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aComputer Architecture Group, Universidade da Coruña. Facultade de Informática,
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Abstract

NURBS (Non-uniform rational B-splines) surfaces are one of the most useful
primitives employed for high quality modeling in CAD/CAM tools and graphics
software. Since direct evaluation of NURBS surfaces on the GPU is a highly
complex task, the usual approach for rendering NURBS is to perform the con-
version into Bézier surfaces on the CPU, and then evaluate and tessellate them
on the GPU. In this paper we present a new proposal for rendering NURBS sur-
faces directly on the GPU in order to achieve interactive and real-time rendering.
Our proposal, Rendering Pipeline for NURBS Surfaces (RPNS), is based on a
new primitive KSQuad that uses a regular and flexible processing of NURBS
surfaces, while maintaining their main geometric properties to achieve real-time
rendering. RPNS performs an efficient adaptive discretization to fine tune the
density of primitives needed to avoid cracks and holes in the final image, apply-
ing an efficient non-recursive evaluation of the basis function on the GPU. An
implementation of RPNS using current GPUs is presented, achieving real-time
rendering rates of complex parametric models. Our experimental tests show a
performance several orders of magnitude higher than traditional approximations
based on NURBS to Bézier conversion.
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1. Introduction

NURBS (Non-uniform rational B-splines) surfaces [1] have been widely em-
ployed in CAD/CAM tools and graphics applications due to their capabilities
for modeling complex geometries. In addition to the high quality of NURBS
models, another advantage of the NURBS representations is the compactness of
the description and, in consequence, the low storage and transmission require-
ments. Furthermore, graphic designers can produce models and animations in
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a simpler and faster way because they have to control fewer points than for tri-
angle meshes. On the other hand, NURBS are easily scalable representations,
so a surface can be converted into a triangle mesh with few triangles or with
many triangles according to the required level of detail (LOD).

In order to render NURBS surfaces on the current GPUs, these surfaces are
commonly decomposed into a series of Bézier patches by the well-known tech-
nique called knot refinement [1], since they can not be directly rendered by the
GPU, as we will prove. Such an approach using Bézier surfaces suffers from
long preprocessing time as well as the potential introduction of artifacts, espe-
cially at the surfaces boundaries [2]. Besides, since the complete decomposition
into a set of Bézier patches needs to be executed every frame for each NURBS
surface with this approach, interactive rendering rates are not possible when
a NURBS surface is continuously deforming or transforming [3, 4]. Therefore,
Bézier surfaces are not a good replacement for NURBS surfaces in fields such
as modeling, virtual reality or animation.

In the literature, recent proposals achieve real-time rendering by tessellating
parametric surfaces directly on the GPU [5, 6, 7, 8]. In these proposals the
rendering process is performed per patch [5, 7] or per set of patches according
to the required level of detail [6]. In this approach the computational cost
increases with the number of patches due to the amount of synchronous calls
between CPU and GPU. [8] renders pixel-accurate Bézier surfaces using the
tessellation unit of modern GPUs. Since the tessellation units added to the
current GPUs do not provide a high enough level of tessellation to generate
continuous surfaces with no holes from a NURBS surface. Another tessellation
approach is presented in [9] where the tessellation of bi-cubic Bézier surfaces
is performed following a GPGPU strategy (General-Purpose Computation on
GPU) using CUDA.

A different approach to tessellate parametric surfaces is the dicing of these
surfaces on micropolygons, small quadrilaterals each less than one pixel in size.
The starting point of this approach is the Reyes rendering system [10], based
on the development of a new and different pipeline. Although, Reyes rendering
performance is far from meeting real-time requirements, different characteristics
of this pipeline have been ported to GPUs [11]. Other proposals based on the
modification of the GPU pipeline to implement micropolygon rendering are
found in [12].

All these proposals above can not handle deforming NURBS surfaces inter-
actively, due to the high computational cost of the transformation of a NURBS
surface to Bézier patches has to be performed repeatedly in every frame as the
surface is deforming.

In [13] non-uniform B-splines surfaces are tessellated on the CPU and then
evaluated on the GPU to obtain positions and normal vectors. This alternative
needs to use multiple fragment programs for the different surface degrees. In [14,
4] a rendering of NURBS surfaces was proposed for GPUs which only operate
on existing data, since this approach is prior to the introduction of the geometry
shader [15], the first shader that allowed the generation and destruction of
geometry data on the GPU. In that approach, the CPU creates a set of grids
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that indicates the evaluation points for the different levels of detail, and these
data are sent to the GPU and stored as textures. A fragment program computes
the basis functions with a “ping-pong” technique which alternates between two
textures. That is, p× q passes are needed for a NURBS surface of degree (p, q);
for example, a bi-cubic surface point is evaluated in 16 passes. A second step
multiplies these basis function values by the control points to get the surface
point evaluation. Then, the resulting data are reduced in order to calculate the
positions using a different fragment program. Finally, the connectivity of the
points is generated on the CPU using the grid computed according to a selected
level of detail. Therefore, these approaches perform a previous tessellation on
the CPU.

In this paper we present RPNS, Rendering pipeline for NURBS Surface, a
novel solution for the direct evaluation of NURBS surfaces on the GPU without
any previous decomposition to Bézier surfaces. The objective is the efficient
and interactive rendering of each surface so that the final image has no cracks
or holes, neither inside each surface nor between neighbor surfaces, making it
possible to exploit the parallelism of the GPU to perform common operations
such as sketching on surfaces or interactive rendering of deforming surfaces [16,
17]. A new primitive, KSQuad, based on the regions defined by the projection
on the parametric cell delimited by the different knot spans is proposed. This
primitive does not need a preprocessing stage and intrinsically maintains the
main geometric properties of NURBS surfaces, such as local support and strong
convex hull.

