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Normalization approaches for the descent search direttion
Isogeometric shape optimization

Zhen-Pei Wany Mostafa Abdalla, Sergio Turteltaub
Faculty of Aerospace Engineering, Delft University of Tealbgy, Kluyverweg 1, 2629 HS Delft, the Netherlands.

Abstract

In isogeometric shape optimization, the use of the seandttithn directly predicted from the
discrete shape gradient makes the optimization histoopgty dependent on the discretization.
This discretization-dependency cdfeat the convergence and may lead the optimization process
into a sub-optimal solution. The source of this discretmatdependency is traced to the lack of
consistency with the local steepest descent search direictithe continuous formulation. In
the present contribution, this inconsistency is analyzgdgithe shape variation equations and
subsequently illustrated with a volume minimization peshl It is found that the inconsistency
originates from the NURBS discretization which induces scdite quadratic norm to repre-
sent the continuous Euclidean norm. To fix this inconsisteticee normalization approaches
are proposed to obtain a discretization-independent nmadadescent search direction. The
discretization-independence of the proposed approashesified with a benchmark problem.
The superiority of the proposed search direction and itability for numerical implementation
is illustrated with examples of shape optimization for neeubal and thermal problem$ he
proposed methodology also applies to the "mesh-depenti@amdsadational FE-based shape
optimization.

Keywords:
Isogeometric analysis, Shape optimization, Normalizaesipproach,
Discretization-dependency, Mesh-dependency

1. Introduction

The recently developed isogeometric analysis (IGA) has lzémed from the start at inte-
grating computer aided design (CAD) and analysis [1]. Thiglsesis of geometry and analysis
has naturally led to renewed interest in developing stratBhape optimization. The advantages
of using isogeometric analysis in shape optimization arkastied in its ability to preserve exact
CAD geometrical descriptions and its enhanced sensitanlysis as explained in [2] and [3].

Isogeometric analysis is used for shape design optimizaticurved beam structures in [4]
and [5], vibrating membranes in [6], pulsatile ventricidasist devices in [7] and shells in [8] and
[9]. Non-mechanical design optimization works are preséiny [10] for photonic crystals, [11]
for electromagnetic scattering problems, [12] for heattanion problems, [13] and [14] for the
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fluid problems. Shape optimization using a T-spline basegeemetric method is presented in
[15]. Isogeometric shape optimization under time-varyoegling conditions has recently been
analyzed in [16]. The exact geometric description using l&go provides a good opportunity
to develop shape optimization using boundary element nddthd. A method to avoid mesh ir-
regularity for the interior control points updating in ismgmetric shape optimization is presented
in [18].

Compared with shape optimization based on the traditionaéfelement method, isogeo-
metric shape optimization can provide a simpler and morearate sensitivity, especially when
the sensitivity expressions depend on geometric propgestieh as curvature. This advantage
is discussed in terms of enhanced sensitivity in the work3bf [n the framework of NURBS
discretization for design, full analytical sensitivitiagth respect to both the positions and the
weights of NURBS control points are achievable [19]. Dessgmsitivity analysis is further
studied using transformed basis functions for Kroneck#&ageoperty in the work of [20].

Inisogeometric shape optimization, the control pointsamne value associated with the con-
trol points, are commonly chosen as the design variables.shape design sensitivity leads to
the calculation of the discrete shape gradient with rejpexdntrol point variables. Depending
on how a search direction is constructed from the discredapesigradient, discretization-depen-
dency of the optimization history might arise [9]. This distization-dependency caffect the
convergence speed and may lead the optimization procesa sub-optimal solution. It should
be noted here that this discretization-dependency is moteld to shape optimization based on
isogeometric analysis; it also occurs in shape optimindbi@sed on traditional FE-based shape
optimization,which is often termed "mesh-dependency” or "parametannatiependency” in
the classical finite element formulation and leads to a Zjdmaundary (see [21] and [22], etc.)

