted (c)

and (d) in the figures): high energy is shown in white and low

energy in blue, along with a histogram representing the propor-

tion of the cells with that energy. A uniform cell energy across

the tessellation is desirable. Thirdly, the smallest angle, mea-

sured for each triangle in the dual triangulation of the Voronoi

(a) (b)

(c) (d)

(e) (f)

Figure 4: Two CVTs with 3, 000 seeds in a square. Left column: random initial-

isation, converging to an energy of 6.47582× 10−4; right column: Hammersley

initialisation, converging to an energy of 6.46110 × 10−4.

tessellation, is also important in computer graphics and finite

element analysis (denoted (e) and (f) in the figures): a large

smallest angle is shown in white and a small minimum angle in

blue. The larger the smallest angle the better the triangulation;

optimally each triangle should be equilateral and therefore the

smallest angle within a triangle would be 60◦. In addition we

show the graph of the CVT function value against the number

of iterations. Note that the cell energy is not shown for ODT

and thus the smallest angle is denoted by (c) and (d) in these

figures.

In 3D, even in infinite space, there is no widely accepted op-

timal tetrahedral partition (as dual of the Voronoi tessellation).

Therefore, we do not compare the regularity between the dif-

ferent initialisations. However, the dihedral angles (the angle

between two planes) of the tetrahedrons are important to eval-

uate tetrahedral mesh quality. A tetrahedron with a dihedral

angle close to 0 or π is often called a sliver [4] and can lead

to a matrix with a large condition number in numerical simula-

tion. This in turn indicates numerical instability and is therefore

undesirable.

For each figure (both CVT and ODT), results were run mul-

tiple times for the pseudorandom distribution, and a typical

example is shown. In addition, the stopping criteria is set to

‖g‖/‖X‖ < 1 × 10−10 in all examples, where g is the gradient,

and X the variable (vector of seed point coordinates).

5.1. 2D CVT and ODT Examples

We first show the 2D CVT and ODT generation results, start-

ing with a square domain with number of sites gradually in-
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creasing from 800 to 10, 000. Fig. 1 shows the CVT in a square

with 800 sites. The top row of images shows results for a ran-

dom initialisation and the bottom row for the Hammersley ini-

tialisation. Random initialisation leads to many non-hexagonal

Voronoi cells, spread throughout the region. Using the Ham-

mersley initialisation significantly improves the regularity of

the Voronoi cells, showing significantly fewer irregular cells to-

ward the centre of the region with most of the irregular cells lo-

cated along the boundary. Moreover, the energy per cell statistic

shows that each cell has a more uniform energy distribution for

the Hammersley initialisation compared to the random initial-

isation. In addition, the triangulation (the dual of the Voronoi

tessellation) has only a few triangles with a small smallest an-

gle for the Hammersley initialisation. In comparison, using a

random initialisation results in a very inconsistent triangulation

with a large quantity of the triangles with a small smallest an-

gle.

The result of Hammersley initialisation is consistently bet-

ter in all the experiments on the square region as shown in

Figs. 3, 4, 5, 6. In these figures the left column shows results

for a random initialisation and the right column for the Ham-

mersley sequence. We also include several examples for some

general regions, including the hexagon in Fig. 7, the flower in

Fig. 8, the butterfly in Fig. 9 and the cross in Fig. 10.

Fig. 11 shows the CVT function value against the number

of P-L-BFGS iterations for random initialisation and Ham-

mersley initialisation for 2300 sites within the butterfly region

(see Fig.9). We show only this example, as the results are very

similar for all other shapes tested. The Hammersley initialisa-

tion starts with a much lower energy value than random initial-

isation and reaches a value very close to the converged value

after fewer than 10 iterations. The random initialisation does

not reach this function value even after several hundred itera-

tions. The pseudorandom case was initialised three times, and

the average function value is shown.

Fig. 12 shows results for ODT using 800 sites in a square,

showing the regularity of the Voronoi regions and the smallest

angle measurement. The left column shows results for a random

initialisation and the right column for the Hammersley initiali-

sation. Using the Hammersley initialisation improves the result

considerably, but each result is worse than that for the CVT

counterpart (see Fig. 1). This is largely due to the less optimal

algorithm used for computation of the ODT.