In short, by means of the KSQuad primitive RPNS exploits the main fea-
tures of NURBS surfaces to accomplish its real time evaluation and direct dis-
play, rivaling in quality and performance with approaches based on the REYES
pipeline. Moreover, whereas other similar approaches really compute the basis
functions previously on the CPU [4], RPNS goes one step forward and evaluates
in real-time the whole NURBS equation in the GPU without any precomputa-
tion on the CPU. To test our proposal, and although this paper mainly focuses
on algorithmic improvements to the rendering pipeline, rather than an opti-
mized implementation, we have implemented it to measure its performance on
current GPUs, achieving interactive and real-time rendering.

This rest of the paper is organized as follows: Section 2 presents KSQuad,
the primitive our pipeline is based on, Section 3 introduces RPNS and Section 4
describes its implementation in DirectX11. Finally, Section 5 shows the exper-
imental results obtained in our tests and the main conclusions are highlighted
in Section 6.

2. KSQuad Primitive

In this section, we present a new primitive called KSQuad that allows a
regular, flexible, efficient and interactive rendering of NURBS surfaces.

A NURBS surface is obtained as the tensor product of two NURBS curves,
parametric curves that are a generalization of Bézier curves and are defined
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by its degree, a set of weighted control points, and a knot vector. Thus, us-
ing two independent parameters u and v, the NURBS surface of degree (p, q),
respectively in both parametric directions, is given by the equation:

S(u, v) =

n∑
i=0

m∑
j=0

Ni,p(u) Nj,q(v) wi,jBi,j

n∑
i=0

m∑
j=0

Ni,p(u) Nj,q(v) wi,j

, 0 ≤ u, v ≤ 1

where Bi,j are the control points, wi,j are the weights, n + 1 and m + 1 are
the number of control points in u and v parametric directions, respectively, and
Ni,p and Nj,q are the nonrational B-spline basis function defined on two knot
vectors of r = p+ n+ 1 and s = q +m+ 1 elements, respectively:

U =

0, · · · , 0︸ ︷︷ ︸
p+1

, xp+1, · · · , xr−p−1, 1, · · · 1︸ ︷︷ ︸
p+1


V =

0, · · · , 0︸ ︷︷ ︸
q+1

, yq+1, · · · , ys−q−1, 1, · · · 1︸ ︷︷ ︸
q+1


The basis function Ni,p of degree p is defined for the parametric direction u as

Ni,p(u) =
u− xi

xi+p − xi
Ni,p−1(u) +

xi+p+1 − u
xi+p+1 − xi+1

Ni+1,p−1(u) (1)

with

Ni,0(u) =

{
1 if xi ≤ u < xi+1

0 otherwise

Analogously, the basis function Nj,p of degree q is defined for the parametric
direction v.

The knot vectors are non-decreasing sequences of real numbers that make a
partition on the parametric domain. This partition defines the relation between
different ranges of the parametric coordinates, known as knot spans or knot
intervals, with the control points. Since basis functions are non-zero only in part
of the domain, the functions Ni,p−1 and Ni+1,p−1, used for the computation of
Ni,p, are non-zero for p knot spans, overlapping for p− 1 knot spans.

A NURBS surface can be seen as a grid of cells in parametric space delim-
ited by the different knot spans, with each cell containing a part of the surface
computed with the non-zero basis functions in that interval. Thus, we have
focused on that idea to propose a suitable input primitive that does not re-
quire a previous transformation as the seed of RPNS. This new primitive, Knot
Span Quad (KSQuad), represents a half-open interval of the parametric domain,
[xi, xi+1) × [yj , yj+1), with non-zero length, and maintains the information of
q × p neighboring knot spans, allowing an efficient evaluation of the NURBS
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Parametric Space Model Space

(xi, yj+1)

(xi+1, yj+1)

(xi, yj)
(xi+1, yj)

S(xi, yj+1) S(xi+1, yj+1)

S(xi, yj) S(xi+1, yj)

Figure 1: KSQuad primitive defined by a knot interval.

surface in this interval without any recursive computation, which makes it suit-
able for GPU implementation. It is important to emphasize that our proposal
does not decompose the NURBS surface in any moment. Each position of the
surface is directly evaluated on the NURBS surface.

A KSQuadi,j of degree q and p is defined like

KSQuadi,j = {
knot span︷ ︸︸ ︷

xi, xi+1, yj , yj+1, Bi−p,j−q, · · · , Bi,j︸ ︷︷ ︸
control points

,

weights︷ ︸︸ ︷
wi−p,j−q, · · · , wi,j }

being xi 6= xi+1 and yj 6= yj+1.
Each KSQuadi,j controls a subset of the parametric domain, defined by the

rectangle parametric sub-domain with corners (xk, yl), k ∈ {i, i+1}, l ∈ {j, j+1},
as illustrated in Figure 1.

A KSQuad preserves the many desirable geometric properties presented in
NURBS curves and surfaces (properties the can be found in [1]), such as:

• Strong convex hull: a NURBS surface is contained in the convex hull of its
control points. Moreover, if (u, v) is in the parametric rectangle defined
by the knot spans [xi, xi+1)× [yj , yj+1), then S(u, v) is in the convex hull
defined by the control points Bi−p,j−q, . . . , Bi,j . This property assumes
that all the weights in the NURBS surfaces are positive values, and it
allows us to propose efficient culling methods on RPNS.

