Avrchive Ouverte - Open Repository

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of
Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/11350

To cite this version :

Gilles GOUATY, Lincong FANG, Dominique MICHELUCCI, Marc DANIEL, Romain RAFFIN,
Sandrine LANQUETIN, Marc NEVEU, Jean-Philippe PERNOT - Variational geometric modeling
with black box constraints and DAGs - Computer-Aided Design - Vol. 75-76, p.1-12 - 2016

Any correspondence concerning this service should be sent to the repository \ Arts
Administrator : scienceouverte@ensam.eu et Métiers

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/11350
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/

Variational geometric modeling with black box constraints and DAGs

Gilles Gouaty abc Lincong Fang ““, Dominique Michelucci“*, Marc Daniel ”,
Jean-Philippe Pernot?, Romain Raffin”, Sandrine Lanquetin ¢, Marc Neveu®

2 Arts et Métiers ParisTech, LSIS Laboratory UMR CNRS 7296, France

b Aix-Marseille University, LSIS Laboratory UMR CNRS 7296, France

€ LE2I UMR6306, CNRS, Arts et Métiers, Bourgogne Franche-Comté University, Dijon, France

4 School of Information Technology, Zhejiang University of Finance & Economics, Hangzhou, China

Keywords:

Black box constraints
Variational geometric modeling
Direct search methods

First order methods
Constraints

DAG

ABSTRACT

CAD modelers enable designers to construct complex 3D shapes with high-level B-Rep operators. This
avoids the burden of low level geometric manipulations. However a gap still exists between the shape
that the designers have in mind and the way they have to decompose it into a sequence of modeling
steps. To bridge this gap, Variational Modeling enables designers to specify constraints the shape must
respect. The constraints are converted into an explicit system of mathematical equations (potentially
with some inequalities) which the modeler numerically solves. However, most of available programs are
2D sketchers, basically because in higher dimension some constraints may have complex mathematical
expressions. This paper introduces a new approach to sketch constrained 3D shapes. The main idea
is to replace explicit systems of mathematical equations with (mainly) Computer Graphics routines
considered as Black Box Constraints. The obvious difficulty is that the arguments of all routines must
have known numerical values. The paper shows how to solve this issue, i.e., how to solve and optimize
without equations. The feasibility and promises of this approach are illustrated with the developed DECO

(Deformation by Constraints) prototype.

1. Introduction

Industrial CAD software rely on an incremental B-Rep (Bound-
ary Representation) modeling paradigm where volume modeling is
performed iteratively through high-level operators [1]. At a lower
description level, those modeling operators are based on Euler op-
erators acting directly on the faces, edges and vertices of B-Rep
models. In this way, designers do not manipulate low-level geo-
metric entities, but rather manipulate so-called structural and de-
tail features to shape directly the CAD models.

However, even if CAD modelers provide operators (e.g., pad,
pocket, shaft, groove, hole, fillet) to get rid of the direct use
and manipulation of canonical surfaces and NURBS [2], working
with a CAD modeler is almost procedural and requires a lot of
intermediate operations to obtain the desired shape of an object.
Using such a procedural approach, designers have to make a mental
gymnastic to break down the object body into several basic shapes

* Corresponding author.
E-mail address: dominique.michelucci@u-bourgogne.fr (D. Michelucci).

linked to the different operators of the CAD software. Thus, even
if a feature-based approach is used [3], modeling a complex shape
still requires a lot of operations. This is even truer when dealing
with free form objects for which the notion of free form features
does not correspond to current industrial practices.

Clearly, an approach closer to the designers’ way of thinking
is missing and there is still a gap between the shapes designers
have in mind and the tools and operators provided to model
them. Various approaches have been introduced to bridge this
gap: parametric modeling, feature-based modeling and variational
modeling approaches.

In parametric modeling, or parametric and feature-based
modeling [4], a shape is defined as a function F(U), where F is
some function, and U are its parameters. Designers specify with
some interactive graphical interface the function F as well as the
values of U parameters. Parameters U are geometric variables
(e.g. lengths, angles, tolerances, Cartesian coordinates) or material
properties (e.g. density, strength, cost). When the values of some
parameters in U are modified during the design process, the shape
is automatically updated while re-computing F(U). Most of the
time, only a part of F(U) is re-computed, using a dependence
analysis.

http://dx.doi.org/10.1016/j.cad.2016.02.002
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2016.02.002&domain=pdf
mailto:dominique.michelucci@u-bourgogne.fr
http://dx.doi.org/10.1016/j.cad.2016.02.002

Variational geometric modeling [4] goes a step further.
Designers specify constraints the shape F (U) must satisfy as well as
the unknown parameters. Then, a numerical solver tries to satisfy
the constraints while computing values of unknown parameters of
U. When defining a 3D shape, the constraints are often geometric
constraints, which relate to different geometric primitives or
features. For example, they can be distances or angles between
(special points or axes of) geometric primitives or features,
incidence or tangency relations between parts of two geometric
primitives or features. In this case, their formal expression is simple
and can be easily computed. It leads to a system of equations,
most of the time algebraic. Numerous combinatorial or numerical
methods [5] were proposed first to detect the under-, over-, and
well-constrained parts of this kind of systems, and second, for well-
constrained systems (which have as many independent equations
as unknowns, and have a finite number of solutions) to decompose
them into irreducible subsystems and to assemble their solutions.

In practice, numerical methods like Newton iterations, damped
Newton or homotopy are used to solve irreducible subsystems and
to assemble the partial solutions. The numerical solver typically
starts from the previous values of U, read on some interactively
provided sketch, or on the previous state of an iteratively edited
shape.

Sometimes, some objective functions G(U) must be optimized:
for instance a cost, a weight or an energy should be minimized.

e On one hand, if the constraints system is well-constrained,
there is a finite set of solutions and the best one, or a good
enough one for the sake of computability, must be selected.
This discrete problem is combinatorial and can be hard to
solve (e.g., Travelling Salesman Problem).

e On the other hand, if the system is under-constrained, it admits
a continuum of feasible solutions and, under the usual mild as-
sumptions, a finite number of parameters values U which sat-
isfy both the constraints and some KKT (Karush-Kuhn-Tucker)
or FJ (Fritz-John) conditions for local optimality.

The key feature of current variational geometric modeling
approaches is that equations are available, and can be repre-
sented with tree-like data structures called DAGs (Directed Acyclic
Graphs) in numerical analysis, computational geometry and com-
puter algebra, or SLPs (Straight Line Programs) in dynamic geom-
etry. The main advantage of DAGs is to permit to automatically
compute the derivatives and Hessians. It is also possible to substi-
tute parameters at the leaves of a DAG with other DAGs, to convert
a given DAG into the corresponding polynomial (a list of mono-
mials) or rational function. This is used to numerically evaluate a
given DAG with many arithmetics (floating-point, intervals, exact
arithmetics) for given numerical values of U. Like this it is possible
to study which nodes in a given DAG depend on which parameters,
and thus to update efficiently the value of a DAG when some pa-
rameters values in U are changed. To summarize this feature, we
say that these DAGs are white box DAGs, or white DAGs.

On the contrary, a DAG is called a black box DAG or a black
DAG, and a constraint is called a black box constraint or a
black constraint, when the corresponding equation, or system of
equations, is not available, or is not computable in practice. In this
case, itis only possible to evaluate the corresponding DAG for given
numerical values of parameters U, and to approximate the gradient
with finite differences. There is no guarantee that the underlying
function is continuous or smooth everywhere.

