

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

A solution process for simulation-based multiobjective design optimization with an
application in the paper industry

Steponavice, Ingrida; Ruuska, Sauli; Miettinen, Kaisa

Steponavice, I., Ruuska, S., & Miettinen, K. (2014). A solution process for simulation-
based multiobjective design optimization with an application in the paper industry.
Computer-Aided Design, 47, 45-58. https://doi.org/10.1016/j.cad.2013.08.045

2014

A Solution Process for Simulation-based Multiobjective

Design Optimization with an Application in Paper

Industry

Ingrida Steponavičė∗, Sauli Ruuska, Kaisa Miettinen

Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä,
FINLAND

Abstract

In this paper, we address some computational challenges arising in complex
simulation-based design optimization problems. High computational cost,
black-box formulation and stochasticity are some of the challenges related
to optimization of design problems involving simulation of complex mathe-
matical models. Solving becomes even more challenging in case of multiple
conflicting objectives that must be optimized simultaneously. In such cases,
application of multiobjective optimization methods is necessary in order to
gain an understanding of which design offers the best possible trade-off. We
apply a three-stage solution process to meet the challenges mentioned above.
As our case study, we consider the integrated design and control problem
in paper mill design where the aim is to decrease the investment cost and
enhance the quality of paper on the design level and, at the same time, guar-
antee the smooth performance of the production system on the operational
level. In the first stage of the three-stage solution process, a set of solutions
involving different trade-offs is generated with a method suited for computa-
tionally expensive multiobjective optimization problems using parallel com-
puting. Then, based on the generated solutions an approximation method
is applied to create a computationally inexpensive surrogate problem for the

∗Corresponding author: Tel.: +358 40 024 7443; fax: +358 14 260 2771,
Postal address: Dept. of Mathematical Information Technology,
P.O. Box 35 (Agora), FI-40014 University of Jyväskylä, FINLAND

Email addresses: ingrida.steponavice@monash.edu (Ingrida Steponavičė),
sauli.ruuska@jyu.fi (Sauli Ruuska), kaisa.miettinen@jyu.fi (Kaisa Miettinen)

http://ees.elsevier.com/cad/viewRCResults.aspx?pdf=1&docID=3573&rev=2&fileID=248619&msid={4C436684-0D76-467D-B9EB-0D97FA4CEF29}

design problem and the surrogate problem is solved in the second stage with
an interactive multiobjective optimization method. This stage involves a de-
cision maker and her/his preferences to find the most preferred solution to
the surrogate problem. In the third stage, the solution best corresponding
that of stage two is found for the original problem.

Keywords: Multicriteria decision making, Multiobjective optimization,
Pareto optimality, Computational cost, NIMBUS method, PAINT method

1. Introduction

The widespread availability of powerful computers has made it possible
to obtain detailed analyses of complex systems quickly and at a relatively
low cost. Consequently, computer simulation has become a central tool in
the design process across the industries. Computer simulation can be readily
used to answer questions such as whether or not a system will meet specified
requirements. To answer questions such as what is the maximum system per-
formance and how the system should be designed to achieve the maximum
performance, simulation must be combined with optimization. Solving an
optimization problem that depends on the output of a simulation model is
known as simulation-based optimization. In this paper, we consider computa-
tional challenges of simulation-based optimization encountered with real-life
design optimization problems and relate them to a case study in paper in-
dustry.

A computer simulation of a physical or some other system of interest
typically consists of solving a system of algebraic and differential equations.
From the optimization point of view, using a simulator as an external solver
for a system of equations is equivalent to dividing the decision variables into
two groups, the dependent and the independent variables, and substituting
the dependent variables with functions of the independent ones. The choice
between dependent and independent variables is often dictated by the simu-
lator, which has to take the independent variables as input and provide the
values of the dependent variables as output. Considering only the indepen-
dent variables as decision variables reduces the dimensionality of the problem
but, on the other hand, makes it a black-box optimization problem because
the functional relationship between the independent and the dependent vari-
ables is known only implicitly. This prevents any algebraic manipulation and
makes it very difficult to validate the assumptions of, for example, convexity

2

and differentiability that many optimization methods rely on.
In a real-life design optimization problem, there is rarely a single perfor-

mance measure fully appreciating the relative merits of each design. Instead,
it is characteristic of a design optimization problem to have multiple, con-
flicting objectives. When optimization is applied, however, the optimization
problem is commonly formulated with a single objective—often by consid-
ering a weighted sum of the design objectives or by treating all but one of
them as constraints—because most of the optimization algorithms can handle
only single-objective problems. A shortcoming of a simplistic single-objective
problem formulation is that it provides little support for decision making, of-
ten requiring the parameters in the problem formulation to be adjusted by
trial and error to achieve the desired outcome. The structure of a design
optimization problem can often be reflected more closely by formulating it
as a multiobjective optimization problem, in which all the objectives are to be
optimized simultaneously. A multiobjective formulation comes with a cost,
though, as it necessitates the involvement of a decision maker.

With an increasing complexity of design problems, finding an optimal
design in real-life applications remains a challenging task [1, 2, 3]. The com-
putational challenges in design optimization that we consider in this paper
(and which we have found the most pertinent ones) are the following.

Computational cost In simulation-based optimization, the objective and
constraint functions depend on the decision variables not only directly,
but also indirectly through the simulation model. Therefore, to calcu-
late the values of those functions, a simulation must be carried out,
which may well take from few minutes to several days. Moreover,
the simulation must be repeated every time an optimization method
needs to evaluate the objective and constraint functions. Thus, the
time required for one simulation run on average, or the computational
cost of the simulation, is a major factor limiting the practicability of
simulation-based optimization.

Conflicting objectives Multiple, conflicting objectives give rise to a set of
solutions, called the Pareto optimal set, that correspond to different
trade-offs among the objectives and are not self-evidently comparable.
This is in contrast to single-objective optimization, in which an opti-
mum, if it exists, is uniquely defined. With multiple objectives, the
identification of the preferred solution requires the involvement of a

3

decision maker and sufficient methodological support to explore the al-
ternative solutions. It is, however, challenging to implement a system
that can provide a fast enough response for successful decision making
when applied to computationally expensive simulation-based optimiza-
tion.

Black-box models The lack of closed form expressions for the objective
and constraint functions effectively requires a design optimization prob-
lem to be treated as a global optimization problem. The necessity of
global optimization increases the computational cost of design opti-
mization and limits the size of the design optimization problems that
can be solved. Fortunately, it is rarely necessary to guarantee global op-
timality, but instead, a sufficient improvement over an existing design
is acceptable.

Stochasticity In many real-life design optimization problems, the system
of interest is best modeled by a stochastic process. In that case, the
model output is a random vector, often with an unknown probabil-
ity distribution. The model output can be sampled by a computer
simulation, although the computational cost of simulating the output
increases with the sample size. Moreover, unless the sample size is
sufficiently large, sampling error introduces noise to the values of the
objective and constraint functions that depend on some statistic of the
model output.

The above challenges are intertwined in the sense that the presence of
each one of them makes the others more difficult to address. For example,
global optimization quickly becomes impractical if the computational cost
of the design optimization problem increases. Likewise, stochasticity and
conflicting objectives both aggravate the difficulties caused by a high com-
putational cost because more computation is required to sample the model
output and to assess the trade-offs, respectively.

An overview of optimization methods applied to solving multiobjective
engineering problems is given in [4]. Metamodelling techniques have been
found to be beneficial tools in supporting design optimization [5, 6]. In mul-
tiobjective design optimization, most of the efforts have been devoted to
finding a number of Pareto optimal solutions (see, e.g., [7, 8, 9, 10]) without
considering support for a decision maker. Only few applications of interac-
tive multiobjective optimization methods to design optimization problems

4

can be found, e.g., in [11, 12, 13, 14, 15, 16]. For example, Tappeta et al.
[11] have proposed an approach which differs from ours in three aspects.
First, it requires constructing individual metamodels for all objective and
constraint functions. Second, a local approximation of the Pareto optimal
set is considered. Finally, there is no clear distinction between interaction
with a decision maker and the demanding computations which would im-
ply long waiting times in case a decision maker wishes to explore different
(other than local) Pareto optimal solutions. To our knowledge, there is no
off-the-shelf interactive method which could be directly applied to compu-
tationally expensive simulation-based multiobjective optimization problems
without creating waiting times for a decison maker.

We present in this paper a three-stage solution process that is designed
to address the challenges of computationally expensive multiobjective design
optimization. A wide range of optimization algorithms can be integrated
with the solution process, which makes it applicable to many real-life design
optimization problems. In the first stage, termed the pre-decision making
stage, sufficient information is gathered about the alternative solutions to
the multiobjective design optimization problem. In the second stage, termed
the decision making stage, a human decision maker is involved by using an
interactive method to solve a computationally inexpensive surrogate problem
constructed on the basis of the information gathered in the first stage. In
the third stage, termed the post-decision making stage, the original design
optimization problem is solved with the purpose of finding a solution that
best matches the preferred solution to the surrogate problem identified in the
second stage.