• Local support: Ni,p(u) · Nj,q(v) = 0 if (u, v) is outside the rectangle
[xi, xi+p+1)×[yj , yj+q+1). Therefore, the influence of an individual control
point over the surface is delimited to this parametric interval for each para-
metric direction. This feature is really interesting in our context, since it
makes it possible both to reduce the computational cost of basis functions
and to improve data locality. The latter is achieved as only (p+1)×(q+1)
control points are used to evaluate every point in a given KSQuad, avoid-
ing unnecessary accesses to the whole NURBS surface. Furthermore, the
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exploitation of the spatial coherence makes it possible that the data calcu-
lated for a given point into a cell may be reused for the rest of the points
in the same cell. This saves both memory accesses and computations.

The number of KSQuad primitives generated for each surface is variable,
but limited to (r − 2p)× (s− 2q):

KSp+1︷ ︸︸ ︷ KSr−p−1︷ ︸︸ ︷
U =

0, · · · 0, 0, xp+1,︸ ︷︷ ︸
KSp

xp+2, · · ·xr−p−2, xr−p−1,︸ ︷︷ ︸
KSr−p−2

1, · · · 1


KSq+1︷ ︸︸ ︷ KSs−q−1︷ ︸︸ ︷

V =

0, · · · 0, 0, yq+1,︸ ︷︷ ︸
KSq

yq+2, · · · ys−q−2, ys−q−1,︸ ︷︷ ︸
KSs−q−2

1, · · · 1


where r and s are the number of knots for each parametric direction, respec-
tively.

2.1. KSQuad vs. Bézier surface

The main advantages of our KSQuad-based proposals compared with the
traditional decomposition of NURBS into rational Bézier patches are highlighted
in this section.

NURBS surfaces are commonly decomposed into a series of rational Bézier
patches by the well-known technique called knot refinement [1], since a NURBS
surface can be divided into sections each one corresponding with a knot span in
the knot vector. Each section can be mathematically represented as a rational
Bézier surface maintaining the original shape. Each knot with multiplicity lower
than the degree in each parametric direction has to be replicated in the knot
vector until it appears p-times. The knot insertion algorithm inserts one into,
then adds and adjust control points to yield a new description for the same
curve or surface. The insertion of each new point depends on the value of the
new knot added. Then, the algorithm moves the other control points near the
new one to preserve the shape of the surface. Therefore, such an approach using
Bézier surfaces suffers from long preprocessing times as well as the introduction
of artifacts, especially at the surface boundaries. The resulting rational Bézier
surfaces are defined by

S(u, v) =

p∑
i=0

q∑
j=0

Ji,p(u)Jj,q(v)wi,jBi,j

p∑
i=0

q∑
j=0

Ji,p(u)Jj,q(v)wi,j

(2)

being Bi,j the control points, wi,j scalar weights and Ji,p the p-th degree Bern-
stein functions.

Figure 2 depicts a cubic NURBS curve (Figure 2a) and the decomposition
into piecewise Bézier segments (Figure 2b). The Bézier control points of the
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Figure 2: A cubic curve defined over [0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4] (a) Four KSQuads
defined over the interval knots (b) Decomposition of the curve into four Bézier
curves via knot refinement.

Table 1: Data of the experimental models.

Model #NS #KS NURBS#CP NURBS#M Bezier#CP Bezier#M
Bezier#M

NURBS#M

Killeroo 89 11532 17181 279.63 184512 2883 10.31
Head 601 15025 38464 657.34 240400 3756.25 5.71
Hinge 427 34891 61663 1016.69 558256 8722.75 8.58
Car 1364 63000 130380 2183.53 1008000 15750 7.21

segments are obtained by insetting each interior knot until it has multiplicity p.
In this example B0 = B′0 and B6 = B′12, the rest of control points of four Bézier
surfaces are inserted or modified in the procedure of conversion.

Next, we analyze the two main advantages of the KSQuad primitive over
the use of Bézier surfaces: first, the smaller memory requirements, and second,
the possibility of achieving interactive deformable NURBS. Table 1 shows the
main data of the models used in our experimental tests, such as the number
of NURBS surfaces and KSQuads of each model, #NS, #KS (these data were
obtained according to [1]). Additionally, this table also makes clear the low
memory footprint of our proposal. Thus, being NURBS#CP the number of
control point of all the NURBS surfaces in the model, Bezier#CP the number
of control points of all the Bézier surfaces once applied a decomposition, and
NURBS#M and Bezier#M the memory requirements for each case in KBytes,
respectively; the last column shows how using Bézier decomposition requires
significantly more control points and more memory. In the worst case, ten
times more memory is used to render the model Killeroo with Bézier surfaces
than by using the KSQuad primitive. In short, the memory requirements of
our approach are significantly lower than the memory consumed by the naive
approach of decomposing the NURBS surfaces into Bézier surfaces.

Regarding the possibility of obtaining interactive deformable surfaces, let us
remember that NURBS properties are not projected in the new Bézier surfaces
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Figure 3: Rendering of NURBS surfaces (a) Common approach based on de-
composition into Bézier surfaces (b) RPNS proposal.

resulting from a NURBS-to-Bézier decomposition. For example, when the con-
trol points are moved, the level of continuity at the knots can change (increase
or decrease). That is, any change in one Bézier point can reduce the continu-
ity from C1 to C0 on the edge between surfaces. Moreover, in a Bézier-based
modeling process the user is restricted to sketching on tangent planes instead of
directly dealing with the NURBS surface, resulting in a lack of flexibility and
good response feedback.

Our approach achieves interactive deformable NURBS surfaces, maintaining
the local support property. Modifications in the shape due to changes of Bi,j or
wi,j means that the KSQuads affected, {KSQuadi,j , . . . ,KSQuadi+p+1,j+q+1},
access to these new values. For example, let us consider the example of Fig-
ure 2b, the modification of B′4 implies the modification of B′2 in order to achieve
the same continuity in B′3. However, using KSQuads we get a more compact
representation of the surface and the modification of a particular control point
B2 in Figure 2b only affect the surface region S(u) with u ∈ [x2, x2+3+1).