To illustrate differences between white and black DAGs,
imagine we need a point x inside a given shape s and closest to a
given point p. Then x is the solution of the constrained optimization
problem x = argmin,, ||x — p||?, where, with classical Variational
Modeling, the condition x € s must be expressed as a system of
mathematical equations. Clearly, if s is a car or a building, it is

just infeasible. Actually it is also infeasible for simple shapes, as
soon as they involve nested geometric operations (e.g., rounding,
blending, Boolean operations, optimizations). On the other hand,
computer graphics methods routinely solve this problem x =
argmin,., [|x — p||? using the routine closestPt(p, s) which does not
rely on systems of equations.

In this paper, we propose to use black box DAGs instead of white
box DAGs for Variational Geometric Modeling of free form surfaces
and subdivision surfaces. We present a prototype, called DECO
(Deformation by Constraints), to show the feasibility and promises
of this approach. Our research is devoted to free form parametric
surfaces as well as to subdivision surfaces due to the gap which
currently exists between variational design and free form surface
modeling and because subdivision surfaces are largely used in
Computer Graphics and animation movies. Moreover subdivision
surfaces do not have implicit or parametric equations and are
generally manipulated as meshes approximating the limit surfaces.
In addition to the specificity of modeling these types of surfaces,
the interest of this novel approach is twofold. First, we no longer
have to translate, when it is possible, the geometric constraints
and the cost function into equations. Second, to express geometric
constraints F and cost function G, we can use existing geometric
procedures available in Computational Geometry, CAD/CAM and
mathematical or numerical software. Assuming interoperability,
functions or macros available in a geometric modeler software
could be called. Thus this approach permits to easily extend the
set of possible constraints. Certainly, with black DAGs, we can
no longer use tools of Computer Algebra (for symbolic and exact
computations of Jacobians, Hessians, resultants, Grébner bases)
since no equation is available. But we think that the advantages of
our approach far outweigh its disadvantages. Additionally, it must
be noticed that we aim at obtaining easily a first draft respecting
given constraints in a preliminary stage of a design process and not
necessarily final objects. The received models can then be exported
to any CAD software for further developments.

The proposed approach is modular. It defines a formalism and
framework regardless of the resolution method. For example, we
use the GNU Scientific Library with the BFGS method. Furthermore,
our approach is generic in the sense that one can consider later to
treat other types of surfaces. Actually, we simply need to identify
variables and define black boxes to make calculations on these
surfaces.

The paper is organized as follows. Section 2 studies the related
works comparing white and black DAGs. Our new modeler,
allowing the specification of a set of constraints as well as an
objective function to be minimized is introduced in Section 3. The
associated solvers are presented in Section 4. Section 5 is devoted
to examples. Finally, Section 6 concludes this paper and exhibits
general issues raised by this approach.

2. Related work

Today’s industrial CAD modelers are built on top of the well-
known B-splines and NURBS paradigms to model free form
surfaces [6,2]. Since the expected shapes are generally complex,
the designer often has to decompose them into elementary shapes
themselves subdivided into several surfaces. Each elementary
surface is defined by means of a network of control points,
weights and knot sequences. Most of the time, these surfaces
must be trimmed to overcome the topological constraints of
the mathematical models. Finally, the elementary surfaces are
assembled together to produce a manifold solid, i.e, a B-Rep
representation expressing the relationships between the vertices,
the edges and the faces of the topological model. Nevertheless,
interacting at this low level is restricted to experts. Several
attempts have been made to try to overcome the limits inherent to

the manipulation of low-level geometric entities and shapes and
are discussed below.

Feature-based modeling introduced in [3] and detailed in [7]
falls into this category of higher-level approaches. By using
features to build their CAD models, designers do not anymore act at
alow level but rather on shape primitives that can be parametrized
and pre-defined. Unfortunately, the features used to design a
part do not necessarily represent the best way to manufacture it.
Therefore, it is the designer’s responsibility to evaluate all methods
that can produce the target shape.

Subdivision surfaces have become popular in Computer Graph-
ics [8,9]. Here, the surface is defined by recursively subdividing to
the infinity an initial coarse mesh. This property is useful in a first
sketching step, as the user manipulates vertices of a rough mesh
which can visually result in a similar but smooth surface. The defi-
nition of shapes over a subdivision surface goes through the same
procedure as for B-splines and NURBS, i.e., modification of the ini-
tial coarse mesh using constraints specified by the users in a more
or less intuitive way.

Variational Modeling has been introduced in CAD [10]. It has
been used for the design of light reflectors in inverse rendering
problems [11], for the design of blend surfaces [12], for the
resolution of complex 2D geometric constraints [13] (already
with BFGS, and with Levenberg-Marquardt’s method), and for the
modification of NURBS surface with geometric constraints [14].
However, in all these works, equations were available. The research
in variational modeling quickly concentrates on the important
problem of constraints modeling, how to represent and organize
them with DAGs, and finally how to solve them [15].

For both NURBS and subdivision surfaces, it is not always
possible to define the constraints and operators in an explicit
manner, i.e., with equations. Thus, the use of black DAGs becomes
crucial.

The remaining of this section presents properties of DAGs, how
they are used in dynamic and in computational geometry and try
to analyze the respective advantages of white and black DAGs.

2.1. DAGs for dynamic geometry

There is a strong analogy of our approach with dynamic
geometry. Parametric Modeling is used in dynamic geometry
software like Cabri Geometry [16] (Cabri Géométre is likely the first
software of this kind), Cinderella [17,18], or GeoGebra [19,20]. In
dynamic geometry, U is a set of 2D points, and the object F(U) is
a geometric figure illustrating some geometric theorems, like the
alignment of three points in Pappos or Pascal’s theorems. Users are
typically students. When they drag a point (a parameter) of the
figure (possibly constrained to lie on a curve like a line, a circle or
a conic), the figure is updated and refreshed, and students can see
that the geometric property of a theorem still holds.

In dynamic geometry, the leaves of the DAG (also called SLP,
Straight Line Program) are 2D points, called base points. Each
base point p; is represented with two symbols (x;, y;) but also
with two numeric coordinates the user interactively provides with
the sketch. Actually each geometric entity has both a symbolic
description, stored in the DAG, and a numerical definition. Each
non terminal node of the DAG records the name of a geometric
function and pointers to the sons of the node, which define
arguments of the function. When the coordinates of some base
points are interactively modified by a user, this function is called
to update the coordinates of the related geometric entities. For
instance, a node Line(pq, p») represents the line passing through
two points p; and p,. This node has two sons, the first for p; and the
second for p,. Anode Point(0q, 0,) is used for the intersection point
of two geometric curves 0, and o0,, which are lines, circles or conics
recursively defined in the same way. In this last example, one can

notice that the two curves 01 and o0, may intersect at more than one
point. For example, a line and a circle, or two circles, generically
intersect at 2 points, so an ambiguity arises. When updating the
intersection point 01 N 0, between times t; and t;1 1, the ambiguity
is typically solved with a continuity argument, i.e., selecting at time
ti+1 the solution which is the closest to the intersection point at
time t;. A well-known problem in dynamic geometry occurs when
two curves no more intersect [21-23]. This problem also occurs
in our approach and is related to the Persistent Naming Problem
discussed in Section 6.

We now mention the main differences between dynamic
geometry and our approach.