The three-stage solution process has the benefit that it separates the time-
consuming simulation-based optimization from the decision making stage.
This allows fluent interaction with the decision maker regardless of the com-
putational intensiveness of the simulation model. The solution process is
motivated by the PAINT method [17], which can be used to create a surro-
gate problem for decision making, as well as by the availability of multiob-
jective optimization methods such as ParEGO [18] and SMS-EGO [19] that
provide a finite approximation to the Pareto optimal set of a multiobjective
optimization problem.

The paper has the following structure. Section 2 covers main concepts of
multiobjective optimization used in this paper. In Section 3, we describe the
three-stage solution process we propose for multiobjective design optimiza-
tion. Section 4 provides a description of a case study of an optimal design

5

of a paper mill concept. Section 5 demonstrates an application of the three-
stage solution process to our case study and reports the numerical results
obtained in each stage. The paper is concluded in Section 6.

2. Concepts and background

In this section, we review the concepts and background in multiobjec-
tive optimization and design optimization relevant for the rest of the paper.
Readers familiar with these topics may wish to proceed directly to Section 3.

2.1. Multiobjective optimization

A multiobjective optimization problem (MOP) has the form

min f(x) =
(
f1(x), . . . , fk(x)

)T
subject to x ∈ S,

(1)

where S ⊂ Rn is the feasible set and fi : S → R, i = 1, . . . , k (k ≥ 2), are
objective functions that are to be minimized simultaneously. All objective
functions are conveniently represented by a vector-valued function f : S →
Rk. A vector x ∈ S is called a decision vector and a vector z ∈ Rk an objective
vector. Moreover, z ∈ Rk is said to be attainable if there exists a decision
vector x ∈ S such that z = f(x) and unattainable otherwise. Without
loss of generality, we consider only minimization because maximization of
an objective function can be converted to minimization by multiplication by
minus one.

We assume that there does not exist a decision vector x̄ ∈ S such that x̄
minimizes fi in S for all i = 1, . . . , k. In that case, the objective functions
f1, . . . , fk in (1) are said to be conflicting. A useful notion of optimality for
conflicting objectives is given by Pareto optimality: a decision vector x ∈ S
and the corresponding objective vector z = f(x) are said to be Pareto optimal
or nondominated if there does not exist a decision vector x̄ ∈ S such that
fi(x̄) ≤ fi(x) for all i = 1, . . . , k and f(x̄) 6= f(x). On the other hand, if
such a vector x̄ ∈ S does exist, x and z are said to be dominated by x̄ and
z̄ = f(x̄), respectively. In the following, we use the term Pareto optimal set
to refer to both the set of all Pareto optimal decision vectors and the set of
all Pareto optimal objective vectors.

The order relation appearing in the definition of Pareto optimality is not a
total but a partial order, and therefore, the set of all Pareto optimal objective

6

vectors is not, in general, a singleton. Consequently, an optimal solution to
(1) is not well defined without additional information, usually provided by
a human decision maker (DM). Nonetheless, under the assumption implied
by the problem formulation that for all objective functions, the less of any
two values is preferred by the DM, it can be shown that the objective vector
preferred by the DM to all others is always Pareto optimal. This makes
it possible to support the DM in finding the preferred objective vector by
excluding from consideration all the dominated ones.

Upper and lower bounds are often determined for the Pareto optimal set
in the objective space. The bounds are used, for example, to normalize the
objective functions and to help the DM set expectations. A lower bound,
known as the ideal vector, can be determined by minimizing each of the ob-
jective functions f1, . . . , fk independently over S and collecting the outcomes
into a vector. In contrast, an analogous upper bound, known as the nadir
vector, cannot be readily obtained in general. This is because the objective
functions would have to be independently maximized over the Pareto op-
timal set, which is, in general, a nonconvex subset of S that is known only
implicitly. Therefore, a rough estimate for the nadir vector is commonly used
(see, e.g., [20]).

Multiobjective optimization methods can be classified into no-preference,
a priori, a posteriori, and interactive methods according to the way they
involve the DM in the solution process [20]. No-preference and a priori
methods produce only a single Pareto optimal decision vector. The latter
require sufficient preference information to be provided up front, whereas
the former do not take the preferences of the DM into account at all. Both
types of methods allow an MOP to be solved with a computational cost
comparable to that of solving a single-objective optimization problem, but
their main disadvantage is the lack of a systematic procedure in the case that
the DM is not satisfied with the obtained solution.

An opposite approach is taken by a posteriori methods, which attempt to
produce a set of decision vectors so that the corresponding objective vectors
represent the Pareto optimal set in the objective space as closely as possible.
Instead of eliciting preference information explicitly, these methods rely on
the DM to assess the alternative solutions produced and to ultimately select
the preferred one. Unlike in the aforementioned methods, all the computa-
tion takes place before the DM is involved. The disadvantage of a posteri-
ori methods is mainly their inability to support the DM in comparing and
ranking the provided alternative solutions. They may also consume a lot of

7

computational resources producing decision vectors that are of little or no
relevance to the DM.

Interactive methods address many of the shortcomings of the other types
of methods by eliciting preference information from the DM progressively
[21]. At every iteration, the DM is presented with one or more objective
vectors and asked to express preferences relative to them. The methods dif-
fer in the type of information presented to and requested from the DM, but
they commonly tolerate inconsistencies in the expressed preferences as well
as preference information that is valid only locally. Interactive methods fa-
cilitate exploring the Pareto optimal set and learning about the problem in
a way unmatched by any of the other types of methods. Nevertheless, they
can only be applied if there is a DM available who is willing to participate in
the solution process. In simulation-based optimization, and in design opti-
mization in general, this may become an issue as the interaction between the
method and the DM is constantly interrupted by time-consuming computa-
tions when new solution(s) based on the preferences are to be calculated.

Many multiobjective optimization methods are based on scalarization of
problem (1), that is, substituting a real-valued function on S for the vector-
valued objective function f . With a properly chosen scalarization, it can
be shown that the decision vector obtained by minimizing the scalarized
objective function is always Pareto optimal [20]. Scalarization is used in
many interactive methods as a way to generate new Pareto optimal solutions
based on the preferences specified by the DM.

Scalarization can be used to project vectors in the objective space onto
the Pareto optimal set. With a suitable scalarization, it is possible to project
attainable and unattainable objective vectors alike. In Section 5, we employ
for this purpose an achievement (scalarizing) function f̄z̄ : S → R defined
for all z̄ ∈ Rk and all x ∈ S as [22, 23]

f̄z̄(x) = max
i=1,...,k

fi(x)− z̄i
znad
i − z??i

+ ρ

k∑
i=1

fi(x)

znad
i − z??i

, (2)

where znad ∈ Rk is the nadir vector of (1) and z?? ∈ Rk is a utopian vector,
that is, a vector that is strictly less than the ideal vector in all components.
Vector z̄ ∈ Rk is called a reference point, and in addition to being the vector
to be projected, it can be interpreted as preference information in the form of
desirable levels of the objective function values. The second term is called an
augmentation term and ρ, which is a strictly positive scalar, an augmentation

8

coefficient. The use of the augmentation term ensures that every (global)
minimizer of f̄z̄ in S is Pareto optimal for (1) [20].

2.2. Design optimization

Let us consider a physical system and its mathematical model repre-
sented by a multivariate, vector-valued function Φ. By multiobjective design
optimization we understand the determination of the input to Φ so as to
simultaneously minimize two or more objective functions that depend on the
output of Φ. The input values that are to be determined by optimization are
called decision or design variables. If the decision variables constitute only
a subset of the model input, the rest are considered to be parameters of Φ,
which must be set to a fixed value before the optimization is carried out. In
the terminology of the introduction, the decision variables and parameters
constitute the independent variables, and the output of Φ constitutes the
dependent variables.

If the model Φ is stochastic, then its output is a random vector. There-
fore, the image of the output of Φ under the objective functions is also a
random vector. To apply optimization, the random objective vector must
be substituted with a vector of moments of the distribution, which can be
numerically estimated. For example, a multiobjective design optimization
problem concerned with the minimization of the expected value of the ob-
jective vector can be written as

min
x

E{f(Φ(x, ω))} s. t. x ∈ S, (3)

where E{·} denotes the expected value, f is a vector-valued objective func-
tion, x is a decision vector, ω is a random vector which represents the stochas-
ticity in the model, and S is the feasible set.

In practice, a numerical simulation model φ that is implemented in terms
of pseudorandom numbers is used to sample the output of the mathematical
model Φ. This allows, for example, the expected value of the objective vector
to be estimated by a sample mean. That is, instead of (3), we consider an
MOP

min
x

1
N

N∑
i=1

f(φi(x)) s. t. x ∈ S, (4)

where φi(x) denotes for all x ∈ S the output of the ith independent sim-
ulation run, or replication, at x and N is the sample size (the number of
replications). Problem (4) is a black-box optimization problem because the

9

simulation output φi(x) is not known in a closed form as a function of x, but
must be obtained numerically for each x ∈ S.