The traditional approach to the interactive rendering of deforming NURBS
is outlined in Figure 3a. The transformation of NURBS surfaces into Bézier sur-
faces is carried out in the CPU, and these are eventually rendered by the GPU.
No additional CPU-GPU data transfer is needed if the surfaces are not modified.
However, if interactive deforming operations were applied, new conversions and
transfers are required. Our approach (see Figure 3b) needs a unique CPU-GPU
communication during a preprocessing stage.
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Figure 4: Generic structure of the rendering pipeline for NURBS surfaces based
on KSQuad.

3. Rendering Pipeline for NURBS Surfaces

The architecture of the rendering pipeline can usually be divided into three
conceptual stages: application, geometry and rasterizer. In the application
stage the geometry to be rendered is generated by a software application. This
results in a stream of primitives that are processed by the geometry stage, that
computes what, how and where the things are drawn. Finally, the rasterizer
stage renders an image; that is, sets the color for the pixels covered by the
different objects in the scene.

In this section, our Rendering Pipeline for NURBS Surfaces (RPNS) is de-
scribed. As it was commented in the previous section, RPNS adds a new prim-
itive, KSQuad, to the input stream of the geometry stage. Furthermore, an
intermediate stage, sampler, between the geometry and the rasterizer stages
is added, as depicted in Figure 4. In this stage an adaptive sampling of the
KSQuad primitives is performed according to the point of view, the geometric
characteristics of the surface and the boundary edges between surfaces. Pre-
cisely, the geometry stage precedes the sampling stage in RPNS to use all this
data to guide the sampling process, that is carried out by evaluating the KSQuad
primitives with no approximation at all. This sampling results in a set of sam-
pled points or dice that we have named KSDice and that make it possible to
render the surface without cracks or holes.

The number of KSDice depends on the evaluation of each KSQuad in the
geometry stage. Each KSDie consists of a sampled point and additional infor-
mation such as the parametric size of the die and the degree of the corresponding
surface, and it does not save any explicit connectivity information, analogously
to the concept of surfels [18] in the field of point rendering. KSDie is a primitive
that can be finally projected to a unique pixel or to a set of pixels.

Finally, a new explicit and non-recursive method for the evaluation of the
basis function has been developed with the aim of obtaining an efficient GPU
implementation. Basis function evaluation is usually one of the main bottlenecks
of NURBS evaluation, since these functions have a recursive formulation and
they are re-evaluated for each parametric position. Our evaluation strategy is
deeply analyzed in Section 3.2.

3.1. KSDice: Adaptive sampling of KSQuad primitives

The main purpose of RPNS is the adaptive sampling of KSQuad to obtain the
appropriate number of KSDice (samples) that provides a quality render with no
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(a) (b)

Figure 5: Killeroo model rendered using as input primitives: (a) NURBS sur-
faces (b) KSQuads.

holes, yet increasing the performance. As a matter of fact, the use of KSQuad as
the input primitive to be sampled already favors this adaptive behavior, since
it allows a better exploitation of the local geometric features of the surface.
Therefore, it solves an important problem in current GPUs, that can not obtain
enough samples for adequately covering the whole surface by directly using
the NURBS surface as the input primitive of the pipeline. Thus, for example,
supposing the tessellation of a NURBS surface in triangles, it is better to select
a tessellation factor per KSQuad than compute a tessellation considering the
whole NURBS surface. This is shown in Figure 5, where a model, Killeroo, is
first rendered using surfaces as input primitives, after applying the maximum
tessellation level implemented in current GPUs (Figure 5a), and then KSQuads
(Figure 5b). As can be observed, the quality of the final image is much better
with KSQuads, even though the number of triangles being used is significantly
less: 12016.05 K vs. 385.56 K. Figure 5a contains numerous artifacts, such as
cracks, holes and creases, since it does not have enough triangles to follow the
curvature of the surface. Thus, thirty times more primitives are evaluated but
a lower quality rendered model is obtained.

A KSDie obtained from a KSQuad is defined as

KSDie = {(xk, yl), δx, δy, Sp,q, f}

where (xk, yl) is the starting parametric coordinate of the range covered by the
KSDie, so (xi, yj) ≤ {(xk, yl), (xk + δx, yl + δy)} < (xi+1, yj+1), Sp,q is a set
of indices that provide access to the surface’s data, and f is a 4-bit tag that
indicates which edges of the KSDie are boundary edges with another surface.

The key to get good performance with RPNS is the number of KSDice that
are sampled and rendered. An adaptive sampling that focuses on the geometric
features of a surface and the number of pixels to be rendered can provide an
important boost in performance with no reduction in image quality. We propose
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Boundary edges
between surfaces

(a) (b) (c)

Figure 6: Boundary edges between surfaces (a) KSQuads with boundary edges
(b) Oversampling all boundary edges (c) Oversampling only non G1 boundary
edges.

an adaptive sampling procedure that is based on this set of tests:

Local Area Average. The number of pixels in screen space that are covered
by a KSQuad from a specific point of view is evaluated. Then, a sampling
factor τ is chosen and applied in parametric space to get the appropriate
number of KSDie primitives from the projected KSQuad, considering a
maximum pixel-size for each KSDie of µ:

dist(p(S(xk, yl))− p(S(xm, yn)))/τ < µ,

∀k,m ∈ {i, i+ 1} and k < m

∀l, n ∈ {j, j + 1} and l < n

(3)

where p() means a screen space projection, so the distance between the
projected corners of the KSQuad is computed.