In dynamic geometry, the DAGs or SLPs of a figure F(U) are
easily converted into a set of mathematical formulas, typically a
polynomial triangularized system of equations:

v = f1(U) fill,v)) =0
vy = fo(U, vy) U, v, v) =0

vy = fu(U, vy, ..., Up_1) faU,vq,...,v) =0

either (on the left) in an explicit form possibly involving some
square roots £,/ or (on the right) in an implicit form when
some degree 3 or 4 equations (intersection between conics) are
involved. The user cannot specify constraints: the latter would
give non triangularized system of equations. For example, when
users want to create a circle tangent to three lines or circles, they
have to provide the geometric construction by ruler and compass.
Sometimes, users can define some macro construction function,
and add some button to the graphical interface, but dynamic
geometry and more generally parametric modeling do not provide
constraints, stricto sensu. This is for pedagogical reasons: users are
students learning geometry.

Thus, there is no DAG to specify constraints, or an objective
function. Consequently, dynamic geometry does not provide
solvers or optimizers and is therefore not adapted to our needs.

Finally, dynamic geometry uses white DAGs unlike our DECO
prototype software based on black DAGs.

2.2. DAGs in computational geometry

DAGs are used in Computational Geometry (CG) programs.
It is well known that CG methods do not withstand inaccuracy
of the floating-point arithmetic as well as the inconsistencies it
introduces. So, CG software like CGal [24,25] uses exact decisions
for geometric predicates, like the orientation (a, b, c) predicate for
three points a, b and c (are a, b, ¢ aligned, or do they turn left,
or do they turn right?), or the inCircle(a, b, c, d) predicate (does
the point d lie inside, on, or outside the circle passing through the
three points a, b, c?). The test is first performed in floating point
arithmetic with some error bound (computed at compile time or at
run time, and depending on the input range), or with some interval
arithmetic. If the accuracy is not sufficient, the test is performed
again using some exact arithmetic, typically in Z or in Q.

2.3. Features of white and black box DAGs

The main feature of DAGs, white or black, is that they can be
interactively defined by users. This is done in dynamic geometry.
Actually, users of these software do not only define the DAG which
represents a function F building a geometric figure F(U), they
also provide values for the arguments U of the function F. This is
also done in Parametric Modeling, sometimes called history-based
modeling. Here, the history of an interactive session is stored in
some DAG, and the session can be replayed when the value of some
parameters is modified. This is also done in our prototype.

We list now the properties of white box DAGs, used in dynamic
geometry, and computational geometry. We also indicate whether
black box DAGs share these properties.

1. DAGs can be interactively defined. DAGs are programs, which
can be created by users who are not computer scientists. It also
holds for black box DAGs.

2. It is possible to automatically compute the DAG of derivatives
and Hessians from the given white DAG of a function. This
is not possible for black box DAGs. We usually approximate
the derivatives with first-order one-sided finite differences.
More accurate results could probably be obtained by more
complex formulae, but they require more computing time and
the current accuracy is sufficient for our needs, as our goal is to
get sketches satisfying approximative criteria.

3. It is possible to substitute parameters, at the leaves of a DAG,
with other DAGs. It also holds for black box DAGs.

4. It is easy to convert a given white DAG into explicit mathemat-
ical formulas, say polynomials or rational functions in the sim-
plest case. This conversion is not practicable for black DAGs,
even though it is possible in theory [26]. Black DAGs are pro-
grams, programs are Turing machines, and Turing machines are
representable with polynomials. But the only use of this equiv-
alence is for Matiyasevich’s proof of the impossibility of solving
Diophantine equations (Hilbert’s tenth problem).

5. It is possible to numerically evaluate a given DAG with many
arithmetics (floating-point, intervals, exact arithmetics in Z, Q,
etc.) given numerical values for U. For black box DAGs, only
floating-point evaluation is possible, thus interval solvers can-
not be used to solve min G(U) with constraints F(U) = 0.

6. It is possible to study which nodes in a given DAG depend on
which parameters, and thus it is possible to update efficiently
the value of a DAG when some parameters values in U are
changed. This holds both for white and black box DAGs (assum-
ing the signature of functions underlying DAGs is known).

7. Itis possible to compile DAGs, i.e., to generate automatically an
equivalent C or C++ program, to compile it and to dynamically
link it with the current process. The latter holds both for white
and black box DAGs.

Previous item (4) may be misunderstood as a limitation or a
drawback of black DAGs. On the contrary, black nodes can harness
the power of very efficient Computer Graphics or Computer
Geometry routines, e.g., ClosestPt(p, s) which computes the point
on the shape s which is the closest to a given point p. These
routines numerically solve complex (possibly nested) constrained
optimization problems, without need of their mathematical
expressions, which are not available, or would be of exponential
size.

To conclude this section, our aim in this paper is to create a
modeler starting from a description and transformed in a set of
geometric constraints. Note that our approach is to generate drafts
of shapes from more or less approximate descriptions. It is not
necessary for us to seek very accurate solutions of the constraints
system. Therefore, numerical accuracy problems inherent in our
black DAGs approach are unimportant for us. Numerical methods
generate a sequence that tends towards the exact solution. Thus,
we can stop these iterations before reaching a more accurate but
time consuming result.

As a conclusion, the complexity of the set of constraints we will
encounter leads us to base our modeler on a black DAG approach
described in the following. Some white DAGs are also included
when equations are available.

3. DECO, a modeler based on black DAGs

The developed modeler allows the user to define an object by
means of a description. This description consists in declaring a set
of objects and specifying a set of properties. These properties may
be related to particular objects or to a set of constraints linking
various objects. The descriptions given by the user are represented

| Varx | | Vary| | Const2 |

Fig. 1. Example of a white DAG composed of scalar operators, variables and
constants, representing the expression xy + y?.

in a data structure embedding all necessary information for
the modeler. This section introduces the data structure used to
represent the descriptions. It uses intensively black DAGs.

At the global level, the data structure consists in the following
information:

e a list of objects (parametric surfaces or subdivision surfaces)
defined by the subset X of unknown parameters in U;

e a list of constraints F;(X) = 0, where F; functions are not
necessarily expressed by equations;

e a function to minimize G(X).

In the proposed approach, DAGs are used to represent both F;
and G functions. Each node of a DAG represents an operator and
the list of the sons represents the list of arguments of this operator.
A first set of nodes has been defined and is presented below. These
operators constitute a basic vocabulary of geometric computations.
They can be dynamically composed to represent and solve a large
variety of problems.

A node has a certain type corresponding to the type of the value
returned by the operator. This type can be either a scalar value, a
point, a parametric surface (denoted pSurf) or a subdivision surface
(denoted sSurf). In the proposed approach, we use Catmull-Clark
subdivision surfaces evaluated at a fixed level. We do not use an
exact evaluation of points on the limit surface [27] as it is time-
consuming and complex to obtain the local frame according to each
point. Moreover, one important goal of the DECO project is to be
able to consider all together constraints on meshes and parametric
surfaces so as to define a draft model to be refined later on.

Nodes with no argument constitute the leaves of the DAGs.
These nodes can be either constant values or variables. They both
return a scalar value. These variables are the unknowns of the
system.

We define a set of scalar nodes for the basic operations
+, —, X, =, and for the usual functions. Unlike other nodes, they
can be considered as white box operators.

An example of DAG representing the scalar expression xy + y2
is shown in Fig. 1.

Other scalar operators can take non-scalar data as argument.
It is the case for the operators called GetX, GetY and GetZ. They
take one argument of type point and return the corresponding
coordinate. Reciprocally, we define a node Point taking three scalar
arguments and returning the point with the given coordinates.

The nodes PSurf and SSurf take a list of control points as argu-
ments and return a surface of type pSurf or sSurf. Other parameters,
such as the degrees and the knot vectors for parametric surfaces
and the mesh topology for subdivision surfaces, are not stored in
DAGs. In the current implementation, we consider these parame-
ters as internal to the nodes, even if the proposed approach could
be extended while considering them as unknowns in a future ver-
sion of DECO. They are chosen at the creation time of every nodes
and are not changed anymore. Reciprocally, the node GetCtrlIPt ex-
tracts a control point from a surface at given indices. These indices
are given by a scalar parameter but we assume their values are in-
teger.