3. A three-stage solution process for multiobjective design opti-
mization

Hartikainen et al. [17] proposed a method to approximate the Pareto op-
timal set of an MOP. Based on the approximation, they formulated a multi-
objective surrogate problem with the same number of objectives, and approx-
imately the same Pareto optimal set, as the original optimization problem.
The objectives of the surrogate problem correspond to those of the original
problem in the sense that they have the same interpretations, which allows
the surrogate problem to be used for decision making in place of the original
problem. Moreover, because the surrogate problem is computationally inex-
pensive, its use eliminates the waiting times in the interactive process and
hence improves the applicability of interactive methods to computationally
intensive multiobjective optimization.

The use of a surrogate problem for real-life decision making consists of
steps that fall naturally into three separate stages. In this section, we develop
the idea of a three-stage solution process as a way to solve a computation-
ally expensive multiobjective design optimization problem. The consecutive
stages can be distinguished by several features such as the computational
cost, the level of involvement of the DM, or the type of optimization applied.
To emphasize the role of the DM in the process, we refer to the stages by
their precedence with respect to decision making as the pre-decision making
stage, the decision making stage, and the post-decision making stage. The
DM is supposed to be directly involved only in the decision making stage,
and all computationally intensive tasks should, thus, be confined to the pre-
and post-decision making stages so as not to interfere with the interaction
with the DM.

The stages along with their main components and the dependences among
them are illustrated in Figure 1. The solution process starts with the pre-
decision making stage, in which an a posteriori method is applied to the
multiobjective design optimization problem to produce a set of Pareto opti-
mal decision vectors and the corresponding set of objective vectors is used
to define a surrogate problem. In the decision making stage, the computa-
tionally expensive design optimization problem is substituted with the com-
putationally inexpensive surrogate problem, and the DM is asked to identify

10

Figure 1: Schematic of multiobjective design optimization in three stages (MO – multiob-
jective, SO – single-objective)

Computationally expensive MO design optimization problem

A posteriori methods Scalarization

Surrogate preparation SO optimization methods

Surrogate problem (MO)

Interactive methods

Decision maker

Stage 2: decision
making

Stage 3: post-decision
making

Stage 1: pre-decision
making

the preferred objective vector with the help of an interactive method. In the
post-decision making stage, the original multiobjective design optimization
problem is solved in a scalarized form to project the objective vector (of the
surrogate problem) preferred by the DM to the Pareto optimal set of the
original design optimization problem. Thus, the post-decision making stage
can be likened to the application of an a priori method to the original design
optimization problem.

All three stages are necessarily coupled because each one depends on the
output of its predecessor. At each stage, a different kind of optimization
problem is solved and the result thereof is passed to the following stage. To
ease discussion, we refer to the principal output of each stage as its solution.
More specifically, a Stage 1 solution is a set of Pareto optimal decision vectors
produced in the pre-decision making stage and the corresponding objective
vectors are used to define the surrogate problem. A Stage 2 solution is an
objective vector indicated by the DM in the interactive decision making stage
as the preferred solution to the surrogate problem, and a Stage 3 solution
is a projected decision vector obtained in the post-decision making stage by
solving a scalarized version of the original design optimization problem.

3.1. Stage 1: pre-decision making

The purpose of the pre-decision making stage is to prepare a surrogate
problem that enables an interactive method to be applied in the decision

11

making stage. Additionally, the ideal vector and the nadir vector of the
surrogate problem, or their estimates, should be determined.

In principle, there are only two requirements for a surrogate problem:
it must be solvable by scalarization (employed as a part of an interactive
method) with a negligible computational cost and its Pareto optimal set must
match that of the original problem, up to some tolerance. We assume that
the surrogate problem can be defined on the basis of a set of Pareto optimal
decision or objective vectors. Therefore, we define the Stage 1 solution as a
set of Pareto optimal decision vectors obtained by applying an a posteriori
method to the original design optimization problem.

The PAINT method [17] can be used to formulate a surrogate problem. It
produces a piecewise linear approximation of a set of Pareto optimal objective
vectors and guarantees that no two vectors in the approximation dominate
one another. The surrogate problem based on the approximation is a multi-
objective mixed-integer linear optimization problem.

3.2. Stage 2: decision making

The purpose of the decision making stage is, as the name suggests, to
help the DM to arrive at the preferred Pareto optimal solution. Because the
choice of the preferred Pareto optimal objective vector is entirely subjective,
an interactive method, which allows the DM to explore and learn about the
problem, is used. We assume that an interactive method employing scalariza-
tion is used (see, e.g., [20, 21]). For an interactive method to be successfully
applied, however, it is required that scalarizations of the underlying opti-
mization problem can be solved relatively quickly. Therefore, the surrogate
problem defined in Stage 1 is used instead of the original, computationally
expensive, design optimization problem.

The surrogate problem in itself is like any other multiobjective optimiza-
tion problem and thus no special provisions are required to solve it with an
interactive method. Nonetheless, the DM should be made aware of the fact
that a surrogate problem is being solved and that the obtained objective
function values are only approximate.

3.3. Stage 3: post-decision making

The purpose of the post-decision making stage is to determine a decision
vector in the Pareto optimal set of the original design optimization problem
such that the objective vector corresponding to it is as close to the Stage 2
solution as possible. In principle, it suffices to minimize a scalarization that

12

projects the Stage 2 solution to the Pareto optimal set of the original design
optimization problem, but the amount of computation required to do so can
be reduced by utilizing the information acquired in Stage 1.

Because the optimization problems in Stages 1 and 3 are identical except
for the scalarization, the information obtained about the problem in Stage 1
can be used to warm start the optimization in Stage 3. A warm start may
consist of selecting a starting point, or an initial population in the case of
population-based algorithms, among the decision vectors evaluated in Stage 1
based on the value of the scalarized objective function. It is also possible to
warm start optimization algorithms with more complex internal states given
that the algorithms employed in the two stages are similar enough so that the
internal state of one can be translated into that of the other. In particular,
the metamodels of the objective functions maintained internally by many
global optimization algorithms can be aggregated to obtain a metamodel of
the scalarized objective function.

The computational cost of Stage 3 can be reduced virtually to zero by
projecting an objective vector not to the Pareto optimal set but to the set
of objective vectors corresponding to the Stage 1 solution. This can be done
by calculating the scalarized objective function value for all decision vectors
in the Stage 1 solution and selecting the one with the least value. Although
restricting the minimization to the Stage 1 solution does not, in general,
minimize the scalarized objective function over the feasible set, the obtained
decision vector is always Pareto optimal. Because of its low computational
cost, the projection to the Stage 1 solution may be used also during the inter-
active decision making in Stage 2 to provide the DM with a rough estimate
of the projection of a given objective vector.

3.4. Discussion

So far, we have assumed that all the optimization problems encountered
in the different stages can be solved to global optimality. In practice, how-
ever, this is rarely the case. Instead, one may only be able to say about
the Stage 1 solution that no decision vector in it dominates each other. In
itself, the three-stage solution process does not require Pareto optimality of
any of the decision vectors involved. If the decision vectors in the Stage 1
solution are not Pareto optimal, this naturally decreases the accuracy of the
approximation used in Stage 2 and it may happen that the Stage 3 solution
dominates one or more of them, but this does not affect the applicability of
the solution process.

13

4. A case study: optimal design of a new paper mill concept

Our case study arises in papermaking industry and addresses a design
optimization problem of a paper mill. The optimization problem to be con-
sidered has all the computational challenges discussed in the introduction.
Three key ingredients: wood, water and energy are essential for papermaking
which is a very complex process consisting of many steps. The first step is
the preparation of chemical and/or mechanical pulp, i.e., the concentrated
mixture of separate wood fibers and water. Before pulp enters the paper ma-
chine, some chemical additives are mixed in to ensure specific characteristics
of paper being produced. Then the pulp mixture is pumped into a headbox,
from where it is screened, drained, and passed through a moving wire where
a sheet of paper called a web is formed. Next, it goes to press and drying
sections where the excess of water is removed to ensure uniform thickness
and smoothness. The paper can be coated to improve printing properties
and/or calendered to improve the smoothness or the gloss of the paper. The
final step is paper cutting into rolls or sheets. The papermaking process
is normally continuous. However, sometimes web breaks occur generating
broke, the discarded paper which is recycled in the process. For more details
of a papermaking process, see, e.g., [24].

This case study is based on a research project and the model employed
in this study was developed in [25, 26, 27, 28]. Here we discuss optimization-
related aspects with the given model. Since design and control of a paper mill
are interdependent, we consider them simultaneously, i.e., we optimize both
design and control objectives at the same time. Optimizing the process design
and control at the same time enables a designer or a DM to get a deeper
insight about the dynamic behavior of a complex process. A simultaneous
approach to the design and control leads to significant economic benefits and
improved dynamic performance during plant control [29]. For overviews of
integrated design and control, we refer, e.g., to [29, 30, 31]. In particular,
the integrated design and control problem in papermaking has been studied
in [25, 26] where the optimization is done by evaluating a predetermined
number of decision vectors and then allowing the DM to choose the preferred
decision vector from nondominated ones. In integrated design and control,
the control equipment is designed at the same time as the rest of the process
to determine the optimal design and control conditions of a process. The goal
of simultaneously optimizing design and control of a process often requires
to find a compromise between conflicting design and control objectives.