Linear Approximation. This test measures the difference between the eval-
uation of the NURBS surface at a point and the position where that point
will be rendered if the KSDie is not further subdivided. Therefore, the
maximum deviation between the KSDice to be rendered S(u, v) and the
ideal projection of the NURBS surface S′(u, v) is computed, which pro-
vides a measure about the accuracy of the linear approximation applied,
that is

max abs(p(S(u, v))− p(S′(u, v))) < ε,

∀(u, v) ∈ [xk, yl)× [xk + δx, yl + δy)
(4)

Boundary Region. Since each KSQuad is independently processed in the
pipeline, it is necessary to apply a higher sampling in the boundary edges
between adjacent NURBS surfaces to prevent discontinuities, especially
if there is not G1 continuity in the boundary between the two surfaces.
This is usually the case when different tessellation factors are applied in
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these surfaces. In this respect, our first approach was to introduce a test
that evaluates whether a KSQuad is in a boundary edge with an adjacent
NURBS surface and, if so, forces a higher sampling in the correspond-
ing boundary regions. The information about the boundary edges of a
KSQuad is coded in the field f during the creation of the KSQuad in
the application stage of the pipeline. Then, to avoid cracks and holes, a
boundary edge {S(xk, yl)), S(xk + δx, yl + δy)} is oversampled according
to:

max abs(p(S(xk, yl))− p(S(xk + δx, yl + δy))) < η (5)

An example is depicted in Figure 6b: thick lines mark the boundary edges
between surfaces in Figure 6a, and Figure 6b shows how the boundary
regions have a higher sampling.

A better solution to deal with possible discontinuities but avoiding over-
tessellation is our second approach to this test, depicted in Figure 6c. This
new implementation is based on the idea of friend surfaces, which means
that two adjacent surfaces are friends if they are G1 according to the nec-
essary and sufficient conditions of G1 continuity [19] between two adjacent
NURBS surfaces with arbitrary degree and generally structured knots. In
order to guarantee this friend condition, data defining the boundary sur-
faces (control points, weights and knot span) is analyzed in a preprocessing
stage on the CPU but one time only, for subsequent rendering processing.
This results in a boundary region test that only applies a higher sampling
in the boundary edges of a KSQuad when it is really needed, as can be
observed in Figure 6c.

These tests measure the improvement achieved in image quality with each
new KSDie inserted by the sampler stage. As other similar proposals [12], our
tests work with a series of thresholds that must be precomputed for each surface
in order to reach the required quality level.

3.2. Explicit equations: Stair strategy

Another relevant contribution in this work is a novel approach to the com-
putation of the basis functions of a NURBS surface based on a non-recursive
strategy, called stair strategy.

Stair strategy provides a straightforward, efficient and general procedure
with a simple control flow that makes it suitable to be implemented on current
GPUs. Nowadays, NURBS surfaces evaluation on the GPU is usually based
on the de Boor algorithm [4]. Thus, evaluating the pth-degree B-splines basis
function requires the evaluation of the B-spline basis function of order p − 1.
In [4] the B-spline basis function of order p − 1 is stored as a texture on the
GPU and this intermediate result is used as input for evaluating the pth-degree
B-spline basis function. In [2, 20] several approaches are presented to improve
the performance on CPU of the computationally expensive de Boor recursion
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Table 2: Nonzero basis functions on knot span [xi, xi+1) for p = 5.

5 Ni−5,5 Ni−4,5 Ni−3,5 Ni−2,5 Ni−1,5 Ni,5 0
4 0 Ni−4,4 Ni−3,4 Ni−2,4 Ni−1,4 Ni,4 0
3 0 0 Ni−3,3 Ni−2,3 Ni−1,3 Ni,3 0
2 0 0 0 Ni−2,2 Ni−1,2 Ni,2 0
1 0 0 0 0 Ni−1,1 Ni,1 0
0 0 0 0 0 0 1 0

i− 5 i− 4 i− 3 i− 2 i− 1 i i+ 1

algorithm by avoiding the recursion. Our stair strategy follows a similar strategy
focused on the GPU.

The basis function of a NURBS can be calculated in each parametric point
by applying the Cox-de Boor recursive expression shown in Equation 1. As it
was commented in Section 2, the local support property of a NURBS surface is
preserved in the KSQuad primitive, which means that at most p+ 1 of the Ni,p

functions are non-zero within a given knot span [xi, xi+1), namely the functions
{Ni−p,p, · · · , Ni,p}. Table 2 shows the non-zero basis functions in the ith knot
span for p = 5. Hence, the only non-zero pth-degree functions on this knot span
are {Ni−5,5, Ni−4,5, Ni−3,5, Ni−2,5, Ni−1,5, Ni,5}.

Our proposal is based on the non-recursive reformulation of the Ni−k,p func-
tions, replacing the recursion that can be represented by a truncated triangular
table [1] with a simple expression of additions and multiplications. Thus, the
triangular table can be represented like a rectangle table with size (p− k)× k.
Whereas Cox-de Boor is O(N2) in the basis functions evaluation, the proposed
method is O(N) due to the sums for each of the basis functions. Figure 7 shows
the rectangle tables for Ni−2,5 (Figure 7a) and for Ni−3,5 (Figure 7b). The basis
functions Ni−k,p with k = {0, · · · , p} can only be formulated according to some
of the Ni,c and Ni−d,d with c = {1, · · · , p−k} and d = {1, · · · , k}, that is, a total
of p basis functions. We designate the basis functions Ni,c as column functions
and Ni−d,d as diagonal functions. Our strategy allows a simple and efficient
computation of the column and diagonal basis functions by simply applying the
following expressions:

Ni,c =
(u− xi)c

c∏
l=1

(xi+l − xi)
Ni−d,d =

(xi+1 − u)d

d∏
l=1

(xi+1 − xi−l+1)