5.2. 2D CVT Generation Timing

Next we discuss timing results for CVT generation in 2D

with the random and Hammersley initialisation. For all tests

we generate initialisation sites in the unit square with uniform

density. We run the P-L-BFGS method terminating the optimi-

sation process when the function value drops below 1 × 10−4

for 103 samples, 1 × 10−6 for 104 samples, and 1 × 10−7 for

105 samples. For each point set, we run the initialisation and

optimisation process ten times and record the mean computa-

tion time. Whilst the Hammersley sequence is deterministic,

the optimisation process is not. Thus, results may vary slightly.

Table 2 lists the timing results for this experiment. These

show that when CVT is initialised with Hammersley instead of

(a) (b)

(c) (d)

(e) (f)

Figure 5: Two CVTs with 5, 000 seeds in a square. Left column: random initial-

isation, converging to an energy of 3.88301× 10−4; right column: Hammersley

initialisation, converging to an energy of 3.86539 × 10−4.

(a) (b)

(c) (d)

(e) (f)

Figure 6: Two CVTs with 10, 000 seeds in a square. Left column: a random

initialisation, converging to an energy of 1.94032 × 10−4; right column: the

Hammersley initialisation, converging to an energy of 1.93726 × 10−4.

pseudorandom point samples, a large reduction in the time re-

quired for the P-L-BFGS optimisation process to reach the fixed
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Two CVTs with 1, 150 seeds in a regular hexagon. Left column:

random initialisation converging to an energy of 1.14076 × 102; right column:

Hammersley initialisation converging to 1.14064 × 102.

(a) (b)

(c) (d)

(e) (f)

Figure 8: Two CVTs with 1, 000 seeds inside a flower shape. Left column:

random initialisation converging to an energy of 1.93848 × 102; right column:

Hammersley initialisation converging to 1.92862 × 102.

energy value. Using the Hammersley initialisation reduces the

total computation time by 49% for 1, 000 samples, and 45%

(a) (b)

(c) (d)

(e) (f)

Figure 9: Two CVTs with 2, 300 seeds in a butterfly. Left column: random

initialisation converging to an energy of 2.20264 × 10−2; right column: Ham-

mersley initialisation converging to 2.19553 × 10−2.

(a) (b)

(c) (d)

(e) (f)

Figure 10: Two CVTs with 2, 000 seeds in a cross. Left column: random initial-

isation converging to an energy of 5.88808 × 10−3; right column: Hammersley

initialisation converging to5.86236 × 10−3.

for 10, 000 and 100, 000 samples. In addition, the number of

energy function evaluations is reduced by 55% for 1, 000 sam-
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Figure 11: The CVT function value plotted over the number of iterations for

2300 sites in the butterfly using pseudorandom and Hammersley initialisation.

(a) (b)

(c) (d)

Figure 12: Two ODTs with 800 seeds in a square. Left column: random initial-

isation converging to an energy of 4.65419 × 10−4; right column: Hammersley

initialisation converging to 4.52950 × 10−4.

ples, and 44% for 10, 000 and 100, 000 samples. This signif-

icant speed increase is largely due to the lower energy value

achieved by the Hammersley initialisation.

For small point sample sets, e.g. 1, 000, random points are

actually more expensive to generate, per-point, than Hammer-

sley points. This is due to the cost of generating the seeding

object from which the samples are generated. For larger sample

sizes, reaching 100, 000, this overhead is no longer noticeable

and a random sample takes approximately 7.2 nano-seconds to

generate, compared to approximately 8.5 nano-seconds for a

Hammersley sample.

5.3. Volumetric CVTs

For volumetric CVTs we see similar improvements to the 2D

case when using the Hammersley initialisation. In a cube the

Sites Method Init Optim. Total #Func. Eval

Random. 0.000130 0.5843 0.5844 31.3
1, 000

Hamm. 0.000087 0.2951 0.2952 14.0

Random. 0.00080 18.6304 18.6312 165.3
10, 000

Hamm. 0.00086 10.1640 10.1649 93.2

Random. 0.00723 186.8009 186.8081 187.4
100, 000

Hamm. 0.00853 101.8421 101.8506 104.4

Table 2: Mean timing results in seconds for initialisation, CVT optimisation,

and total time, and the mean number of function evaluations using random and

Hammersley initialisation.

Hammersley initialisation with 2, 000 sites reduces the number

of slivers in the dual tetrahedrisation (see Fig. 13). The Ham-

mersley initialisation results in 10 slivers with dihedral angle

less than 10◦, compared with 15 for the random initialisation.