The discretization-dependency of the sensitivity analysguires some technique to find a
reasonable search direction. In [4], a Sobolev semi-noefierred to as "shape change norm”,
is introduced to balance the shape variation with the costooftructing the Sobolev semi-
norm and solving a system of equations. In [23], Hregradient method is used such that the
discretization-dependency is avoided at the expense wingph reshaping problem construct-
ed by theH?! gradient method. In [24], [25], [26] and [27], a similar methcalled "traction
method” is used to secure the shape regularity at about the geice as théi! gradient method.
Other approaches and mesh regularization strategies asutie filtering method, are presented
for discretization-free shape optimization in [28], [2Hda[29] to avoid the shape irregularity,
referred to as a “parameterization-free” optimizationwdwer, all of these approaches require
to construct a system of linear equations and solve it. Ing9%ensitivity weighting” scheme is
employed to obtain a discretization-independent seardttitbn. The "sensitivity weighting” is
computationally much simpler since it only requires a lbcadtegrated 'weighting’ factor over
the local support of the corresponding design control pdildhile the "sensitivity weighting”
approach is shown to work in [9], the underlying reasons$itccess and where the problem
originates remain not clear.

The simplest and most intuitive search direction is thepstsedescent direction. The use of
the steepest descent direction, computed frondikereteshape gradient, makes the optimiza-
tion history strongly dependent on the discretization.his paper, we analyze the cause of the
discretization-dependency of the steepest descent sdaeation from the underlying mathe-
matical aspects and propose three normalization appredctabtain a discretization-indepen-
dent search direction, namely (i) a “standard” normal@atiii) a diagonally-lumped mapping
matrix (DLMM) normalization and (iii) a simplified DLMM normlization. The approaches
proposed in the present contribution will also work for thété element method based shape
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optimization especially these methods using NURBS pararizetion to describe the geometry
(see, e.g., [30], [31], [32], [33] and [34]).

The paper is organized as follows: The isogeometric digedn framework is presented
in Sec.2 and the continuous and discrete gradients andhsgiaections are shown in Sec.3. The
discretization-dependency of the un-normalized seanaction is illustrated in Sec. 4 using a
volume minimization problem with éfierent NURBS discretizations. A quadratic norm induced
by the NURBS discretization is derived in Sec.5. Subsedyentstandard normalization ap-
proach for an optimization problem with a quadratic normriggosed to obtain a discretization
-independent search direction. Using the concept of th@&thmass matrix and the partition of
unity property of NURBS, two simpler approaches are alsppsed. The suitability of the nor-
malization schemes is verified in Sec.6 using the same votamienization problem presented
in Sec.4 and, additionally, using the sensitivity analysia volume minimization problem of a
two-dimensional domain. Design problems of a three-dinoerag fillet and a two-dimensional
thermal isolating panel are presented in Sec. 7 to demaagtra superiority of the proposed
normalization approaches. Concluding remarks are predémiSec. 8.

2. Isogeometric discretization

The basic idea behind isogeometric analysis is to use NURB@&mMonly used to describe
the geometry, as the shape functions of the finite elememysisaA NURBS geometry can be
treated as a mapping from a B-spline geometry by weight fonst A B-spline curve with a
degree ofpis defined as

X[€] = DN 0<é< (1)
i=1

wherex is the location of a point in the physical space correspanttirihe parametef defined
in a parametric spaca,is the number of the control points!-? is theith basis function of degree
p, andx' is the location of théth control point. Thdth B-spline basis function of degrgecan
be defined as

0 otherwise

NIO[¢] = {1 if & <E<é&n

‘ - (2)
Ni’p[f] — é:_é:l Ni,p—l[§]+ §|+p+1 é‘v:

§i+p —Gi §i+p+1 - §i+l Ni+1’p_1[§]’ [p g 0]’

where¢; is theith element of a non-decreasing knot vector, i.e.,

f = {517 527 53» ey §n+p+1}-

The knot vector is said to heniformif the knots are equally spaced aoplenif the knots at each
ends havep + 1 multiplicity, respectively. A uniform vector witlp + 1 multiple equal knots at
each end is referred to apen-uniform

Adding a weight to each control point of a B-spline curve,iite3 a NURBS curve with
better flexibility. The basis functioR-P[¢] for a pth degree NURBS curve is defined as