Therefore, the basis functions Ni−k,p with k = {1, · · · , p − 1} are formulated
according to p− k column functions Ni,c and k diagonal functions Ni−d,d, with
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Figure 7: Stair strategy (a) Ni−2,5 (b) Ni−3,5.

c = {1, · · · , k} and d = {1, · · · , p− k}:

Ni−k,p =

k−1∑
j=0

(u− xi−k+j)
p−k(xi+k−1+j − u)j

p−k+j∏
l=1

(xi+l − xi−k+j)

Ni−k+j,k−j

+

p−k−1∑
j=0

(xi+p−k+1−j − u)k(u− xi−k)j

k−1+j∏
l=0

(xi+p−k+1−j − xi−l)

Ni,p−k−j

The denominator terms are constant for each KSQuad and are computed only
once for each shader invocation:

Aj =
1

p−k+j∏
l=1

(xi+l − xi−k)

Bj =
1

k−1+j∏
l=0

(xi+p−k+1−j − xi−l)
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Finally, the ending non-recursive expression for a basis function is:

Ni−k,p =

k−1∑
j=0

(u− xi−k+j)
p−k(xi+p−1+j − u)jAjNi−k+j,k−j

+

p−k−1∑
j=0

(xi+p−k+1+j − u)k(u− xi−k)jBjNi,p−k−j

4. RPNS with DirectX11 on current GPUs

The Geometry Shader (GS) introduced with DirectX10 was the first stage
in the graphics pipeline capable of generating new primitives on the GPU. Al-
though this programmable stage exploits data locality and allows an efficient
tessellation on the GPU, it is highly limited by the number of output primitives
that can be created for each input primitive, since the maximum size of its
output stream is 1024 bytes per invocation.

The main limitations of the GS were solved by the introduction of a new
configurable stage in DirectX11: the Tessellator. This stage can create up
to 64 samples per edge, but needs two additional programmable stages in the
rendering pipeline: Hull Shader (HS) and Domain Shader (DS). The HS is called
once for each input primitive in the pipeline, KSQuad in our implementation,
and this is the stage in charge of configuring the Tessellator. Culling can also
be performed in this stage.

The new primitives generated by the tessellator are sent to the DS, so this
stage is called once for each KSDie in our implementation. The DS receives
both the parametric positions created by the tessellator and the KSQuad data
directly from the HS. The four corners of each KSDie, S(xk, yl), S(xk + δx, yl),
S(xk, yl + δy), and S(xk + δx, yl + δy), are efficiently evaluated in the DS by
taking advantage of access locality and avoiding redundant computations. Let us
emphasize that like Reyes vertex shading, RPNS also allows the user to specify
an arbitrary shading rate. In Reyes, shading rate is expressed in samples per
pixel meanwhile we specify samples per KSDie in RPNS, with a value of 4.0 in
our implementation. A more efficient RPNS implementation would adaptively
choose the shading rate per KSDie, but that objective is beyond the scope of
this paper.

The output from the DS is sent to the GS, where two triangles are generated
for each KSDie due to the triangle-oriented graphics pipeline of current GPUs.
Furthermore, to optimize the rendering of NURBS surfaces in RPNS we propose
a backface and view frustum culling in the GS, called Exact Visible Set (EVS).
This culling stage has a high impact on the overall performance, since it achieves
an important reduction in the number of KSDice to get rasterized.

Although DirectX11 introduces a patch primitive to deal with parametric
surfaces, this primitive is only suitable to work with simple and regular surfaces
such as bi-cubic Bézier surfaces, where only the positions of the control points
need to be stored and the number of control points can be deduced from the
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KSQuad VBO

... KSi,j ...

Info KSQuad Table

KS0 ... KSi,j ...

Knot Spans

x0 ... xi

Weights

w0 ... wi-p,j-q ...

Points

B0,0 ... Bi-p,j-q ...

VertexAtributes HS Tess DS

... Wi,j ...

... CPi,j ...

W0

CP0

KS0

xi+1 ...

y0 ... yj yj+1 ...

...

...

}
pxq

}

pxq

}

}

GS

Figure 8: Memory layout of the data structures.

surface degree. Due to the inherent complexity of the NURBS surfaces, we
need to define a storage layout in texture memory more complex than the one
available through the patch primitive. As shown in Figure 8, our proposal uses
two indirection levels to access all the data required to work with a KSQuad
primitive: firstly, an access to the Info KSQuad Table, which contains indices to
the NURBS surface data needed for each KSQuad, and then the access to the
surface data using those indices. Both the Info KSQuad Table and the rest of
the surface data (knot spans, weights and control points) are stored in texture
memory. Although this arrangement needs a double memory access, it saves an
important number of CPU-GPU transfers. Other alternatives could be easily
implemented, such as sending all the required data for each KSQuad via the
vertex buffer.

Every KSQuad primitive that enters in the pipeline has enough information
to access to the Info KSQuad Table and fetch all the needed data from texture
memory to completely evaluate the KSQuad. The access to all this information
is needed in the HS and DS stages (see Figure 8), that correspond to the input
of the Geometry and Sampler stages in RPNS, as shown in Figure 4.

We have implemented and tested three different alternatives to map RPNS
on DirectX11, one exploiting the GS capability of generating new geometry, and
the other two that use the HS, Tessellator and DS stages to overcome the GS
limitations. One of these two proposals implements a non-uniform version of
RPNS that focuses on minimizing the number of generated primitives, whereas
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the other one obtains a uniform result.

GS-based RPNS. Our first proposal for the implementation of RPNS on the
DirectX pipeline focuses on the GS stage. Thus, even though KSQuads
evaluation in the GS makes it possible to reuse part of the computations,
the bounds in the maximum number of KSDice that can be generated for
each input KSQuad make impossible to achieve high quality renders. This
proposal is not shown in the section of results.