14

Figure 2: Problem structure

Design optimization
(multiple objectives)

Model predictive control
(multiple objectives)

Decision variables
Impose constraints

Objectives
Operational quality

• Complex nonlinear model
• Computationally expensive
• Computer simulations
• Stochasticity

Integrated design & control

The optimization model is assumed to exhibit a hierarchical structure
(see Figure 2), i.e., the upper level of the problem corresponds to the design
problem, while the lower level is the operational performance problem, both
involving multiple objectives. The operational performance is quantified in
terms of the expected risk for tower under- and overflows and the expected
uniformity of paper strength and light scattering. In order to optimize the
performance of a paper mill, the control of the process must be optimized.
To summarize, the goal is to decrease the investment cost and enhance the
quality of paper (on the design level), and at the same time to guarantee the
runnability and process stability of the production systems (on the opera-
tional level).

Section 4.1 describes a simulation model. The design problem is pre-
sented in Section 4.2. The operational performance problem is formulated in
Section 4.3. For more detailed problem description we refer to [25]. Figure 2
outlines the main characteristics of our problem which we discuss in what
follows.

4.1. A simulation model

The objectives of the design problem are calculated based on the outputs
of a simulation model which is used to simulate a paper production process

15

in a paper mill. A set of decision variable values is given to the following
simulation model and the corresponding output values are produced:

(d1, d2, T1, T2) = φi(V1, ..., V4,W, p0), i = 1, ..., N, (5)

where d1 corresponds to squared deviation of paper strength from its nominal
value (some desirable value), d2 is squared deviation of paper light scattering
from its nominal value, T1 is a number of time steps, i.e., successive time
points at which the model states and outputs are computed, used for simula-
tion, and T2 is a number of time steps when paper breaks before the coating
process occurs. Furthermore, V1, ..., V4, W and p0 are decision variables at
the design level, i.e., Vi, i = 1, ..., 4, correspond to maximum volumes of a
white water tower, an uncoated paper broke tower, a coated paper broke
tower and a clear water tower, respectively, W is a scalarization parameter
and p0 is a risk level parameter to reduce the risk of under- or overflow at the
operational level. As in (4), also in (5) N refers to the number of replications.
The simulation is terminated when the first of the following stopping criteria
is satisfied: the over- or underflow, i.e., when the level in at least one of the
storage towers exceeded its upper or lower bound, or 40000 time steps have
been taken which corresponds to approximately nine months of simulation
time of paper mill operation.

Our simulation model is computationally very expensive to evaluate and
assumptions like convexity and differentiability that are desirable for opti-
mization cannot be made. The other characteristic of the problem is stochas-
ticity. The frequency and duration of the web breaks are modeled by a
Markov chain in which the probabilities of both a break to occur and a con-
tinuing break to end depend on the strength of the paper web [26, 27]. The
strength of the web is determined by the proportions of the fiber components.

At the operational level, the simulation model is connected to model
predictive control (MPC). In MPC, a control action is obtained by solving
online, at each time step, a finite horizon optimal control problem in which
the initial state is the current state of the paper mill. The optimization yields
an optimal control sequence and the first control action in this sequence is
applied to the paper mill. The paper mill simulation model provides the
value of paper strength at the current time m which is used to predict future
values of paper strength q1(m + 1),...,q1(m + KH) (future behavior of the
paper mill) for KH time steps and the control variables are optimized based
on the predicted output. After the simulation ends, the simulation outputs

16

d1, d2, T1, T2 are produced. For fundamentals of MPC, see, e.g., [32]. The
MPC problem formulation is discussed in Section 4.3.

The step size in the simulation model is set to be 10 minutes, and a
single replication requires roughly 2175 time steps on average. During the
initialization of the simulator, sufficient memory must be preallocated for the
time series data to be collected, which requires the maximum number of time
steps to be set. We have chosen an upper limit of 40000 time steps which, for
example, in Stage 1 was reached 158 times for a total of 75 different decision
vectors where, in total, more than 100000 replications were simulated for a
total of more than 1000 decision vectors. Compared to the relatively high
number of replications, the maximum number of time steps was reached so
rarely that the bias in the runtime estimates due to truncation was considered
negligible. Each time, the simulation was started from fixed initial conditions.
For all storage towers, the lower bound was set to zero and the upper bound
was considered as a decision variable.

4.2. Design level

In our problem, the design of a paper mill is defined by four large storage
volumes called towers for white water (water containing small amounts of
fiber and chemical additives, which drains through the paper machine wire,
and is recycled into the paper pulp preparation system), uncoated paper
broke (waste paper made during a web break before coating process), coated
paper broke (waste paper to which a coating has been applied) and clear
(i.e., pure) water. While smaller tower volumes are desirable from capital
cost investment point of view, larger tower volumes are desired for higher
paper quality and easier control, i.e., tower volumes act as a buffer and
enable slower control. Slower control is attractive because fast control causes
disturbances that result in deviations in paper quality. Therefore, our target
is to find a trade-off between the investment cost of storage towers and the
operational performance which is affected by stochastic paper breaks during
a manufacturing process.

The design problem consists of five objectives: i) minimization of the ex-
pected long term variation in paper strength, ii) minimization of the expected
long term variation in a light scattering coefficient which is monitored during
the computer simulation, iii) minimization of the expected proportional time
spent in uncoated paper breaks, iv) maximization of the expected system
runtime, i.e., time till one of the towers runs empty or overflows and v) min-
imization of investment cost of storage towers. The mathematical model of

17

the design problem is formulated based on (3) as:

min f1(V1, ..., V4,W, p0) = E{d1},
min f2(V1, ..., V4,W, p0) = E{d2},
min f3(V1, ..., V4,W, p0) = E{T2

T1
},

max f4(V1, ..., V4,W, p0) = E{T1},
min f5(V1, ..., V4,W, p0) =

∑4
i=1 H(Vi)

s.t. 500 ≤ Vi ≤ 4000, i = 1, ..., 4,
0.1 ≤ W ≤ 1,
0.001 ≤ p0 ≤ 0.01,

(6)

where H(Vi) is the investment cost of the ith tower. The expected system
performance is based on the optimal operational policy, i.e., selecting an
appropriate level of pulp, water and broke dosage.

In this paper, we consider a classical approach in stochastic optimiza-
tion to find optimal design and control under uncertainty and address the
stochasticity issue. Therefore, the expected values of the objective functions
with respect to uncertainty are calculated as sample mean values (see (4))
per time step as in [25]. We would like to clarify that for the first two ob-
jectives, a sample per time step is used, while for the next two objectives, a
sample per replication is used. This implies that we cannot select the num-
ber of samples for the first two objective functions as it is determined by the
number of both replications and simulation time steps and the latter depends
on the termination conditions. Every time we want to evaluate a decision
vector, we need to call the simulation model for which a single replication
is computationally demanding taking from minutes to several hours. Our
case becomes computationally extremely expensive because we need multi-
ple replications for a single decision vector. Fortunately, multiple replications
can be very well carried out in parallel leading to considerable speed up by
means of parallelization. When a simulation is time consuming, optimization
methods devoted to computationally expensive problems should be applied.

4.3. Operational level

At the operational level the target is to dose pulp and water from the
storage towers to the papermaking process. As mentioned earlier, the opera-
tional optimization problem is formulated as an MPC problem. The objective
is to minimize paper quality variation that is defined by a strength param-
eter over a certain time horizon. The strength variation is determined as

18

(q1(m + l) − q0)2, where q1(m + l) is a predicted strength at l time steps
from the present time m and q0 is the nominal value of the strength pa-
rameter (a prediction model is provided in Appendix A (A.1g)). The con-
trol vector u(m) at the current time m consists of seven control variables
u(m) = (u1(m), ..., u7(m))T which define the dosage of pulp, water and broke
to and from a particular storage tower. In order to prevent fast changes in
the control vector u(m), a second objective is introduced. The operational
problem is formulated as follows:

min

KH−1∑
l=0

γ(l)(q1(m+ l + 1)− q0)2

min

KH−1∑
l=0

γ(l)(u(m+ l)− u(m+ l − 1))2

s.t. (A.1) (see Appendix A),

(7)

where γ(l) is a time-wise weighting factor andKH is the optimization horizon.
There is a rather small number of publications devoted to multiobjec-

tive MPC [33, 34]. Usually multiple objectives are transformed to a single-
objective problem and solved using traditional optimization methods [35].
The operational problem is solved as a scalarized quadratic single-objective
optimization problem

min

KH−1∑
l=0

γ(l)
(
W (q1(m+ l + 1)− q0)2 + (u(m+ l)

− u(m+ l − 1))Tα(u(m+ l)− u(m+ l − 1))
)

s.t. (A.1),

(8)

where α is a penalty term and W is a scalarization parameter treated as
variable and bounds for its values are given in (6). Since the multiobjective
optimization problem is a scalarized quadratic problem, it can be solved
online without a DM, i.e., there is no need to apply any interactive approach
and get any preference information from the DM at each time step solving
the problem because different W values lead to different solutions, and an
MPC procedure can be applied to optimize the dosage of recycled broke and
water.