NPLEIw
W[¢]
3

RPE = ; 3)



. n . .
wherew is the weight of theith control point andW[¢] := Y N*P[£]w!. Following this, a
=1
NURBS curve can be defined as

X[£] = > RP[EX. (4)
i=1

The NURBS basis functioRP[£] is nonnegative and is nonzero only on the subinterval
[&, &i+p+1]- This property is referred to dscal support which implies that moving a control
pointx' only affects the part of the geometry that corresponds to the subah{e;, £p.i.1] in the
parametric space. NURBS surfaces and volumes can be defif@dihg the same way as

X&)l = > > RIE X, (5)
i=1 j=1
and |
X[£,n,] = D RKE X, (6)
i=1 j=1 k=1

whereé, n and{ are parameters in the parametric space and, for simplibiéydegrees of the
functions is not shown. More details about NURBS can be foun@5]. By introducing a
mapping function
1], for 1D parametric space
I =<I[i, j], for 2D parametric space @)
I[i, j,K], for 3D parametric space

points in a region generated from NURBS can be expressedénergl way as

x= > RIX = XR, (8)
|

whereR = [RLR?%,---], X =[x}, %%, ---] and y is a vector-valued parameter equal to either
&, (&) or (&,1n,¢) depending on the dimension of the parametric space. Thainmgaf the
operationXR is implicitly defined in (8).

Since the shape of a NURBS-generated object depends on it®lqaoints, these can be
naturally used as design variables for shape optimizakonthermore, the NURBS basis func-
tions can also be used as shape functions for analysis, vightble underlying principle behind
isogeometric analysis. Isogeometric shape optimizatidrich corresponds to the coupling be-
tween a geometrical design and an isogeometric analyss, NERBS discretization both for
the design and analysis. With the NURBS discretizationiritegyral of a functionf in a domain
D in the physical space can be evaluated over the corresgpddimainD in the parametric
space, i.e.,

fD f[x]dD = fﬁ f[x[x] |[I[x]| dD (9)
whereJ is the Jacobian matrix between the parametric space anchifsécpl space and| is

its norm or the absolute value of its determinant dependintie dimensions of the parametric
and physical space (see, e.g., [36]).



3. Continuous and discrete shape gradients and search dirégns

3.1. Continuous shape gradient and search direction

A typical shape optimization problem can be formulated asminimization of a given ob-
jective functional’, which may depend on a fieldandor its gradientVu defined in a domain
QeRY e,

Y= | F(u,Vu,x)dQ, (20)
/

whereF is the objective density function, which may also expliciflepend on the locatiox.
The minimization is carried out over a set of admissible do&. A gradient-based descent
algorithm requires expressing the variati®H of the objective functional with respect to the
design variables. Given a domdhthat may corresponds @ or its boundaryl” in physical
space depending on whether the domain or the boundaryahegguroach is used for continuous
sensitivity analysis, in aontinuouformulation, the design variables are poirtg D and the
variation can be expressed as

8¥ = (g,6X)p = f g-oxdD, (11)
D

where§x represents the variation of and g = g[x] denotes the local shape gradient (see,
e.g., [16]) and:, -)p is a conveniently-chosen inner product over the integnadiomainD. An
alternative representation&X is to express it in terms of so-called design velocity, §g.= vds,
wheresis a time-like parameter and= dx/dsis the design velocity (see [16]).

The product used in the integrand in (11) is the canonicali@an inner product ifRY.
Correspondingly, given an arbitrary search directéon the localcontinuous steepest descent
search directiond; (or analytical search direction), which coincides with the negative of the
continuous shape gradient, at a locatiois

dc = —g [Continuous]. (12)

With the continuous steepest descent search directiontifural ¥ decreases in the fastest di-
rection by

Wlseq, = — f de - dedD . (13)
D

Using (12), the design domain may be updated in an iteratgeeht algorithm from (itera-
tion sto iterations+ 1) as
XD = xO 1 ad, = xO - ag, (14)

wherea is a step size. For a suitably-chosen step size, (13) guasutihat the functiona¥l
decreases ik is changed according to (14).