Uniform RPNS (RPNS-U). This implementation uses the HS, Tessellator
and DS stages to map the stages in RPNS. The work in HS is done with
a KSQuad granularity, fetching the necessary information from texture
memory. This stage applies the local average area test and, optionally,
a previous culling. This test is used to set the subdivision factor in the
tessellator that guarantees a maximum size (in pixels) for the KSDice to
be generated (Equation 3). All this work corresponds with the geometry
stage of RPNS.

Once the KSDice are created by the tessellator, they are sent to the DS.
Thus, the DS is called once for each (still empty) KSDie. In this stage,
each KSDie is evaluated in the NURBS surface using the stair strategy de-
scribed in Section 3.2. This stage together with the tessellator correspond
with the sampler stage of RPNS.

Non-uniform RPNS (RPNS-NU). This implementation of RPNS follows
the same structure than the previous one, but with the addition of a
GS stage that implements the adaptability in the sampler stage of RPNS
[21]. In this case, the HS previously sets the tessellator to create a fewer
number of KSDice. The output from the DS is sent to the GS, where the
linear approximation and the boundary region test are used to guide the
subdivision level applied to each KSDie. Thus, the linear approximation
test (Equation 4) assures that a higher subdivision level is applied to non-
flat regions. Besides, the boundary region test (Equation 5) detects the
regions of KSQuads that are boundaries to other surfaces and applies the
highest subdivision factor to prevent cracks between adjacent surfaces.

5. Experimental Results

In this section we present the results obtained with different versions of our
implementations of RPNS on GPU. Our test platform is an Intel Core 2 Duo
2.4GHz with 2GB of RAM and a nVidia Geforce 580 GTX with DirectX11
Microsoft’s HLSL. The models used in our tests are shown in Figure 9. The
final images were rendered with a screen resolution of 2048× 1152 pixels.

Our first experiment is focused on measuring the effectiveness of the adaptive
process that our KSQuad primitive allows us to introduce in RPNS; specifically
we concentrate on the RPNS-U approach. The results obtained from the tests
are shown in great detail in Table 3, Table 4 and Figure 10. The experiments
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(a) (b)

(c) (d)

Figure 9: Test models: (a) Killeroo (b) Head (c) Hinge (d) Car.
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Table 3: #KS (in k) with different µ values for the four test models

Killeroo µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 1564.79 485.76 178.47 83.16 51.20 45.05
EVS 847.16 261.89 95.72 44.18 26.98 23.95

54.14% 53.91% 53.63% 53.13% 52.70% 53.17%

Head

No Culling 2309.04 742.09 225 115.96 69.09 58.69
EVS 1223.83 368.87 131.85 59.78 34.96 29.74

53.00% 49.71% 58.60% 51.55% 50.59% 50.68%

Hinge

No culling 4245.46 1593.56 576.54 263.69 163.00 139.56
EVS 1578.48 716.35 252.02 83.96 66.78 55.57

62.81% 55.04% 56.28% 68.16% 59.02% 60.18%

Car

No Culling 4448.50 1493.51 607.11 332.07 257.90 246.09
EVS 2520.33 839.08 311.96 180.35 136.83 123.05

56.66% 56.18% 51.38% 54.31% 53.06% 50.00%

were carried out for the four test models with different values of the threshold
µ (maximum pixel-size for each KSDie, see Equation 3).

Table 3 indicates the thousands of KSDice that are rendered, #KS, whereas
Table 4 details the PSNR 1 (Peak Signal-to-Noise Ratio in dB) values obtained
for each case. Both tables present the results either applying EVS-based culling
or not: the row labeled as EVS shows the results when the backface and view
frustum culling are enabled in the GS (see Section 4). The third row in Table 3
is the percentage of KSDice that are eliminated after the culling and, therefore,
are not rendered. The columns µ = 1 to µ = 16 represent how results vary
with different thresholds in the number of pixels in screen space covered by a
KSQuad (see Equation 3), with the last column showing the results when the
KSQuad is not sampled and directly generates a KSDie. As can be observed,
similar results have been obtained in all cases for the four test models.

An adaptive sampling of KSQuad allows the utilization of larger KSDice
where the geometry is less detailed, concentrating smaller KSDice at silhouette
edges and curves. Regarding the performance of our implementation of RPNS
in the pipeline of current GPUs, the graphs of Figure 10 show the good results

1Peak Signal-to-Noise Ratio is the distortion between the maximum possible power of a
signal and the power of corrupting noise that affects the fidelity of its representation. In
this case, the distortion is measured with respect to the model rendered with the maximum
tessellation factor PSNR = 20 · log10(MAX/

√
MSE).

19



Table 4: PSNR with different µ values for the four test models

Killeroo µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 44.51 42.95 40.75 39.28 39.30 36.74
EVS 44.50 42.95 40.75 39.28 39.30 36.72

Head

No Culling 42.37 43.93 42.97 40.87 40.53 36.26
EVS 42.36 43.86 42.57 40.87 40.51 36.26

Hinge

No Culling 41.89 41.39 39.77 40.94 40.30 38.77
EVS 41.02 41.65 39.94 40.18 39.92 37.92

Car

No Culling 38.64 38.35 40.47 38.47 37.58 30.45
EVS 38.53 38.34 40.45 38.44 37.57 30.17
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Figure 10: Frame rate with the different culling approaches for the four test
models: (a) Killeroo (b) Head (c) Hinge (d) Car.
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(a) (b)

(c) (d) (e)

Figure 11: Head model rendered with different screen areas (a) µ = 1, (b) µ = 8
and (c) µ = 16 (d) 1 KSDie per KSQuad (e) RPNS-NU

in terms of frame rate obtained by RPNS with µ > 1 for the four test models.
Thus, for example, 115.96 K KSDice are generated with no culling and µ = 8
for the Head model, achieving a frame rate of 134.128 fps that gets increased to
404.93 fps with the EVS solution. This results in speedups of 7.49 x and 22.62 x,
respectively, while maintaining rendering quality, as shown in Figure 11. Both
strategies (No culling and EVS) achieve good quality results, always over 30 dB
and nearby 40 dB for µ ≤ 16, with no significant quality loss as shown in the
video attached.