19

5. A three-stage solution process applied to the case study

After having introduced the case study, we devote this section to the
application of the three-stage solution process to solve it. At the same time
we describe how we have tackled the computational challenges related to
this practical application. As proposed in Section 3, the solution process is
divided into three stages as shown in Figure 3. These stages can also be seen
in Figure 1 only on a more general level.

Figure 3: Schematic of the three-stage solution process applied to the case study

Stage 1: pre-decision making
Computationally intensive (2 months)

Stage 2: decision making
Computationally light

(minutes)

PAINT
method

NIMBUS
method

Five design objectives

Stochastic simulation

Simulator

MPC

Creation of a
surrogate
problem

Stage 3: post-decision making
Computationally intensive (1 month)

Hamm, ParEGO, SMS-EGO, MOEA/D

Achievement function

Simulator

MPC

DE

Stochastic simulation

DM

Stage 1
solution

Surrogate
problem

St
ag

e
2

so
lu

tio
n

St
ag

e
3

so
lu

tio
n

Stage 2
solution

In order to solve an optimization problem, a suitable optimization method
has to be applied. As mentioned earlier, the case study includes a black-box
formulation which raises a requirement for global optimization. Many global
optimization methods require a large number of objective function evalua-
tions that we could not afford due to a time limit. Methods to solve compu-
tationally expensive black-box problems have been developed by exploiting
knowledge acquired during the solution process [36, 37]. Knowledge of past
evaluations can also be used to build an empirical model that approximates
the objective function to be optimized. This approximation can then be used
to predict promising new solutions at a smaller evaluation cost than that of
the original problem [18, 38]. One of the state-of-art methods for costly
optimization problems is EGO [37].

In Stage 1, we applied two versions of EGO for multiobjective optimiza-
tion problems, namely, ParEGO [18] and SMS-EGO [19]. The experiment

20

performed in [19] demonstrated a significantly better performance of SMS-
EGO over ParEGO on considered test problems. SMS-EGO is developed
to handle noisy data, which is very desirable in our case where four de-
sign objective functions are calculated based on the stochastic simulation
model output. To test multiobjective evolutionary methods, we selected the
MOEA/D method which demonstrated good performance in solving uncon-
strained problems in the CEC’09 competition [39]. It should be noted that
none of these optimization methods can guarantee global optimality as they
use heuristics. It is important to mention that the three-stage solution pro-
cess does not necessitate many different methods being applied in Stage 1.
We used three methods as we were interested in their performance in the
case study.

The surrogate problem was prepared by the PAINT method [17] and then
solved in Stage 2 by the interactive NIMBUS method [40, 41] as shown in
Figure 3. To project the Stage 2 solution onto the Pareto optimal set of
the original problem in Stage 3, we solved problem (2) with the differential
evolution (DE) method [42]. This method has been widely applied in many
applications [43] as it is able to find approximate solutions to noisy, black-box
optimization problems.

In this section, we present the results obtained in the following setting.
The simulation model was implemented in MATLAB and subsequently com-
piled into a stand-alone executable so that multiple simulations could be run
in parallel using a computer cluster consisting of 160 cores that did not have
MATLAB installed. The quadratic optimization problem arising from the
optimal control of the simulated plant by MPC was solved using the IBM
ILOG CPLEX optimization software. The surrogate problem was solved on
a computer with the following characteristics: Intel(R) Core(TM) i7-2600
CPU @ 3.40GHz, 3401 Mhz, 4 Core(s), 8 Logical Processor(s).

An analysis performed before the actual solution process is described in
Section 5.1. The following sections describe each stage in detail.

5.1. Preliminary analysis

Before any optimization was performed, we evaluated a sample of 256 de-
cision vectors with 160 replications. The decision vectors were obtained from
a six-dimensional Hammersley sequence, which is one of the so-called low
discrepancy or quasirandom sequences that fill the n-dimensional Euclidean
space more evenly than uniformly distributed random vectors [44, 45]. Be-
cause the vectors in the Hammersley sequence lie in the n-dimensional unit

21

interval, an affine transformation was applied that maps the unit interval
onto the interval defined by the bound constraints in (6). The number of
samples was selected to be a power of 2 so that it would be easy to divide
the sequence into equally sized parts for parallel evaluation.

The initial sampling was done in part to help verify that the simulation
model and the interfacing code work as intended. In addition, the sam-
pling provided useful data about the optimization problem and allowed us
to estimate the amount of time and computational resources required by the
optimization runs. We observed that the simulation time for a single decision
vector varied greatly between replications (from few minutes up to 5 hours),
which resulted in an uneven load when parallelizing because a small number
of runs would continue long after the others were completed. We chose to
use 80 replications, a half of the number of cores in the computer cluster, to
evaluate the objective functions in Stages 1 and 3. This allowed us to obtain
relatively accurate estimates of the expected values while being able to carry
out all the runs with the different optimization algorithms in parallel without
exceeding, except momentarily, the capacity of the computer cluster. Also
we performed the correlation analysis with the aim to check whether there
was any strong positive correlation between the objectives in order to elim-
inate one of them from the optimization model. However, no strong linear
correlation was found.

5.2. Stage 1: pre-decision making

This section is devoted to the results of Stage 1. Method performance
varies depending on problem characteristics. While a method can demon-
strate a very good efficiency for one type of problems, its performance can
significantly degrade in coping with other ones. Thus, we extended Stage 1
to include several methods: ParEGO, SMS-EGO and MOEA/D. We applied
three versions of SMS-EGO: one without smoothing technique (SMS-EGO-
0) and two with different smoothing models (SMS-EGO-1 and SMS-EGO-2)
[46]. The budget of objective function evaluations per each method was lim-
ited to 200. It should be noted that by applying different multiobjective
optimization methods we aimed at generating a better approximation of the
Pareto optimal set.

As the methods used are all population based, they each produced a set
of decision vectors (and corresponding objective vectors). These sets were
merged and vectors dominated by some others were removed. After this,
the Stage 1 solution consisted of 394 decision vectors. Note that Pareto

22

optimality cannot be guaranteed because of the nature of the methods used.
How each of the methods contributed to the Stage 1 solution can be seen
in Table 1 which shows how many decision vectors (not dominated by each
other) were generated by each method and how many of them remained
in the Stage 1 solution. Results of Hammersley sequence sampling were
included as well. For example, SMS-EGO-1 produced a smaller set than
other methods consisting only of 102 decision vectors out of 200 objective
function evaluations. However, it provided the largest contribution of 91
decision vectors to the Stage 1 solution. A further discussion on method
performance can be found in Appendix B (as comparison is not a main scope
of this paper). The minimal and maximal values of the objective functions are
shown in Table 2 while different pairwise projections of 394 objective vectors
corresponding to the Stage 1 solution are presented in Figures 4 and 5.

Table 1: Contribution of different methods to the Stage 1 solution

of non. vectors # in the Stage 1 solution

Hamm 99 out of 256 55
SMS-EGO-0 108 out of 200 70
SMS-EGO-1 102 out of 200 91
SMS-EGO-2 107 out of 200 50
ParEGO 134 out of 200 80
MOEA/D 116 out of 200 58

Combined set - 394

Table 2: Min and max values of the objective functions in the Stage 1 solution

f1 f2 f3 f4 f5

Min 0.00658 0.34785 0.06341 0.55851 1.14118
Max 0.50354 1.55069 0.08415 105.5457 4.66508

Figures 4 and 5 give a general idea of the trade-offs involved in the Stage
1 solution. They present different projections of the five-dimensional vectors
in the objective space. The figures demonstrate that the strongest pairwise

23

conflict between the objectives appears to be between minimizing the invest-
ment cost on the one hand and maximizing the average system runtime and
minimizing the average strength deviation on the other hand. The former can
be explained by the fact that greater tower volumes result in longer system
runtime before an overflow occurs but also in greater investment cost. The
latter results from the fact that small tower volumes necessitate aggressive
broke dosage, which is the main cause of strength deviation. The pairwise
conflict is weakest between minimizing the average strength deviation and
maximizing the average system runtime, which is explained by the fact that
strength deviations increase the probability of breaks and thus make it more
likely for an overflow to occur. The rest of the pairs of objectives show weak
or moderate conflict with less apparent trends.

Figure 4: The Stage 1 solution in the objective space – projections with respect to f4

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

Avg. system runtime, days

A
vg

. s
tr

en
gt

h
de

v.

0 20 40 60 80 100

0.5

1

1.5

Avg. system runtime, days

A
vg

. l
ig

ht
 s

ca
tte

rin
g

de
v.