3.2. Discrete shape gradient and search direction

The above updating scheme is based on the continuous fdfam(ae., on the continuous
descent directior-g). For the actual numerical implementation, the geometsdsédo be dis-
cretized according to (8). The discrete variation of thecfional ¥ corresponds to a change due

5



5 sk

IEEEEEEEEEEEEEEERXEX!
5 10 15 2

T R T RS R
(@) ()

Figure 1 (a) 2D rectangular plate and its design boundajyst{ape update using local steepest
descent search directialy with one unit step size

to variationssx' of the control points, which are the design variables in tiserétized formula-
tion. Substituting (8) into (11), the discrete variatiomdes obtained as

6‘P=fg~ZR'6x'dD=Zg'd-6x'=Gd~6X, (15)
D [ 1

whereGy = [g(lj g3 ] oX = [5x1, ox?, - ] and g, is the discrete shape gradient calculated
from the continuous sensitivity analysis, i.e.,

o = (0.R)p = fD oR' dD. (16)

The discrete shape gradiegﬁjtcan also be calculated from a discrete sensitivity anadgisoach
(discretion-first approach), which is identical with theeocalculated from above continuous
approach.

When using the steepest descent method, it is often to jitese the negative of the discrete
gradient as theliscrete search directioly = {dj, d3, ---}, i.e.,

D4 = —Gq, [Discrete] a7)
and the model is correspondingly updated by relocating dinérol pointsx' as
(s+1) ©) (9
(X)) = (x')" +ady = ()" - agy (18)
which implies that a typical point, in view of (8), is updated as
x5+1=xs+aZdLR'=xs+aDdR. (19)
|
As can be seen from (16), the shape gradi@nis highly dependent on the isogeometric dis-
cretization, which means the search direction is also dii@ation-dependent. This discretization
-dependent search direction, henceforth referred to agrth@rmalized discrete search direc-

tion, leads to discretization-dependent evolution of the dedigt, in turn, may lead to sub-
optimal shape designs.

4. Discretization-dependency

The discretization-dependency may be illustrated by anaelminimization problem. For a
domainQ with boundanf’, the volume of the domain can be expressed as

T = g) da. (20)



Table 1 Diferent discretizations of the rectangular plate model, ekéx, y) is the location of
the control pointsy are the weights of the control poinandn are knot vectors

Cases Discretizations

XIy:O,S,lO = {09 47 89 127 169 20}
VV\y:O,S,lO = {19 17 19 17 19 1}

1 ¢-100002505075111)
n={000111)
Xy=0510 = {0,4, 8,12 16, 20}
2 Wy-0510=1{1,1,1,1,1,1}

£={000010203111)
n={000111

X|y:o,5,10 = {0, 4, 8, 12, 16, 20}
V\I‘y:5,1o = {1, 1, 1, 1, 1, 1}

3 Wyo=1{11060611
¢£={00002505075111}
n={000111

Xy=05.10 = {0, 3,5, 6, 14, 20}
Wy-0510=1{1,1,1,1,1,1}
£={00002505075111}
7=1000111)

finite element (FE) discretization:
5 x=1{0,3,5,7,10,13 15,17, 20}
y=1{0,5,10}

Using Reynolds transport theorem, the variation of the m@wia a boundary integral approach
can be obtained as

62=fn~6xdl“, (22)
r

wheren is the unit outward normal vector(see, e.g., [16]). In tlaise; the continuous local shape
gradient is simply
g=n. (22)

To clearly illustrate the influence of the discretizationtba search direction, it is useful to start
from a simple geometry, namely a rectangular domain as shofig. 1(a), and to consider only
the bottom boundary as the design boundary. In this casepasminimize the volume, based
on the continuous steepest descent search direction innil#Xhe gradient (22), consists on
simply “moving” the bottom boundary uniformly upwards, d®own in Fig. 1(b) (i.e., moving
the boundary in the opposite direction of the outward united. Ideally, a discrete search
direction should provide a good approximation to this bétrav