The node CalcPt computes a point on a parametric surface for
two scalar coordinates (u, v) in the parametric domain [0, 1]%. In

Fo Fp Fa

| GetX | I GetY | | GetZ I | GetX | I GetY | | GetZ I

Fo F1 Fa

| GetX I | GetY | | GetZ | | GetX I | GetY | | GetZ |

Fig. 2. Example 1: DAGs representing the optimization problems to be solved, when (u, v) is constant (left) and variable (right).

the same way, the node CalcNorm computes the normal at this
point.

The node ClosestPt computes from a given point the closest
point on a surface or a list of surfaces. These surfaces can be
indifferently parametric surfaces or subdivision surfaces. In the
same way, the node ClosestNorm computes the unit normal vector
at this point.

Finally, the node DiscrE computes the discrete strain energy of
a surface. It takes one argument of type pSurf or sSurf and returns
a scalar value. This operator is mainly used to define the function
to be minimized. The system of equations is generally under-
constrained. So the minimization of the discrete energy allows
to choose the smoothest solution, i.e., the one which is obtained
with less energy. The discrete strain energy is quickly computed
and is a good approximation of the strain energy [28] that fits our
needs. It is computed from the discrete Gaussian curvature K, and
the discrete mean curvature H,, for each vertex v. The discrete
Gaussian curvature K, of a vertex v can be given by:

27 — Y o
i

K, =
34

where ¢; is the angle between two consecutive edges incident at v
and A, is the area of the star (i.e., the area of the polygons around
the vertex v). The discrete mean curvature H, of a vertex v can be
given by:

Hy = l;zi(n ~ B

where g; is the internal dihedral angle between two consecutive
faces around the vertex v and ¢; the length of their common edge.
By convention, as the mean curvature is non zero along the edge,
it is distributed equally on its two vertices. Finally, the discrete
energy of the whole mesh is the sum of the contributions of all
vertices v:

E=) 4H] —2K,.
v

Providing efficient second order estimators for discrete curvatures
is often studied. The reader can obtain valuable information in [29]
and [30]. However, the above chosen formulas were sufficient for
the objective of this paper.

Fig. 2 presents two graphs illustrating the use of these different
nodes.

In practice, the user creates dynamically these DAGs by
providing a description in entry of the software. In a first version,

this description is a text written in Python language. Thus, a library
of Python functions has been defined to automatically generate the
different DAGs. These functions cover all the levels of descriptions
and generate more or less complex DAGs. For example, two points
or vectors can be constrained to be equal using a single function
that generates three equations for each coordinate x, y and z. At a
higher level, one can for example establish G° or G continuity with
a function that creates automatically a list of equalities between
points and vectors distributed along two edges of two connected
surfaces. The DAGs are then converted into C++ wherein the DECO
prototype is implemented and can be evaluated by a numerical
solver.

4. The DECO solvers
4.1. Solving without equations

The objects being described, we have to solve the problem:
min G(X) with F(X) = 0. Here, X stands for the subset of param-
eters U which are unknown. Solvers and optimizers must be com-
patible with the fact that the functions G and F are represented
with black DAGs. Therefore, it is only possible to evaluate F and G
for given floating-point values of X. For example, interval solvers
are not compatible.

The main idea is to reduce this problem to an unconstrained
optimization problem as explained in Section 4.2. To solve this
optimization problem, we can mention first order methods and
direct search methods.

First order methods need gradient vectors. We approximate
the gradient vectors with finite differences (this is always nu-
merically a great challenge). We use first order Taylor expansions
due to computing time limitation even if more accurate solu-
tions can be developed. Well-known first order methods are for
instance the steepest gradient descent, BFGS (Broyden-Fletcher-
Goldfarb-Shanno) method, and Nesterov’s method [31]. Several
libraries provide BFGS: GSL (GNU Scientific Library), Octave or
MATLAB.

Apart the BFGS, other Newton or quasi-Newton methods are not
convenient due to the size of the Hessian. However we did not try
to exploit the sparsity of the Hessian and we did not even study
its sparsity. For this first investigation, we also did not experiment
JFNK (Jacobian-free Newton-Krylov) methods [32].

Direct search methods [33], also known as pattern search
methods, do not use gradient vectors. In this class, we tried
Nelder-Mead, Torczon and the Hooke-]Jeeves algorithms. They are
very close to each other. In comparison with first order methods,

direct methods require a much larger number of iterations.
However, each iteration is much quicker because it requires only
the evaluation of the function at a given point. The performance of
direct and first order methods is generally quite similar, both for
running time and accuracy.

We assume that G(X) is bounded below, for the problem to
make sense. In addition, G(X) has no reason to be convex, and likely
can have many local minima, which these solvers can be trapped
in. There are two answers:

o If we have no idea for values of X, we may use meta-heuristics:
simulated annealing, tabu search, swarm optimization, genetic
algorithms, evolutionary algorithms, etc.

e Otherwise, we expect the solver to converge to a solution close
to the initial value X©. We assumed that we are in such a
situation. We could use meta-heuristics, but probably they
would give solutions too far from X©.

We implemented different solvers which can be launched by
the user to solve his/her problem. We expect that the first order
solver or the direct search solver likely converges to the solution
intuitively closest to the initial solution. To increase the probability
to find the closest solution, we propose an homotopy inspired
method presented in Section 4.2. By default, BFGS solver is used
but the user can change the solver and/or the parameters if he/she
expects a better accuracy.

4.2. Reductions

Let » be the problem to solve: min G(X) with F(X) = 0. If there
is no objective function G(X) to minimize, but only constraints
F(X) = 0,we minimize H(X) = Y ;(Fi(X))? If there is an objective
function G(X) to minimize, and no constraint, then the optimiza-
tion problem is unconstrained, and we just minimize G(X).

For constrained minimization, the problem is reduced to an un-
constrained minimization problem. The naive way is to minimize
HX) = GX)+w? >_;(Fi(X))? where w? is a great positive weight
which penalizes the violation of constraints F (X) = 0. The method
is simple and often efficient, and can be used in the first iterations
of the solver or if an approximate solution (i.e., a draft) is expected.
But the latter does not converge to an exact (local or global) solu-
tion of £.

Instead, we can consider the Lagrangian of &:

L(X,1) =GO + Y LF(X)
i
where L = (L;) are Lagrangian multipliers. Solutions to the prob-

lem & : min G(X) with constraints F(X) = 0 are solutions of the
well-constrained system:

0= 2L =2 +ZL,-§(X)
X X — 0Xk
0= EL'C(X, L) =FX)
oL;
where derivatives are in practice approximated with finite differ-

ences. This system of equations is reduced to the unconstrained
minimization of:

HX, L) = |VL]?
0L 2 0L 2
=% (en) v (Gren)

In our framework, we often know an initial value X© for X
and we expect the solver to converge to a solution close to X©@.

Unfortunately, we do not have starting values for the Lagrange
multipliers. Inspired by the homotopy method, we define a con-
tinuum of problems P, depending on a real parameter t in [0, 1]:
PO minGOX) =tGX) + (1 - t)GPX), te][0,1]
with FO(X) = tF(X) + (1 —)F 9 (X) = 0.

Clearly GV(X) = G(X), and FV(X) = F(X), thus P is ».
It remains to define F@ (X) and G (X), so that X© is a solution.
Classically, we use:

FOX)=FX) — FX?).