In addition, the number of slivers with dihedral angle less than

15◦ for the Hammersley sequence is 20, compared with 21 for

the random initialisation. Fig. 14 shows results for the Fandisk

model, sampled with 10, 000 sites. The Hammersley initialisa-

tion has 96 slivers with dihedral angle less than 10◦, compared

with 118 for the random initialisation. Also, the number of

slivers with dihedral angle less than 15◦ for the Hammersley

initialisation is 181, compared with 183 for the random initiali-

sation.

5.4. Density-controlled CVTs

Fig. 15 shows results for CVT computation using the den-

sity function x4
+ y4

+ 0.001 with random and Hammersley

initialisation. The inverse method introduced in Section 4.2

is used to adjust the density of the random and Hammersley

initialisations. The Hammersley initialisation shows improved

results when compared to the random initialisation and the tes-

sellation appears to be more natural. However, these gains are

quite marginal compared to the improvements shown for uni-

form density cases.

5.5. Summary

In summary, in almost all cases the Hammersley initialisa-

tion achieved better results than the random initialisation. This

is particularly true for generating CVTs in 2D with uniform

density where the Hammersley initialisation has the clear ad-

vantage of creating an overall considerably more regular tessel-

lation with more evenly distributed energy. As, in general, the

Hammersley initialisation starts with a smaller function value,

we see an almost 50% reduction in the the total optimisation

time and the number of function calls required to reach a spe-

cific energy threshold. In addition, a smaller energy value and

hence, a more regular triangulation can be achieved. While

there is also a clear improvement for ODT generation, it seems

that the distributions could be further improved. This is likely

a result of less well-developed algorithms for ODT generation.

For volumetric CVTs we obtained results similar to the 2D CVT

case, even if the effect is less prominent. For density controlled

CVTs only a small improvement could be achieved; better re-

sults may be obtained by improving the computation of the in-
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Two CVTs with 10, 000 seeds in the Fandisk. Left column: (a) random initialisation converging to an energy of 1.96159 with 183 slivers (< 15◦) in (c)

and 118 slivers (< 10◦) in (e); right column: (b) Hammersley initialisation converging to an energy of 1.95919 with 181 slivers (< 15◦) in (d) and 96 slivers (< 10◦)

in (f).

verse of the density function in order to better preserve the ge-

ometric properties of the Hammersley sequence.

6. Conclusion

We have considered the use of different distributions of sites

to initialise algorithms for generating CVTs and ODTs. In par-

ticular, the Hammersley low-discrepancy initialisation yields

improved results compared to (pseudo-)random initialisation

and other low-discrepancy sequences. The results are more reg-

ular and the total computation time is reduced by almost 50%.

In addition, the Hammersley sequence is essentially as quick to

compute as random samples, avoiding any computational over-

head in the initialisation. It has similar regularity to regular grid

initialisations, but can be easier adjusted to domains with com-

plicated boundaries.

Overall, the experimental results show that CVT and ODT

clearly depend significantly on how the algorithms are ini-

tialised. Large improvements can be achieved by finding a bet-

ter initialisation, which is not necessarily expensive to compute.

For CVT and ODT generation with uniform density a clear im-

provement in the resulting distribution could be demonstrated

by using the Hammersley sequence. For non-uniform densi-

ties the effect is marginal and improved initialisations may be

found by improving the inverse density computation in order to

preserve the geometric properties of the Hammersley sequence

better [34]. In future work, improvements for non-uniform tes-

sellations and an extension to higher-dimensional domains may

be achieved by better understanding the properties of the ini-

tialisation that help to improve the regularity of the results and

the “landscape” of the energy functions for ODT and CVT. In

addition to this, we intend to pursue this initialisation approach

to consider CVT generation on surfaces [35], though we be-

lieve that the Hammersley sequence may be too sensitive to the
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Two CVTs with 2, 000 seeds in a cube. Left column: (a) random

initialisation converging to an energy of 4.84254× 10−2 with 21 slivers (< 15◦)

in (c) and 15 slivers (< 10◦) in (e); right column: (b) Hammersley initialisation

converging to an energy of 4.83987×10−3 with 20 slivers (< 15◦) in (d) and 10

slivers (< 10◦) in (f).

distortion introduced by a standard parameterisation method.
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