0 20 40 60 80 100

0.065

0.07

0.075

0.08

0.085

Avg. system runtime, days

A
vg

. p
ro

p.
 ti

m
e

in
 u

c
br

ea
k

0 20 40 60 80 100

2

3

4

Avg. system runtime, days

In
ve

st
m

en
t c

os
t,

M
E

U
R

The calculation time in Stage 1 was approximately 2 months. After
the Stage 1 solution was found, we used PAINT [17] to create a surrogate
problem. The surrogate problem had 5 objective functions as the original
problem, 4542 continuous variables, 757 binary variables, 757 inequality con-

24

Figure 5: The Stage 1 solution in the objective space – projections with respect to f1, f2
and f5

2 3 4

0.1

0.2

0.3

0.4

0.5

Investment cost, MEUR

A
vg

. s
tr

en
gt

h
de

v.

2 3 4

0.5

1

1.5

Investment cost, MEUR

A
vg

. l
ig

ht
 s

ca
tte

rin
g

de
v.

2 3 4

0.065

0.07

0.075

0.08

0.085

Investment cost, MEUR
A

vg
. p

ro
p.

 ti
m

e
in

 u
c

br
ea

ks

0.5 1 1.5
0.06

0.065

0.07

0.075

0.08

0.085

Avg. light scattering dev.

A
vg

. p
ro

p.
 ti

m
e

in
 u

c
br

ea
ks

0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

Avg. light scattering dev.

A
vg

. s
tr

en
gt

h
de

v.

0.1 0.2 0.3 0.4 0.5

0.065

0.07

0.075

0.08

0.085

Avg. strength dev.

A
vg

. p
ro

p.
 ti

m
e

in
 u

c
br

ea
ks

25

straints and 2 equality constraints. Because it was a multiobjective mixed-
integer linear optimization problem, it was computationally inexpensive to
solve. The calculation done in this stage took approximately 2 months. After
Stage 1, Stage 2 could be started with the DM.

5.3. Stage 2: decision making

To effectively cope with the challenge of dealing with multiple conflict-
ing objectives and to support the DM in a search of the preferred solution,
we used in Stage 2 the IND-NIMBUS software [47, 48] implementing the
interactive NIMBUS method [40, 41]. The DM directed the search in find-
ing the best solution of the surrogate problem according to one’s preferences
with IND-NIMBUS. At each iteration, IND-NIMBUS solved the surrogate
problem and showed an objective vector to the DM and asked him/her to
provide preference information of how it should be improved. The DM de-
cided whether each of the objective function values of the current solution: i)
should be improved as much as possible, ii) should be improved until a given
aspiration level, iii) is satisfactory at the moment, iv) is allowed to impair
up to a given bound, or v) can be changed freely. Then, a new computa-
tionally inexpensive scalarized problem was formulated with the preference
information and solved using CPLEX to get a Pareto optimal solution to
the surrogate problem which reflected the preferences as well as possible.
This process was continued until a final decision was made. Since decision
making is an iterative process, we have a double arrow in Figure 3. Solving
the surrogate problem created by PAINT enabled a decision making process
without waiting times for the DM (generating Pareto optimal solutions for
the surrogate problem took on the average 0.5 seconds).

In this case study, an initial solution randomly taken from the Stage 1
solution with objective function values of f1 = 0.01090, f2 = 0.60110,
f3 = 0.07080, f4 = 21.3947 days and f5 = 3.875 Me was provided to
the DM. The DM was interested in an investment cost lower than 3 Me and
an average time until the under- or overflow longer than 5 days. The other
objectives were allowed to change freely. The solution obtained for the sur-
rogate problem with this preference information had the following objective
function values: f1 = 0.02264, f2 = 0.57813, f3 = 0.07037, f4 = 53.4643
days, and f5 = 3 Me. It is presented in Figure 6, which also demonstrates
the user interface of IND-NIMBUS. The DM was satisfied with this solution
and no more iterations were needed. Thus, this is the Stage 2 solution.

26

Figure 6: A screen shot of the graphical user interface of the NIMBUS method in the
IND-NIMBUS software

27

5.4. Stage 3: post-decision making

The aim of Stage 3 is to find the preferred solution of the original problem
based on the DM’s preferences, namely the Stage 2 solution. As mentioned
in Section 3.3, one can use a computationally inexpensive way if no further
computations can be afforded.

In our case study, the decision vector of the Stage 1 solution having the
closest objective vector to the Stage 2 solution in the objective space was
V1 = 2287, V2 = 2357, V3 = 4000, V4 = 855, p0 = 0.001 and W = 0.4935
when measured by the Euclidean distance. The same decision vector also
produced the best value of f̄z̄ over the Stage 1 solution (equal to 0.087979).
The corresponding objective vector is given in Table 3 (best in Stage 1).

Table 3: Objective vectors

minf1 minf2 minf3 maxf4 minf5

Stage 2 solution 0.02264 0.57813 0.07037 53.4643 3.00
best in Stage 1 0.01110 0.48563 0.07186 48.9504 3.31
Stage 3 solution 0.01016 0.47363 0.07137 48.7919 3.27

To actually project the Stage 2 solution to the Pareto optimal set of
the original problem, we minimized achievement function (2) in S with the
DE method using different mutation factor F and crossover rate CR values
recommended in [42]. In order to reduce the overall computational cost and
to benefit from calculations done in Stage 1, DE was also run with a warm
start, i.e., the decision vectors producing the least values of the achievement
function were selected as initial population members. The results obtained
clearly demonstrate that better achievement function values were obtained
by a warm start. Moreover, none of the runs without a warm start reached
the starting level of runs with a warm start.

The Stage 3 solution was found by the DE run with parameters F = 0.5
and CR = 0.1 using 200 objective function evaluations. The decision vector
had the values: V1 = 2287, V2 = 2217, V3 = 4000, V4 = 855, p0 = 0.001
and W = 0.7179 (and the value of f̄z̄ being 0.077936) (for the corresponding
objective vector, see Table 3). One can say that the Stage 3 solution matched
better the DM’s preferences than the closest objective vector based on the
Stage 1 solution since it gave a smaller value of the achievement function f̄z̄.

28

The Stage 3 solution is the final solution of the original design optimization
problem. Stage 3 was computationally demanding and took around 1 month
as it solved the original problem.

Because the number of solution generated at Stage 1 is limited, one may
wonder whether the information is accurate enough for Stage 2 to produce
a good approximation. It is important to note here that thanks to the in-
teractive method used, it is not critical to cover the whole Pareto optimal
set equally accurately as long as the part of the set that is interesting to the
decision maker is properly covered. Based on the closeness of the projected
solution in Stage 3 we can see that the accuracy in this case was sufficient in
the interesting area. (Otherwise, more solutions would have been needed in
Stage 1.)

6. Conclusions

In this paper, we have highlighted some of the computational challenges
of solving complex simulation-based design optimization problems involving
multiple conflicting objectives and have proposed a three-stage solution pro-
cess to tackle them. Applying this solution process was demonstrated with
a case study where the optimal design of a paper mill was considered. Our
case study is very challenging due to the following characteristics: i) high
computational cost, ii) multiple conflicting criteria, iii) black-box problem,
and iv) stochasticity. Despite these computational difficulties, the problem
was successfully solved following the proposed solution process.

In Stage 1, different multiobjective optimization methods tailored for
computationally expensive problems were applied to solve the original prob-
lem. Although a number of different methods were used to approximate the
Pareto optimal set, it is not necessarily recommended that one should always
use as many of them. Then based on the Stage 1 solution, a computation-
ally inexpensive surrogate problem was created by the approximation method
PAINT. The creation of the surrogate problem took time but solving the sur-
rogate problem in Stage 2 of the solution process was not computationally
expensive. The surrogate problem was solved by the interactive multiobjec-
tive optimization method NIMBUS without creating waiting times for the
DM and enabling an efficient decision making process. In this stage, the DM
was involved and asked to express one’s preferences in order to direct the
search towards the preferred approximated solution. In Stage 3, a single-
objective optimization problem was solved to get a solution best matching

29

the Stage 2 solution by projecting it to the original problem. In order to re-
duce computational cost, the information obtained in Stage 1 was employed
in Stage 3 as a warm start. The three-stage solution process proposed is
not application-specific but can be applied in various design optimization
problems facing computational challenges discussed.

Acknowledgements

This research was partly financially supported by the EffNet Research
Program WP9 of FIBIC (former Forestcluster) Ltd., Tekes and COMAS
(Jyväskylä Graduate School in Computing and Mathematical Sciences). The
authors wish to thank Markus Hartikainen and Vesa Ojalehto from the In-
dustrial Optimization Group at the University of Jyväskylä for valuable help,
Tobias Wagner for the SMS-EGO implementation and the project partners
in WP9 for providing the model.