So X = X© is indeed a root of F®. But X = X© must also
minimize G©. Thus, we choose:

GOX)=C or GOX) =X —-X9?

where C is any non zero constant.

In both cases, null Lagrange multipliers are solution for P©.
Thus a solution for P is known. Then problems P® are solved
fort > 0, increasing t step by step, from 0 to 1, with increment
1/n in the simplest implementation. For each value of t > 0, the
solver starts from the previous solution.

As already mentioned at the beginning of this section, the naive
method is usually adequate to achieve the required accuracy while
being faster than Lagrangian and homotopy. However, we use
these two other methods as a last resort, in order to refine the
results.

4.3. Optimizations

Classical methods of qualitative analysis and decompositions
of systems of constraints, either combinatorial (based on flows or
maximum matching) or witness-based, may significantly speed
up the solving procedure. Unfortunately, they assume white
boxes, and we did not try to adapt these methods to our
framework.

Nevertheless, some optimizations are possible and have been
implemented. Let e; be the vector of the canonical base, i.e., the
ith line of the identity matrix. We often need to compute f at a
point X and at a point X 4 A;e;, for approximating the ith derivative
with finite differences at point X with first order methods, or for
direct search methods like Nelder-Mead, Torczon, Hooke-Jeeves.
If the function f does not depend on the ith unknown X;, then
fX) = f(X + Xje;) and computing both f(X) and f (X + A;e;) is
useless. Even when f indeed depends on X;, f likely calls many
functions which do not depend on X;. As a consequence, specific
labels and time stamps are associated to each variable to exploit
that point.

These labels also avoid to recompute continuously a shared
expression, e.g., when GetX(E), GetY(E), GetZ(E) are called with
the same expression E, especially when E is costly to compute.
The same holds when ClosestPt(E) and closestNorm(E) are called
with the same expression E. The main idea is maximal sharing:
there is only one node which is associated to an expression E
which is present several times in the description. This method is
classical and stems back to LISP. Indeed, it is called hash consing.
Labeling nodes with time stamps permits to evaluate a node only
one time, i.e. the first time its value is needed. It is sometimes called
memoization or memorization.

We did not try to generate a C program from DAGs, compile
it using optimization options, link it dynamically with the DECO
modeler and run it. Such an approach should take profit of
powerful optimizing compilers like gcc, the GNU C Compiler.

Fig. 3. Example 1: Initial problem (left), final position satisfying the constraints when (u, v) is constant (center) or variable (right).

5. Examples

5.1. Example 1: passing point

In this first and trivial example, we start from a flat B-spline
surface S with 7 x 7 control points. We choose a biquadratic surface
and take

(0,0,0,1/5,2/5,3/5,4/5,1,1, 1)

as knot vectors. We set a constraint to force the surface to pass
through a 3D given point p. In the first case, we impose the
constraint S(0.5, 0.5) = p. In the second case, we do not impose
the parametric values so that the constraint is S(u, v) = p with
(u, v) unknown. We just initialize (u, v) to (0.5, 0.5).

The control points on the borders of the surface are fixed and
the 25 inner points are free to move. This distinction is done by
specifying that the coordinates of the control points are either of
type Const or type Var. The middle point of surface S corresponds
to the expression CalcPt (s, u, v). The constraint consists to equalize
this point with the given point p.

CalcPt(s, u, v) = p.

The equalization of these two points implies three equations,
i.e, one for each coordinate of the points. These equations are
described by three functions Fy, F; and F, which have to be equal
to 0 at the solution.

Fo(X) = GetX(CalcPt(s, u, v)) — GetX(p) =0

F1(X) = GetY(CalcPt(s, u, v)) — GetY(p) =0

F,(X) = GetZ(CalcPt(s, u, v)) — GetZ(p) = 0.

As explained in Section 4.3, the function CalcPt(s, u, v) is not
computed three times but only once.

This system has a large set of solutions. We can choose a smooth
solution by minimizing the discrete energy of the surface.

G(X) = DiscrE(s)

Fig. 2 illustrates the DAG representation of the two different
systems. The grayed nodes represent scalar variables.

The solver evaluates these functions and modifies the values
of the variables in order to satisfy the constraints and minimize
the objective function (Fig. 3). In the first case, the system has
3 x 5 x 5 = 75 unknowns corresponding to the coordinates of
the inner points and 3 equations. In the second case, the solver
has two additional degrees of freedom to solve the optimization
problem. The system has now 3 x 5 x 5 + 2 = 77 unknowns
for the 3 same equations. The modification of u and v allows us
to find a solution satisfying the constraints and having a lower
discrete energy. In this example, the (u, v) coordinates, starting
from (0.5, 0.5) converge to (0.748,0.611). In the first situation,
the discrete energy calculated was approximately 25, against 20
for the second one, which represents a decrease of 20%.

5.2. Example 2: contact area between two parametric surfaces

In this example, we have two cylindric-like shapes defined by
several parametric B-spline surfaces constrained to be in contact

GO

G1

Fig. 4. Example 2: Cylindric-like shape composed by 6 surfaces with G° and G'
blending conditions.

Fig. 5. Example 2: Contact area between two parametric objects.

along an area. Each pseudo closed cylinder is composed of 6
B-spline patches of degrees 2 with 5 x 5 control points. They are
constrained to satisfy G° (for the covers) and G! continuity along
their edges (Fig. 4), with equalities of points and unitary normal
vectors. For each edge, the continuity is established on a discretized
set of 9 points.

For each cylinder, the contact area is inside one single patch.
Join conditions with other patches must be ensured. The result is
shown in Fig. 5.

The constraint is discretized into a finite set of punctual contact
constraints. A contact area is given by a center and a radius in the
parametric space. It is converted into a finite list of 2D points. We
have chosen 17 points, as shown in Fig. 6.

Each surface s and s; has its own contact area, represented as a
point list z; and z,. The contact is done for each point in z; with its

&0

Fig. 6. Discretization of a contact area into a point list in the parametric space.

sl

s2

Fig. 7. Points mapping between two areas with a varying angle.

corresponding point in z,, by equalizing points and normals vectors
on the surfaces. If (u4;, v1;) and (uy,;, vy;) are corresponding points
belonging respectively to zones z; and z,, the contact constraint is
established by requiring:

CalcPt (s1, uy;, vq;) = CalcPt(sy, uy;, vo;)
CalcNorm(s1, uy;, vy;) = —CalcNorm(sy, uy;, vy;).

The method must not be dependent on the orientation of the
surfaces. To achieve this, we give a degree of freedom to one of
the contact areas to spin round. The coordinates in z; are constant
values, and the coordinates in z, are the image of z; after a rotation
of an unknown angle alpha, as shown in Fig. 7. These coordinates
are represented by compound scalar DAGs depending on constant
values and the variable alpha.

Due to the computation model, the contact is completed using
approximations (in an error range). This cannot guarantee limited
intersections of the two objects.

5.3. Example 3: contact area between a parametric surface and a
subdivision surface

This example is similar to the previous description except that
one of the shapes to put in contact is a subdivision surface. This
second surface is the result of an irregular subdivision process after
a given number of iterations applied on an initial mesh [34]. The
initial mesh is a cube. Since the edges are weighted, the subdivision
process generates an irregular surface mesh (Fig. 8) with more or
less rounded areas. The result is shown in Fig. 9.

As the second surface is a subdivision surface, it is not possible
to use the functions CalcPt and CalcNorm. Instead, the ClosestPt and
ClosestNorm functions are used. Each point on s; belonging to the
chosen area is constrained to be in contact with its closest point
on s;.