On the other hand, the table and the graphs show that the introduction
of EVS culling dramatically improves the performance of the pipeline, with
speedups of more than 3x in the frame rate in some cases, and without decreasing
the quality in the render, since the PSNR values are mostly identical. The
removal of non-visible KSDice, backface or outside the current view frustum,
with very simple computations in the GS is worth the additional computation
in the rasterization stage.

The performance of several RPNS implementations is analyzed in Table 5
in terms of frame rate. This table shows the frames per second obtained by
rendering the four test models using five different implementations of RPNS on
DirectX11, with the speedup values in parentheses. The first method, de Boor,

21



Table 5: Frame rate (FPS) of the different RPNS implementations.

(GS) (HS)
Model de Boor Stair Strategy RPNS-U RPNS-NU RPNS-NU

Killeroo 118.34 (1.22) 144.39 (4.12) 487.54 31.99 (1.57) 186.25
Head 120.47 (1.11) 134.13 (3.36) 404.93 23.66 (2.37) 285.86
Hinge 82.74 (1.62) 134.16 (1.88) 156.30 9.75 (2.00) 165.78
Car 61.71 (1.60) 96.84 (1.65) 102.09 5.45 (1.90) 116.96

is the result of applying EVS culling on the KSQuads in the GS, evaluating
the NURBS surfaces in a traditional way with µ = 16. Only by changing the
surface evaluation to our stair strategy, second column in the table, we achieve a
significant improvement in performance. The next two columns, RPNS-U and
RPNS-NU (GS), correspond to the implementations proposed in Section 4. As
can be observed, in general the uniform approach obtains the best results, since
it allows to exploit the HS, tessellator and DS by using regular operations. How-
ever, the non-uniform proposal, based on some conditional branches, introduces
a greater divergence in the control flow of the GS stage, in addition to call a
supplementary kernel, what results in an important dropping of performance.
Finally, the last column (RPNS-NU (HS)) is a less adaptive implementation of
our non-uniform approach, now implemented in the HS by adapting the behav-
ior of the tessellator to improve the number of KSQuads in the regions with
important variations of the linear approximation test.

In order to perform a comparison between our approach and the common
approximation based on performing the decomposition of a NURBS surface into
a series of Bézier patches in the CPU, the test models were converted to Bézier
surfaces. For example, the Killeroo model was decomposed into 10935 bi-cubic
Bézier surfaces by means of the “Rebuild Surfaces” function in Autodesk Maya.
Our RPNS approach needs only the 10.93% of the total amount of memory
the decomposition solution uses, which also means a higher performance due
to a better exploitation of the memory hierarchy. However, it is in the real
bottleneck of this kind of solutions, the CPU-GPU transfer when the surfaces
are interactively modified, where RPNS performance is especially favorable:
the performance drops up to 0.18 FPS, even though we are not considering the
NURBS-Bézier conversion time, whereas RPNS obtains up to 487.54. Thus,
there is no significant performance degradation in our proposal when the surface
models are interactively deformed.

As long as we know, there is no other proposal to render NURBS on the
GPU without any previous preprocessing step. In [4] a previous tessellation is
generated on the CPU, whereas the basis functions are calculated on the GPU
with several fragment programs and passes through the fragment shader. In
order to compare this proposal and RPNS, we have tested the 16 passes with
the ping-pong technique detailed in [4], but without any computation or texture
access. Let us emphasize that performing only such technique on the Killeroo
model results in 246.98 FPS, whereas our proposal obtains 487.54 FPS (see
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Table 5) with a complete rendering.
In short, even though our main objective is to evaluate the robustness of

all the algorithmic proposals behind RPNS, we have proved that high quality
results can be obtained using our novel primitive KSQuad and RPNS, doing
a test implementation on current GPUs and achieving real-time rendering for
complex models. Let us emphasize that a hardware implementation of RPNS
would attain a higher performance than the one obtained with our software
implementation in this work.

6. Conclusions

In this work a proposal of a new pipeline for the efficient rendering of NURBS
surfaces, RPNS, is presented. Our pipeline is based on a new primitive, KSQuad,
that provides a regular and flexible management of NURBS surfaces but main-
taining their main geometric properties. This primitive allows an efficient ren-
dering of the NURBS surface in all its parametric knot spans, what is especially
suitable to achieve high performance GPU implementations.

RPNS performs an efficient adaptive discretization of KSQuads into KSDice,
what allow us to fine tune the density of primitives needed to avoid cracks and
holes in the final image, in addition it applies an efficient non-recursive evalua-
tion of the basis function of a NURBS surface on the GPU. Different GPU imple-
mentations of RPNS are proposed on DirectX11, exploiting the programmable
and configurable stages of current graphics hardware to achieve interactive and
real-time rendering rates of complex parametric models. Our experimental tests
show that RPNS is several orders of magnitude faster than traditional approxi-
mations based on NURBS to Bézier conversion when considering the interactive
handling of rendered models.

To optimize the rendering of NURBS surfaces in RPNS as well as a proof
of the versatility of the KSQuad primitive, we will include backface and view
frustum culling in future work. Finally, let us emphasize results show that our
method is more efficient than existing methods.
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