30

Appendix A. Constraints of operational optimization

Constraints of the operational level problem (7) [25, 26, 27, 28]:

A1

KH−1∑
l′=0

u(m+ l′) ≤ Vmax,1 − V1(m)− lC1

−B1F
−1
Zb(m)(l)

(1− p(up)
1)l

(A.1a)

−A1

KH−1∑
l′=0

u(m+ l′) ≤ V1(m) + lC1

+B1F
−1
Zb(m)(l)

(1− p(low)
1)l − Vmin,1

(A.1b)

Ai

KH−1∑
l′=0

u(m+ l′) ≤ Vmax,i − Vi(m)− lCi

−BiF
−1
Zb(m)(l)

(1− (1− p(up)
i)l), i = 2, 3

(A.1c)

−Ai

KH−1∑
l′=0

u(m+ l′) ≤ Vi(m) + lCi +BiF
−1
Zb(m)(l)

(1− (1

− p(low)
i)l)− Vmin,i, i = 2, 3

(A.1d)

A4

KH−1∑
l′=0

u(m+ l′) ≤ Vmax,4 − V4(m)− lC4 (A.1e)

−Ai

KH−1∑
l′=0

u(m+ l′) ≤ V4(m) + lC4 − Vmin,4 (A.1f)

q1(m+ l) = q1(m) +
Km∑
l′=1

c(l′)(u(m+ l − l′)− u(m− l′)) (A.1g)

uj,min ≤ uj ≤ uj,max, (A.1h)

where Vmin,i and Vmax,i stand for the minimum and maximum amounts of

water or pulp in the towers, respectively, 1 −
(
1 − p

(up/low)
i

)k
is a function

for the accepted risk p
(up/low)
i that the ith tower runs empty or overflows

(pup1,4 = 0, pup2,3 = p0; plow1 = p0, plow2,3,4 = 0, where p0 is a decision variable), and

F−1
Zb(m)(l)

is the cumulative distribution of the number of breaks, A, B and

C are matrices of break model parameters, c(l′) is a matrix of coefficients

31

(impulse response) obtained through step response tests by changing one
control variable at a time and Km is the number of steps in “the history”
that is contributing to the dynamics of the model. The constraints (A.1a)-
(A.1f) prevent the towers from running empty or overflowing; (A.1a)-(A.1b),
(A.1c)-(A.1d), and (A.1e)-(A.1f) correspond to white water tower, uncoated
and coated broke towers and clear water tower, respectively. A prediction
model of paper strength is defined by (A.1g). The last constraint (A.1h)
determines the minimum and maximum dosage of pulp, water and broke.

Appendix B. Performance of different methods in Stage 1

All the methods were run only once due to a high computational cost.
The minimal and maximal values of objective functions in the nondominated
sets produced by different methods are given in Table B.4. Here, the non-
dominated set refers to the subset of vectors which are not dominated by any
other vector in the set considered. The bold face stands for the highest and
lowest values of each objective function. This table demonstrates that SMS-
EGO-0 found decision vectors with the highest values of f1, f2 and f3 as well
as the lowest value of f5. SMS-EGO-2 obtained a decision vector with the
lowest value of f4, however it was dominated by one found by SMS-EGO-0.
The ParEGO method provided decision vectors with the lowest value of f2

and highest values of f4 and f5 while MOEA/D obtained decision vectors
with lowest values of f1 and f3. The obtained nondominated sets (objec-
tive vectors) are shown in Figures B.7 and B.8 as various projections. They
confirm that the ParEGO method better explored the ranges of f4, i.e., it
found decision vectors where the average system runtime was longer than
89.27 days and reached even 105 days, and it also provided decision vectors
where f2 had smaller values than 0.39.

It is difficult to analyze method performance based only on visual infor-
mation which might not well represent reality (and based on only one run per
method). To obtain a trend-setting estimate of method performance, we cal-
culated hypervolume (HV) [49] and inverted generational distance (IGD) [50]
metrics of the nondominated sets obtained by each method (see Table B.5).
In order to calculate an IGD metric, one must know the true Pareto optimal
set, which is usually unavailable in practical applications. Thus, we calcu-
lated IGD metric values with respect to the combined set (that is why the
IGD value of the combined set is equal to 0). The experimental settings did
not allow us to perform statistical analysis, as we could not afford running

32

Table B.4: Min and max values of the design objectives in the nondominated sets obtained
by different methods

f1 f2 f3 f4 f5

Hamm
Min 0.00742 0.39052 0.06510 1.08941 1.89092
Max 0.05279 0.96061 0.07894 55.1299 4.66252

SMS-EGO-0
Min 0.00834 0.42451 0.06587 0.55851 1.14118
Max 0.50354 1.55069 0.08415 61.3110 3.89702

SMS-EGO-1
Min 0.00786 0.41991 0.06460 0.68481 1.14118
Max 0.34199 1.36831 0.07760 89.2707 3.97326

SMS-EGO-2
Min 0.00793 0.40955 0.06587 0.49254 1.14118
Max 0.39700 1.47611 0.07934 86.1966 4.19094

ParEGO
Min 0.00718 0.34785 0.06440 0.70503 1.14123
Max 0.24286 1.13433 0.07732 105.5457 4.66508

MOEA/D
Min 0.00658 0.43716 0.06341 0.92014 2.07562
Max 0.12823 1.12786 0.07282 47.7186 4.40904

33

Figure B.7: Nondominated sets of different methods in the objective space – projections
with respect to f4

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

Avg. system runtime, days

A
vg

. s
tr

en
gt

h
de

v.

0 20 40 60 80 100

0.5

1

1.5

Avg. system runtime, days

A
vg

. l
ig

ht
 s

ca
tte

rin
g

de
v.

0 20 40 60 80 100
0.06

0.065

0.07

0.075

0.08

0.085

Avg. system runtime, days

A
vg

. p
ro

p.
 ti

m
e

in
 u

c
br

ea
k

0 20 40 60 80 100

1.5

2

2.5

3

3.5

4

4.5

Avg. system runtime, days

In
ve

st
m

en
t c

os
t,

M
E

U
R

Hammersley SMSEGO−0 SMSEGO−1 SMSEGO−2 ParEGO MOEA/D

34

Figure B.8: Nondominated sets of different methods in the objective space – projections
with respect to f1, f2 and f5

2 3 4

0.1

0.2

0.3

0.4

0.5

Investment cost, MEUR

A
vg

. s
tr

en
gt

h
de

v.

2 3 4

0.4

0.6

0.8

1

1.2

1.4

1.6

Investment cost, MEUR

A
vg

. l
ig

ht
 s

ca
tte

rin
g

de
v.

2 3 4

0.065

0.07

0.075

0.08

0.085

Investment cost, MEUR

A
vg

. p
ro

p.
 ti

m
e

in
 u

c
br

ea
ks

0.5 1 1.5

0.065

0.07

0.075

0.08

0.085

Avg. light scattering dev.

A
vg

. p
ro

p.
 ti

m
e

in
 u

c
br

ea
ks

0.1 0.2 0.3 0.4 0.5

0.065

0.07

0.075

0.08

0.085

Avg. strength dev.

A
vg

. p
ro

p.
 ti

m
e

in
 u

c
br

ea
k

Hammersley SMSEGO−0 SMSEGO−1 SMSEGO−2 ParEGO MOEA/D

0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

Avg. light scattering dev.

A
vg

. s
tr

en
gt

h
de

v.

35

methods more than once. Thus, the results obtained must be interpreted
cautiously and have only an advisory value. According to these metrics,
SMS-EGO-1 outperformed others because the HV metric value is the great-
est (a greater HV value is better) and the IGD value is the lowest (a lower
IGD value is better). We expected that all applied optimization methods
would perform better than the Hammersley sequence sampling technique.
HV values support this, while the largest IGD value obtained by MOEA/D
showed its poor performance with respect to IGD values. Poor MOEA/D
performance in our case can be explained by the fact that we had a very
small budget of objective function evaluations and were forced to use a small
population for MOEA/D while the recommended size is much higher.

Table B.5: Performance measures of different methods

HV IGD Time, s

Hamm 0.5050 2.8405 0.0391
SMS-EGO-0 0.6682 2.1374 1506.73
SMS-EGO-1 0.8919 0.5379 1975.28
SMS-EGO-2 0.7648 0.7660 1874.28
ParEGO 0.5943 0.5656 1231.81
MOEA/D 0.5145 3.5249 11.125

Combined set 0.9597 0.0000 -

Table B.5 also provides computing time needed for each method calcula-
tions without objective function evaluations (i.e., excluding simulation time),
which shows that the SMS-EGO method required more time than the other
methods. The fastest among optimization methods was MOEA/D (at the
cost of poor performance). It was clear at the beginning that Hammersley
sampling takes the shortest time, because it only generates a set of decision
vectors and does not perform other calculations as the optimization methods
do.

References

[1] P. Y. Papalambros, The optimization paradigm in engineering design:
Promises and challenges, Comput Aided Design 34 (2002) 939–951.

36

[2] R. Roy, S. Hinduja, R. Teti, Recent advances in engineering design op-
timisation: Challenges and future trends, CIRP Ann-Manuf Techn 57
(2008) 697–715.

[3] T. W. Simpson, V. V. Toropov, V. Balabanov, F. A. Viana, Design
and analysis of computer experiments in multidisciplinary design opti-
mization: A review of how far we have come - or not, in: Proceedings
of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, British Columbia, Canada, 2008, pp. 1–22.