CalcPt(sq, u, v) = ClosestPt(CalcPt(sq, u, v), S3)
CalcNorm(sq, u, v) = —ClosestNorm(CalcPt (s, u, v), S»).

Note that this last formulation using ClosestPt(. .., s;) instead
of CalcPt(s,, ...) is more generic, and could also be used in the
previous examples.

—

Fig. 8. Firstiterations of an irregular subdivision surface with weighted edges.

Fig. 9. Example 3: Contact area between a parametric surface (left) and a
subdivision surface (right).

5.4. Example 4: gearing

The proposed solver offers other possibilities as demonstrated
in this example of gearing. We focus here on the creation of a
complete constraints set but the exact modeling of a gear is not
really part of the intended application area. The result obtained
is only an outline, not taking into account common criteria used
in the engineering industry, e.g., clearance. We consider two gears
having given numbers of teeth z; and z,. The teeth should have
a particular shape so that the gear assembly is working. Each
gear rotates at a speed inversely proportional to the number of
teeth. Throughout this movement, there must be only contact point
between a tooth and the opposite tooth. This property may be
reflected in our formalism by contact constraints such as described
in the previous examples. However, this constraint is not sufficient
to determine the profile of the teeth. The gears have a known
pressure angle characteristic that determines the direction of the
applied force between the gears, or equivalently the normal to
the surface at the contact point, but also the direction of the
path of contact. We consider this pressure angle, denoted « as a
parameter of the system. To determine the profile of the teeth,
we first study each gear independently, by setting passing point
constraints between the tooth (after rotation) and a point on the
path of contact (Fig. 11).

Initially, we define the set of surfaces which compose the gear,
and the set of variables that determine them. The gear contains
z1 patterns identical by rotation. Each pattern is composed of two
cylindrical parts A and B, and two surfaces S and T (see Fig. 10). We
consider that S and T are symmetrical to one another. The surface S
itself determines the entire object. This surface is a B-spline surface

Fig. 10. Example 4. Decomposition into surfaces patches and identification of the
geometrical parameters.

Rot[C,a](S) s D

Fig. 11. Example 4. Geometrical representation of the constraints.

of degree 2 x 1 with n, x 2 control points. The two rows of n,, control
points are in a plane and identical by translation. The variables are
the coordinates of one of this row. Then, the surface T is deduced
by symmetry. A and B are cylindric parts with 3 x 2 control points
and degrees 2 x 1; their boundaries and radii are determined in
function of S and T. The z; — 1 other patterns are deducted by
rotation of angle k6 where 6 = 27 /z;.

We consider that the path of contact is expressed in a
parametric form D(t). We also assume that the function Rot|[c, a]
computes the image of a point or a surface by a rotation of center
c and angle a. For a discretized set of values {ti, ..., t; } and

angles {ay, ..., a,.}, we set the following constraints (as shown in
Fig. 11):
Vie{l,...,n:}, CalcPt(Rot[C, a;](S), u;, v;) = D(t;).

The list of u; coordinates can be unknown or predefined
constant values from 1 to 0, and the v coordinate can be the
constant 0 because the problem is 2D. The discretized sets of t; and
a; have a constant step and must have a speed in accordance one
with the other :

. e - =
Vie{l,...,n.— 1}, D(t)D(ti+1) =R(@ip1 —a)d = A

where R is the distance from D to C, _d> is the unit direction vector
of D and Z is the displacement of the contact point for each step.

Note that computing a rotation on a surface is equivalent to
compute the rotation for each control point. An equivalent way to
set the constraint is to compute the rotation after calculating the
point on the surface, which is less time consuming for the solver.
Indeed, we have:

CalcPt(Rot[C, a;](S), u;, v) = Rot[C, a;](CalcPt(S, u;, v)).

/—\\ \ f

/AN J

\ /
\ // L N\ —
\ / \ /

Fig. 12. Example 4: Positioning the two gears satisfying the constraints. Theoretical
result without clearance.

We could add other constraints on the normal vector:
Vie{l,...,n:}, Rot[C,a;](CalcNorm(S, u;, v;)) = _d)

However, it is not necessary to include them in the system because
they are implicitly satisfied.

As said previously, the geometry is completely determined by
np, control points of S belonging to a given plane, which represents
2n, degrees of freedom. Each of the n. constraints sets a contact
between two points of the plane, which theoretically decreases the
total number of degrees of freedom by 2n.. We choose n. > nj in
order to ensure that the solution is determined without ambiguity.
The problem is over-constrained but consistent. The theoretical
solution is an involute of circle. A B-spline cannot exactly represent
this curve but we can get a good approximation by choosing a
relatively large number of control points. Although there is no
solution satisfying exactly all the constraints at the same time, the
solver will give a solution whose constraints are the closest to being
met.

Whatever the numbers n. > n, we choose, the system has
three remaining degrees of freedom. The discretized intervals t;
and a; can be offsetted or simultaneously scaled. These degrees of
freedom act geometrically on the internal and external diameters
and position of S up to a rotation around C. We set a value to the
internal and external diameters. The third degree of freedom is
reduced by setting the tooth thickness equal to the tooth space,
which means that we consider the offset equals zero. An example
of result is shown in Fig. 12 with parameters z; = 51,2z, = 29,
a = 20° n, = 15 and n, = 29. The unknowns of the system are
the 2n, coordinates of the 2D control points, the 2n. values of t; and

a; and the 2 coordinates of Z making a total of 2n, + 2n, + 2 =
90 unknowns. Given the fact that the problem is 2D, there are
2n. + 4(n. — 1) + 3 = 173 equations.

5.5. Example 5: bump/hollow

This last example corresponds to the action of creating a hollow
in a car door in order to let room for inserting the hand behind
the handle. For a simpler illustration, we start from a flat surface
and we apply a distortion to create a hollow. As we study it from
behind, it becomes a bump. The surface is constrained to reach
a target curve (a piece of ellipse) while remaining fixed along an
outline curve (an other ellipse). The outline is discretized into n; =

target curve

discrete sets
of points

Fig. 13. Example 5. Simulation of a hollow in a car door. Final position satisfying the constraints. Outline and target curves discretization represented by red points (left),
visualization of the mean (top right) and Gaussian (bottom right) curvatures. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

-lli.igll'splle 5. Evolution of the errors on outline and target curves depending on the number of iterations and the computation time.
iter 0 50 100 150 200 250 300
time(s) 0 45 86 126 159 192 224
max1 0 0.127 0.059 0.015 0.0027 0.0029 0.00085
rmsel 0 0.086 0.031 0.007 0.0017 0.0015 0.00063
max2 0.229 0.115 0.017 0.010 0.0056 0.0053 0.00415
rmse2 0.212 0.127 0.010 0.006 0.0037 0.0021 0.00166

30 3D points (P14, ..., P1,,) and the target curve into n, = 11
points (P24, ..., P2,,), drawn with red dots in Fig. 13(left).

We label SO the initial surface with constant given control
points and S1 its final position. These surfaces are biquadratic B-
splines and have 17 x 17 control points. Control points of S1 are
variables initialized with the same values as SO. For each outline
point P1; projected on SO, the point on S at variable coordinates
(ulj, v1;) is constrained to have the same position and normal as
S0:

Vie {1,...,111},
CalcPt (S, ul;, v1;) = ClosestPt (S0, P1;)
CalcNorm(S, ul;, v1;) = ClosestNorm(S0, P1;).

The surface is also forced to go through the target curve for each
point P2; at a point of variable coordinates (u2;, v2;):

Vie{1,...,ny}, CalcPt(S, u2;, v2;) = P2;.