If the domain is discretized by NURBS, the shape gradierit véispect to the location of the
I-th control pointx', is

%:j}Nm. (23)
I
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Figure 2 The shape update fofférent cases with the un-normalized search direction

Five different discretizations of the rectangular model are shovirabie 1. In case 1, the
control points are uniformly distributed in the physicahsp. The knot vectaf andzn are open
-uniform. The weights of the control points have all the saraleie of 1. Case 2 has have the
same control points and weights, but its knot ve@ads non-uniform. Case 3 has the same
control points and knot vectors, but two control pointsxat 8, y = O andx = 12y = 0
have the weights reduced to 0.6. Case 4 has the same knotsvantbweights, but the control
points are not uniformly distributed in the physical spaCase 5 is simply a linear finite element
discretization.

The design shape, updated based on (19) with search dir¢tfip and a step size = 1, is
shown in Fig. 2. The locations of the interior control poiatg interpolated from the locations
of boundary control points. It can be seen that the updatageslis strongly dependent on
the discretization and isot consistent with the continuous steepest search directiowrs in
Fig. 1(b). It also shows that the discretization-depengeiso happens to the finite element
discretization.

In the context of NURBS, the problems generated from thereliation-dependency are
attributable to the following aspeg¢factors:

- non-uniform property of the knot vector in parametric spadsich is illustrated by case 2
- weights of the design control points, which is illustratedchse 3
- non-uniform local support in physical space, which is tated by case 4

Case 1, like case 4, also illustrates tlk=et of the non-uniform local support, which originates
from the support of the shape functions on the left and rigittse The problems generated
by the un-normalized search direction can be correctedjugirious alternative approaches, as
addressed in the next section.



§X =-M""'G,

(a) (b)

Figure 3 lllustration of steepest descent directions fpEfaclidean norms and (b) quadratic
norms. The ball in (a) is the unit ball of the Euclidean nonranslated to point. The ellipsoid
in (b) represents the unit ball of the quadratic norm and thepest descent directiéixX
corresponds to the largest distance inscribed in the ellipse, e.g., [37] for details)

5. Normalization of the search directions

The reason for the discretization-dependency is that thenanmalized discrete search di-
rection Dy is not consistent with the continuous steepest searchtigined .

5.1. Consistent discretization
In order to well approximate the continuous steepest déseanch directiod. and eliminate
the discretization-dependency, thermalized search directioB®, = {d}, d2, ---}is introduced

such that
de= ) R'd) = DiR (24)
J

Using (24) in (13) implies that
Wlsxep, == > Y fD RR’dD(d}- d}) = -M D, - Dy, (25)
| J
whereM is a second-order symmetric mass matrix-like mapping defase
M=MT :=fDR®RdD. (26)
The interpretation of the tensor prod@ctan be obtained from (25) and (26).

5.2. Standard normalization

From (13), it can be seen that the variation of the objectivefional in the continuous sense
is a Euclidean norm. The steepest descent direction of alidéan norm is simply the negative
gradient, which is defined in (12). Nevertheless, from (28pn be seen that once the contin-
uous steepest search direction is discretized, the amiafi the objective functional becomes
a (squared) quadratic norm. For problems with quadrationspa normalization approach is
required to obtain the steepest descent direction. Theetéelescent direction for Euclidean
and quadratic norms are illustrated in Fig.3. A detaileda&xation of this can be found in [37].

Using equations (15) and (25), it follows that

_M Dn . Dn = Gd . Dn. (27)
9



Following this, thenormalized search directigrwhich is thediscrete steepest search direction
corresponding to the quadratic norm, can be obtained as

Dn= M™1Dy, [Standard normalization] (28)

which is the standard way to obtain normalized search dineci his standard approach, how-
ever, requires computing the mapping tenband solving (28).