[4] R. T. Marler, J. S. Arora, Survey of multi-objective optimization meth-
ods for engineering, Struct Multidisc Optim 26 (2004) 369–395.

[5] G. G. Wang, S. Shan, Review of metamodeling techniques in support of
engineering design optimization, J Mech Design 129 (4) (2007) 370–380.

[6] A. I. Forrester, A. J. Keane, Recent advances in surrogate-based opti-
mization, Prog Aerosp Sci 45 (1–3) (2009) 50–79.

[7] A. Kurpati, S. Azarm, Immune network simulation with multiobjective
genetic algorithms for multidisciplinary design optimization, Eng Opti-
miz 33 (2) (2000) 245–260.

[8] R. Farmani, D. A. Savic, G. A. Walters, Evolutionary multi-objective
optimization in water distribution network design, Eng Optimiz 37 (2)
(2005) 167–183.

[9] M. Li, G. Li, S. Azarm, A Kriging metamodel assisted multi-objective
genetic algorithm for design optimization, J Mech Design 130 (2008)
031401–1 – 031401–10.

[10] H. Liu, S. Maghsoodloo, Simulation optimization based on Taylor Krig-
ing and evolutionary algorithm, Appl Soft Comput 11 (4) (2011) 3451–
3462.

[11] R. Tappeta, J. Renaud, J. Rodŕıguezc, An interactive multiobjective
optimization design strategy for decision based multidisciplinary design,
Eng Optimiz 34 (5) (2002) 523–544.

[12] J. Hämäläinen, K. Miettinen, P. Tarvainen, J. Toivanen, Interactive
solution approach to a multiobjective optimization problem in paper

37

machine headbox design, J Optimiz Theory App 116 (2) (2003) 265–
281.

[13] E. Heikkola, K. Miettinen, P. Nieminen, Multiobjective optimization
of an ultrasonic transducer using NIMBUS, Ultrasonics 44 (4) (2006)
368–380.

[14] K. Miettinen, J. Hakanen, Why use interactive multi-objective optimiza-
tion in chemical process design?, in: G. Rangaiah (Ed.), Multi-Objective
Optimization: Techniques and Applications in Chemical Engineering,
World Scientific, 2009, pp. 153–188.

[15] J. Hakanen, K. Miettinen, K. Sahlstedt, Wastewater treatment: New in-
sight provided by interactive multiobjective optimization, Decic Support
Syst 51 (2011) 328–337.

[16] S. Taras, A. Woinaroschy, An interactive multi-objective optimization
framework for sustainable design of bioprocesses, Comput Chem Eng 43
(2012) 10–22.

[17] M. Hartikainen, K. Miettinen, M. M. Wiecek, PAINT: Pareto front in-
terpolation for nonlinear multiobjective optimization, Comput Optim
Appl 52 (2012) 845–867.

[18] J. Knowles, ParEGO: A hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems, IEEE
T Evolut Comput 10 (1) (2006) 50–66.

[19] W. Ponweiser, T. Wagner, D. Biermann, M. Vincze, Multiobjective
optimization on a limited budget of evaluations using model-assisted
S-metric selection, in: G. Rudolph, T. Jansen, S. Lucas, C. Poloni,
N. Beume (Eds.), Parallel Problem Solving from Nature - PPSN X Pro-
ceedings, Springer, 2008, pp. 784–794.

[20] K. M. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Aca-
demic Publishers, Boston, 1999.

[21] K. Miettinen, F. Ruiz, A. P. Wierzbicki, Introduction to multiobjective
optimization: interactive approaches, in: J. Branke, K. Deb, K. Mietti-
nen, R. S lowiński (Eds.), Multiobjective Optimization: Interactive and
Evolutionary Approaches, Springer, 2008, pp. 27–57.

38

[22] A. P. Wierzbicki, On the completeness and constructiveness of para-
metric characterizations to vector optimization problems, OR Spektrum
8 (2).

[23] A. P. Wierzbicki, A methodological approach to comparing paramet-
ric characterizations of efficient solutions, in: G. Fandel, M. Grauer,
A. Kurzhanski, A. P. Wierzbicki (Eds.), Large-Scale Modelling and In-
teractive Decision Analysis, Vol. 273 of Lecture Notes in Economics and
Mathematical Systems, Springer-Verlag, 1986, pp. 27–45.

[24] C. J. Biermann, Handbook of Pulping and Papermaking, 2nd Edition,
Academic Press, 1996.

[25] A. Ropponen, M. Rajala, R. Ritala, Multiobjective optimization of the
pulp/water storage towers in design of paper production systems, Comp
Aid Ch 29 (2011) 612–616.

[26] A. Ropponen, R. Ritala, E. Pistikopoulos, Broke management optimiza-
tion in design of paper production systems, Comp Aid Ch 28 (2010)
865–870.

[27] A. Ropponen, R. Ritala, E. Pistikopoulos, Optimization issues of the
broke management system in papermaking, Comput Chem Eng 35 (11)
(2011) 2510–2520.

[28] A. Ropponen, R. Ritala, Operational optimization of paper flow man-
agement in papermaking, in: Proceedings of PaperCon 2012 Conference,
New Orleans, Louisiana, USA, 2012, pp. 142–184.

[29] P. Seferlis, M. Georgiadis (Eds.), The Integration of Process Design and
Control, Elsevier, 2004.

[30] V. Sakizlis, J. Perkins, E. Pistikopoulos, Recent advances in
optimization-based simultaneous process and control design, Comput
Chem Eng 28 (10) (2004) 2069–2086.

[31] L. Ricardez-Sandoval, H. Budman, P. Douglas, Integration of design
and control for chemical processes: A review of the literature and some
recent results, Annu Rev Control 33 (2) (2009) 158–171.

39

[32] J. M. Maciejowski, Predictive Control with Constraints, Prentice Hall,
2002.

[33] A. Bemporad, D. M. de la Pena, Multiobjective model predictive control,
Automatica 45 (2009) 2823–2830.

[34] F. Bouani, K. Laabidi, M. Ksouri, Conventional and non-conventional
methods for nonlinear multi objective predictive control, CEAI 8 (1)
(2006) 59–69.

[35] W. Wojsznis, A. Mehta, P. Wojsznis, D. Thiele, T. Blevins, Multi-
objective optimization for model predictive control, ISA Trans 46 (3)
(2007) 351–61.

[36] A. Žilinskas, Axiomatic characterization of a global optimization algo-
rithm and investigation of its search strategies, Oper Res Lett 4 (1985)
35–39.

[37] D. Jones, M. Schonlau, W. Welch, Efficient global optimization of ex-
pensive black-box functions, J Global Optim 13 (4) (1998) 455–492.

[38] L. Santana-Quintero, A. Montano, C. C. Coello, A review of techniques
for handling expensive functions in evolutionary multi-objective opti-
mization, in: Y. Tenne, C.-K. Goh (Eds.), Computational Intelligence
in Expensive Optimization Problems, Vol. 2, Springer, 2010, pp. 29–59.

[39] Q. Zhang, P. N. Suganthan, Final report on CEC09 MOEA competi-
tion, Tech. rep., School of Computer Science and Electrical Engineering,
University of Essex (2009).

[40] K. M. Miettinen, M. Mäkelä, Interactive bundle-based method for non-
differentiable multiobjective optimization: NIMBUS, Optimization 34
(1995) 231–246.

[41] K. Miettinen, M. Mäkelä, Synchronous approach in interactive multiob-
jective optimization, Eur J Oper Res 170 (3) (2006) 909–922.

[42] R. Storn, K. Price, Differential evolution - A simple and efficient heuris-
tic for global optimization over continuous spaces, J Global Optim 11
(1997) 341–359.

40

[43] K. Price, R. Storn, J. Lampinen, Differential Evolution: A Practical
Approach to Global Optimization, Springer, 2005.

[44] J. M. Hammersley, Monte Carlo methods for solving multivariable prob-
lems, Annals of the New York Academy of Sciences 86 (3) (1960) 844–
874.

[45] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,
M. Saisana, S. Tarantola, Global Sensitivity Analysis. The Primer, John
Wiley & Sons, 2008.

[46] A. I. J. Forrester, A. J. Keane, N. W. Bressloff, Design and analysis of
’noisy’ computer experiments, AIAA J 44 (10) (2006) 2331–2339.

[47] K. Miettinen, IND-NIMBUS for demanding interactive multiobjective
optimization, in: T. Trzaskalik (Ed.), Multiple Criteria Decision Mak-
ing ’05, The Karol Adamiecki University of Economics in Katowice,
Katowice, 2006, pp. 137–150.

[48] IND-NIMBUS, accessed on 25 February, 2013.
URL http://ind-nimbus.it.jyu.fi/

[49] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: A com-
parative case study and the strength Pareto approach, IEEE T Evolut
Comput 3 (4) (1999) 257–271.

[50] H. Sato, H. Aguirre, K. Tanaka, Local dominance using polar coordi-
nates to enhance multiobjective evolutionary algorithms, in: Congress
on Evolutionary Computation, 2004. CEC2004, 2004, pp. 188–195.

41