Surface S1 has 17 x 17 x 3 = 867 variable 3D coordinates
and n; 4+ n, = 41 variable 2D coordinates, making a total of 908
variables. There are n; x 6 4+n; x 3 = 213 equations. Fig. 13 shows
the result after solving the constraints.

Some quantitative results are given in Table 1. It shows the
accuracy related to the number of iterations or the computing
time in seconds. The values max1 and rmsel correspond to the
maximum and root mean square error on the outline ellipsis
(the side length of the surface is 1). The values max2 and rmse2
are the errors to the target curve. We used the BFGS method,
without Lagrangian and homotopy. The hardware configuration is
Intel® Core™ i7-4800MQ CPU 2.70 GHz x 8 with 16 GB RAM, but
running on one core.

At the initialization, the constraints on the outline are already
satisfied since the surface S has the same control points as SO.
During a first phase, the algorithm seeks to improve constraints
on the target curve, even if it deteriorates the outline constraints.
Reaching about 50 iterations, the algorithm improves all the
constraints and makes them tend towards zero. The algorithm

stops at about 300 iterations because of numerical accuracy limits
due to numerical gradient estimations based on a first order Taylor
expansion. Fig. 13 represents graphically the mean (top right) and
Gaussian (bottom right) curvatures of the final surface. One can
notice that the curvature distributions are regular, despite we
have chosen only a biquadratic surface. The error values (Table 1)
correspond to our expectations for what is considered as initial
drafting stage.

Such descriptions can be embedded in high level operators.
We are currently developing an operator that takes intuitive
parameters in “natural” language and creates automatically a
DAG. Those parameters can be of different types (quantifier,
localization, etc.) and can take different values defined in
dictionaries (“normally”, “very”, “few”, “center”, “right”, “up”,
etc.). The parameters of the operator and the values we gave for this
example are position: center, incline: horizontal, long: very, wide:
normally, deep: normally and direction: down. Those parameters
are automatically converted into a mathematical description by
defining the outline and target curves.

6. Conclusion

The DECO prototype described in this paper showed the
feasibility and the promises of variational geometric modeling
with black box DAGs, ie., without equations. The proposed
examples do not cover all the potential cases in geometric design
but the reader can imagine that different or more complex
examples can be treated with the same approach. The energy to
minimize can be easily changed depending on the user’s goal. The
user can also create simple constraints and use them to create
his/her more elaborate ones. This work raises several issues, which
are actually scientific locks. We mention some of them in the
following.

Constant subdivision levels. Up to now, subdivision levels for
subdivision surfaces are fixed at initialization and remain constant,
for simplicity.

Vocabulary. What are the most convenient high level black
nodes? DECO suggests: CalcPt, CalcNorm, ClosestPt, ClosestNorm,
but other routines may be interesting: volume or other mo-
ments (inertia), intersection with a line, etc. In Computer Graph-
ics, especially in Ray Casting, only three geometric functions
are needed: the intersection of an object with a given ray,
the normal at a given point (maybe the osculating quadric
or an approximation), and the bounding box or sphere of an
object. Of course, the color of an object at a given point is also
needed, but it is not a geometric function. These three simple func-
tions are sufficient to ray trace all possible objects and scenes. What
is the corresponding set of functions for geometric modeling? Hoff-
mann et al. [35] address a similar issue: which queries can assure
the interoperability between different geometric modelers? They
propose a basic set of queries, including point membership test and
distance computation.

Granularity. What is the convenient granularity level for DAGs?
Of course, we may achieve Turing completeness if we introduce
arithmetic nodes for +, —, x, +, cos, exp, etc., a node for the
IF-THEN-ELSE instruction, and nodes for defining and calling
functions. But such a fined-grained level is not user friendly.
Designers and engineers may not feel comfortable using these
tools. For computer scientists too, it is not convenient since they
prefer their favorite programming language and IDE (integrated
development environment). A node EXPR (similar to the Unix tool
expr in the Shell languages), for evaluating simple mathematical
expressions, seems a good tradeoff.

Persistent naming. When parameters values are modified, some
part or feature (e.g, a chamfered edge) may disappear or be
disconnected. Naming geometric parts in an unambiguous and
robust way is known as the Persistent Naming problem [36] in
CAD-CAM. Our examples are simple enough to avoid this problem
for now. In the future, we have to use methods for solving the
Persistent Naming problem.

Discontinuity. A sticking point is to handle discontinuities. Homo-
topy assumes continuity and may likely fail with discontinuities.
For instance, ClosestPt(s, p) is continuous almost everywhere, but
not everywhere: imagine that p is moving in a hollow sphere be-
tween two points on the same diameter. By the way the related
function Distance(s, p) is continuous everywhere. Dynamic Geom-
etry already faced the discontinuity problem.

Failures and loops. For now, we assume that the evaluation of
DAGs always succeeds. But, with a more complex environment, the
evaluation of a DAG may abort, raise an exception, or loop. The top
level program which evaluates DAGs should catch exceptions, and
abort computations after some delay.

Labels on nodes. It may be convenient to label DAG nodes with prop-
erties of the underlying function: convexity, continuity, differen-
tiability, polynomiality, degree, linearity, etc., so that the procedure
evaluating F(U) or G(U) may exploit these information.

We did not try to optimize the computations but they can
obviously be reduced in time. For example, parallel and cloud
computing will make this approach scalable. The functions F(U)
and G(U) are evaluated many times, and this can be done in
parallel. Each call to F(U) can also be computed in parallel. Notice
in addition that most of the computing time is due to the final steps
of the solving process. If only an approximate solution is expected
(a draft model), the solver can be stopped before the convergence,
thus saving computing time. The potential failure of convergence
must also be studied. Starting with a starting point not too far from
the solution reduces the risks.

Since any black box can easily be added and contains any type
of algorithm, this approach widens the scope of geometric design
with constraints. In the future, our approach may apply to many
other applications: for CAD, the computation of bars lengths for

11

the synthesis of mechanisms; for animation and special effects in
movies, the computation of the initial state and impulse in order to
reach a given state after a physical and kinematic simulation; etc.

Evidently, topics for future works are multimodal interfaces,
and an higher-level language for specifying shapes, constraints and
goals. Ideally users express their needs in a language close to a
natural one and the DECO software translates the sentences into
alist of instructions. We are currently working on this higher level
approach.

Finally, DECO permits to easily produce draft models. After
exportation in some standard exchange format, the later can
be edited with any traditional CAD modeler. Unfortunately,
during this exportation, the semantic information in the initial
description is lost. Keeping this semantic would be valuable to
optimize forthcoming processings on the object, but it is not
compatible with the current generation of CAD modelers. Keeping
the semantic is also essential for “semantic PLM”, i.e., ontology-
based standards [37].

Acknowledgments

The authors would like to thank the two French Institutes
Carnot ARTS and Carnot STAR for their support to this research
project. Lincong Fang thanks for their support the National
Natural Science Foundation of China (No. 61272300), the Zhejiang
Provincial Natural Science Foundation of China (LQ13F020003) and
the China Scholarship Council.

They also did appreciate the valuable comments provided by
the reviewers.

References

[1] Hoffmann CM. Geometric and aolid modeling: An introduction. Morgan
Kaufman; 1989.

[2] Piegl L, Tiller W. The NURBS book. Springer Verlag; 1995.

[3] Shah], Rogers M. Expert form feature modeling shell. Comput Aided Des 1988;
20(9):515-24.

[4] Bettig B, Hoffmann CM. Geometric constraint solving in parametric computer-
Aided Design.] Comput Inf Sci Eng 2011;11(2):021001.