5.3. Diagonally-lumped mapping matrix (DLMM) normalizati

A computationally-attractive alternative to the standapgroach is to introduce thiago-
nally lumped mapping matrigDLMM), denotedM, such that the diagonal components are

My = Z Mg, (29)
J

and the @-diagonal components are zero. From the partition of umibperty, i.e.,.> ;R = 1,
and in view of (26) and (29), it follows that

My, =fDR' dD. (30)

The advantage of approximatimg with M is that a normalized search direction can simply be
computed as

a, ngR' dD
"My [[RdD

This type of approach is referred to as “sensitivity weiggtiin [9].

d = [DLMM normalization]. (31)

5.4. Simplified DLMM normalization

The DLMM approach is defined in the physical space. As mertion Sec.4, the discretiza-
tion-dependency of the search direction is attributedéontbights and the non-uniformity of the
local support in parametric and physical space. If the ‘iieitg weighting” is done only in the
parametric space, the dependency on the local support iphiysical space vanishes naturally.
This observation motivates the development of a simplifijgateach where the normalization is
carried out in the NURBS parametric space. For the DLMM ndization, the search direction
(31), integrated in physical spae can be expressed in parametric spAces

g _Js9R13IdD

" ERJMD (52

The NURBS geometry can be treated as a mapping from the pomdag B-splines model via
weighted functions (see (3)). The “sensitivity weightirggin be also simply carried out in the
B-spline parametric space by mapping the NURBS space baitletB-spline space, which is
independent on the weights of the control points. Towardgldping a simplified method, the
DLMM normalization is further approximated as

4 N_fﬁgN'dIS

JsN'dD 33)
10



Implicitly, it is assumed that the mean contributions of ffaeobian) and the weighiV are
compensated in the ratio (33). The rationale is that, basetth® mean value theorem, if the
upper and lower bounds of the Jacobjidrand the weigh¥V are relatively close to each other in
the domain of integration then their contribution in the rarator will be compensated with that
of the denominator, i.e., sind®@ = w'N' /W,

J5 oW N'JI/WdD (31/W)* [5 gN' dD

J5WINTI/WdD - (131/W)* [5 N dD
where(|J|/W)" and(|J|/W)** correspond to ratios of the Jacobian and the weight, eadhated
at some pointin the domain of integration. The implicit asption that we use is th§tl|/W)" ~
(1J1/W)**. The dfect of this assumption on the search direction is testedeiméxt section, but

first it is useful to explore the computational advantagatefexpression (33).
Using the property ofinity of integral[38] of B-spline basis

JNPde g

(34)

= , 35
§i+p+1_§i p+1 ( )
Equation (33) can be expressed as
+1) [~ gN' dD
d = _(p )fD 9 , [Simplified DLMM] (36)

" §i+p+l - fi
with the index! = I(i) given by (7) (with the corresponding degrggin the one-dimensional
case. Observe that the simplified DLMM normalization onlguiees one integration over the
B-spline space.
Following (5) and (6), (35) can be easily extended to the 2B 2 parametric space, re-
spectively, as

J [ N'PIENMpldédy 1 37
(&) (s —n)  P+D@+D e
and
NEP[£INFA[;] NKr[£]dédnd
[ [ [ NFPLENIM[7] N [£]dédnds 1 -

(§i+p+1 - fl) (le+q+l - 77]) (§k+r+l - (k) ) (p + 1) (q + 1) (k + 1).

The superscriptgandr are the degrees of the NURBS basis for parametersl/, respectively.
Following (37) and (38), the simplified DLMM approach for tBB and 3D parametric spaces
can be obtained, respectively, as
+1)(q+1) [-gN'dD
g - P+ ) J59 (39)
(§i+p+l - fl) (77j+q+1 - 77])

and B
(p+1)(g+1)(k+1) [;gN'dD

(§i+p+1 - fi) (77j+q+l - 771) (Licer+1 — &)
with the indexl given by (7) for the two- and three-dimensional cases, w&s@dy. The com-
putational advantage of the simplified DLMM approach is {fijat does not require to (humer-
ically) solve problem (28) and (ii) it takes advantage ofseld-form expressions of integrals of
B-splines.

dh=- (40)

11
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Figure 5 Volume minimization problem of an elliptic plate

6. Verification

6.1. Volume minimization of an initially rectangular domai

The approaches presented in Sec.5 were verified using thee\asome minimization prob-
lem with the four dfferent discretizations cases presented in Sec. 4, namelg asi initially
rectangular domain. It was found that, for all cases, alimadization approaches generated
the same normalized search directionl() to within the same numerical tolerance, which is
consistent with the continuous one. The shape updates ébtin@ifferent discretizations with
the normalized search direction are shown in Fig. 4, fromcltlii can be seen that the shape
updates indeed match the continuous solution shown in Hij. XCase 5 also shows that the
normalization approaches can be generally applicablest&Hibased shape optimization.