[5] Jermann C, Trombettoni G, Neveu B, Mathis P. Decomposition of geometric
constraint systems: a survey. Int] Comput Geom Appl (IJCGA) 2006;
16(05n06):379-414.

[6] Farin G. Curves and surfaces for computer aided geometric design: A practical
guide. 4th ed. Academic Press; 1997.

[7] Shah], Mantyld MM. Parametric and feature-based CAD/CAM. Wiley Sons Inc.;
1995.

[8] Warren]JD, Weimer H. Subdivision methods for geometric design: A
constructive approach. San Francisco: Morgan Kaufmann; 2002.

[9] Cashman TJ. Beyond Catmull-Clark? A survey of advances in subdivision
surface methods. Comput Graph Forum 2012;31(1):42-61.

[10] LinV, Gossard D, Light R. Variational geometry in computer aided design. ACM
Comput Graph 1981;15(3):171-7.

[11] Anson O, Seron FJ], Gutierrez D. NURBS-based inverse reflec-
tor design. In: Matey L, Torres JC, editors. CEIG 08—congreso es-
panol de informatica grafica. The eurographics association; 2008.
http://dx.doi.org/10.2312/LocalChapterEvents/CEIG/CEIG08/065-074.

[12] Bloor MIG, Wilson M]J. Generating blend surfaces using partial differential
equations. Comput Aided Des 1989;21(3):165-71.

[13] Ge J-X, Chou S-C, Gao X-S. Geometric constraint satisfaction using optimiza-
tion methods. Comput Aided Des 1999;31:867-79.

[14] HuS-M, LiY, JuT, Zhu X. Modifying the shape of nurbs surfaces with geometric
constraints. Comput Aided Des 2001;33:903-12.

[15] Hoffmann CM, Juan R. Erep: an editable, high-level representation for
geometric design and analysis. In: IFIP TC5/WG5.2 working conference on
geometric modeling for product realization. North-Holland Publishing; 1992.
p. 129-64.

[16] Laborde J-M, Strdsser R. Cabri-géométre: A microworld of geometry for guided
discovery learning. Zentralblatt didakt math 1990;90(5):171-7.

[17] Kortenkamp U. Foundations of dynamic geometry [Ph.D. thesis]. Swiss Federal
Institute of Technology Zurich; 1999.

[18] Richter-Gebert], Kortenkamp UH. User manual for the interactive geometry
software cinderella. Springer Science & Business Media; 2000.

[19] Hohenwarter M, Preiner]. Dynamic mathematics with GeoGebra, J Online
Math Appl; 7.

[20] Sangwin C. A brief review of geoGebra: dynamic mathematics. MSOR Connect
2007;7(2):36-8.

http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref1
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref2
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref3
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref4
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref5
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref6
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref7
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref8
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref9
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref10
http://dx.doi.org/10.2312/LocalChapterEvents/CEIG/CEIG08/065-074
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref12
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref13
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref14
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref15
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref16
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref17
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref18
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref20

[21] Kortenkamp U, Richter-Gebert]. Decision complexity in dynamic geometry.
In: Automated deduction in geometry. Springer; 2001. p. 193-8.

[22] Denner-Broser B. About tracing problems in dynamic geometry. Discrete
Comput Geom 2013;49(2):221-46.

[23] Hidalgo MR, Joan-Arinyo R. The reachability problem in constructive
geometric constraint solving based dynamic geometry.] Autom Reasoning
2014;52(1):99-122.

[24] The CGAL Project, CGAL User and Reference Manual, 4.5.2 Edition, CGAL
Editorial Board, 2015. URL http://doc.cgal.org/4.5.2/Manual/packages.html.

[25] CcAL: Computational geometry algorithms library, http://www.cgal.org.

[26] Chan A, Mourad K. Theoretical computers and diophantine equations. Math
Medley 1990;18(2):66-77.

[27] Stam]. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary
parameter values. In: Proceedings of SIGGRAPH. 1998. p. 395-404.

[28] Bousquet J, M D. Flaw removal on surfaces. In: Curves and surfaces with
applications in CAGD. Vanderbilt University Press; 1997. p. 43-52.

[29] Borrelli V, Cazals F, Morvan J-M. On the angular defect of triangulations and
the pointwise approximation of curvatures. Comput Aided Geom Des 2003;
20:319-41.

[30] Meyer M, Desbrun M, Schroder P, Barr AH. Discrete differential-geometry op-
erators for triangulated 2-manifolds. In: Hege H-C, Polthier K, editors. Visual-
ization and mathematics IIl. Heidelberg: Springer-Verlag; 2003. p. 35-57.

[31] Nesterov Y. Introductory lectures on convex optimization, vol. 87. Springer
Science & Business Media; 2004.

[32] Knoll DA, Keyes DE. Jacobian-free Newton-krylov methods: a survey of
approaches and applications.] Computat Phys 2004;193(2):357-97. URL
http://www.cs.odu.edu/~keyes/papers/jfnk.pdf.

[33] Kolda TG, Lewis RM, Torczon V. Optimization by direct search: New
perspectives on some classical and modern methods. SIAM Rev 2003;45(3):
385-482.

[34] Reusche L. Conversion of trimmed NURBS surfaces to subdivision surfaces
[M.S. thesis]. Germany: Technical University Braunschweig; 2005.

[35] Hoffmann C, Shapiro V, Srinivasan V. Geometric interoperability via queries.
Comput Aided Des 2014;46:148-59. 2013 SIAM Conference on Geomet-
ric and Physical Modeling. http://dx.doi.org/10.1016/j.cad.2013.08.027. URL
http://www.sciencedirect.com/science/article/pii/S001044851300167X.

[36] Marcheix D, Pierra G. A survey of the persistent naming problem.
In: Symposium on solid modeling and applications. 2002. p. 13-22.
http://dx.doi.org/10.1145/566282.566288. URL
http://doi.acm.org/10.1145/566282.566288.

[37] Barbau R, Krima S, Rachuri S, Narayanan A, Fiorentini X, Foufou S, Sriram RD.
Ontostep: Enriching product model data using ontologies. Comput Aided
Des 2012;44(6):575-90. http://dx.doi.org/10.1016/j.cad.2012.01.008. URL

http://www.sciencedirect.com/science/article/pii/S001044851200022X.

http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref21
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref22
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref23
http://doc.cgal.org/4.5.2/Manual/packages.html
http://www.cgal.org
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref26
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref27
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref28
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref29
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref30
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref31
http://www.cs.odu.edu/%7Ekeyes/papers/jfnk.pdf
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref33
http://refhub.elsevier.com/S0010-4485(16)00014-2/sbref34
http://dx.doi.org/10.1016/j.cad.2013.08.027
http://www.sciencedirect.com/science/article/pii/S001044851300167X
http://dx.doi.org/10.1145/566282.566288
http://doi.acm.org/10.1145/566282.566288
http://dx.doi.org/10.1016/j.cad.2012.01.008
http://www.sciencedirect.com/science/article/pii/S001044851200022X

	Variational geometric modeling with black box constraints and DAGs
	Introduction
	Related work
	DAGs for dynamic geometry
	DAGs in computational geometry
	Features of white and black box DAGs

	DECO, a modeler based on black DAGs
	The DECO solvers
	Solving without equations
	Reductions
	Optimizations

	Examples
	Example 1: passing point
	Example 2: contact area between two parametric surfaces
	Example 3: contact area between a parametric surface and a subdivision surface
	Example 4: gearing
	Example 5: bump/hollow

	Conclusion
	Acknowledgments
	References