6.2. Volume minimization of an initially elliptic plate

To further test the normalization approach in the contex @diriable curvature, consider an
elliptical region as shown in Fig.5. The boundary of the oegis discretized with the control
12



—=— Normalized SD —— Analytical SD
- - - Un-normalized SD O  Design control points

Figure 6 Shape updates using (i) un-normalized searchting(SD), (ii) continuous local
steepest descent (analytical) search direction andh{@inbrmalized search direction
(simplified DLMM), all with a step sizex = 1

—%— Normalized SD
(Q  Design control points

Analytical SD

4 Mesh 2

6 7 8 9 10
(b)

Figure 7 Shape updates using (i) the continuous local steepscent (analytical) search
direction and (ii) the normalized search direction (sitfiptl DLMM) with a step sizer = 2 for
two different meshes
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Table 2 Thel.? norm of the error between the analytical and normalizedckedirection for
mesh 1 and mesh 2 using théfdrent normalization approaches

Mesh Approach
Standard DLMM  Simplified DLMM
1 0.02121 0.02597 0.02476
2 0.02087 0.02140 0.02129

points shown in Fig.5 and a knot vecte= [0,0,0, 3, 3. 3. 3.2, %, 1, 1, 1] For design purposes,
the model was refined using the knot vectits” andéug”, with ¢ corresponding to a partition
of [0, 1] in subintervals of length.@ and¢” a partition of [Q 1] in subintervals of length.025.
These two knot vectors are referred tanassh landmesh 2respectively.

For mesh 1, the shape updates using (i) the un-normalizedhsdaection, (ii) the con-
tinuous steepest (analytical) search direction and (ig) discrete steepest (normalized) search
direction (using the simplified DLMM method), all with a stejzea = 1, are plotted in Fig. 6.
The shape updates using the standard and the DLMM normiatizaahere visually overlapping
with the simplified DLMM update, hence, for clarity, they awat included in the figure. It can be
seen from Fig. 6 that the shape update using the normalizedtsdirection is very close to the
one using the analytical search direction defined in (12)lenthe one using the un-normalized
search direction has a large discrepancy with the analyga@ation and, in fact, the shape be-
comes inadmissible. In spite of the fact that the normalgsastch direction can approximate the
analytical one relatively well, naturally there is an ingic error due to the discretization. This
discrepancy can be particularly observed in the region ofimiam curvature as indicated in
Fig.7, which shows the updated shape for (a) mesh 1 and (It) Ehesing the normalized search
direction. To clearly visualize the discrepancy betweemthmerical and analytical search direc-
tions, the updated shapes are plotted using a larger seemsimelyr = 2. Comparing Fig.7(a)
and Fig. 7(b) it is clear that the numerical error can be reduzy a refinement of the design
model leading to a more accurate updated geometry. To dyanéi discrepancy between the
distinct normalization approaches thenorm of the error between the analytical and normalized
search direction for mesh 1 and mesh 2 using tffeint normalization approaches is presented
in Tab.2.

From Tab.2, it can be quantitatively seen that the mesh renéreduces the approximation.
It can also be observed that, the standard normalizatioroapp provides a slightly more accu-
rate search direction compared with the lumped-matrixedapproaches (DLMM and simplified
DLMM). However, both lumped-matrix-based normalizatigepeoaches provide an approxima-
tion comparable to the one obtained from the standard nazat@n. But they are computation-
ally more dficient and simpler to implement, which justifies their usatipalarly for problems
with a large number of design variables.

7. Performance of normalization approach

In order to provide more insight on thé&ect of the normalization approach, two optimiza-
tion problems are presented in this section. The first onensehanical problem where the
objective is to reduce stress concentrations and the saésaentthermal isolation problem where
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Figure 8 3D fillet model under tension

the objective is to minimize the net heat flux. In both protdethe solutions obtained with and
without a normalized search direction are compared.

7.1. 3D fillet shape design optimization

Consider a 3D fillet under axial tension, as is shown in Figt& model is represented with
NURBS and the correspondence between the parametric apbykieal space is shown in Fig.8.
The region occupied by the fillet is denotestasin order to reduce the stress concentration at
the transition corner, an objective function is defined @vkrcal evaluation regiof2,, c Q as

¥y, = fg w(oy — &)%dQ (41)

where the functiomr, is the Von Mises stresg is the characteristic function that has a value of
1inQ, and 0 outside of2,, andc, is the mean Von Mises stress of the local donfipi.e.,

. 1
oy = o Lw ovdQ . (42)

The local evaluation regiof,, is located around the transition corner, as is shown in Fighé
characteristic function is defined in the parametric space a

1,04<¢6<06,099<n<1,0<¢<1
0, otherwise

w[én, ] = {

As is also shown in Fig. 8, five control points were chosen aglikcrete design variables. The
objective was to minimize the fiierence between the local stress and the mean stress, so that
the local stress concentration could be reduced. The sétysitnalysis, which was done using
continuous adjoint method, can be found in [16] (see alsp [39

The iteration histories of the objective functional andrieximum stress are shown in Fig.9,
in which step 0 represents the initial design. The optinmrgprocess without the normalization
approach converged after 11 steps with the maximum Von Misess reduced to about 150
MPa, while the process with the normalization approachedaio converge with only 6 steps
and the maximum Von Mises stress was reduced to about 130 Miganormalization approach
used in this problem was the simplified DLMM approach. Fixezgpssizes were used in this
problem. The step sizes were chosen based on a parametgsiarhat chooses distinct step
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Figure 10 Shape updates without normalization approaqii pstep 2, (2) step 6 and (3) step
16 (optimal)

sizes for the best performance (i.e., the “best” constapt size for each descent direction). The
“best” constant step sizes for the normalized and un-norethcases turned out to bex110-3
and 4x 1074, respectively. It can clearly be seen that, even though bijective and maximum
stress of the process without normalization approach deecemuch faster than those of the one
with normalization approach at the first step, the optinidratvith normalization approach still
converged much faster and better.

The shape updates of steps 2 and 6 and the final step are joRigd10 and Fig.11, respec-
tively. As can be seen from Fig. 10, in the design optimizafioocess without normalization,
the shape updating in the middle was bigger than the two ,sidg@ish resulted in a sub-optimal
solution. In contrast, in the design process using the nlizaten approach shown in Fig.11, all
of the design control points moved uniformly, which ovepalbvided a better convergence (i.e.,
fewer iterations for the same tolerance) and better pedooe of the optimal design.

7.2. Heat conduction problem

Consider a panel that separates two environments witfferelince in temperature of 30D
as shown in Fig. 12. The bottom side of the panel is exposed tangbient temperature of
300°C while the top side is exposed to an ambient temperaturé©f Heat is exchanged on
both sides through convection. The convectionfitoient of these two convective boundaries
is 50 W(m?2.°C). The thermal conductivity cdécient of the material used in the panel is 0.05
W/(m-°C). The original design has a dimension of 0.0xr.04 m, which was originally dis-
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Figure 12 Thermal isolating panel with two convection baanies and given ambient
temperatures

cretized as

Xy=0,0.0050.01 = {0,0.01,0.02 0.03,0.04};
Wy-0,0005001 =1{1,1, 1,1, 1};
£-{0000102111};
n=1000111)

(43)

Using this structure, the optimization problem is to pr@vidaximum insulation. The problem
can be formulated with the objective to minimize the net et on the top boundary under
steady state conditions, where

Minimizing ¥ := h(6 — Gp)dl’, (44)
I
whereh is the convection cdicient, 6 is the temperature of, and6, = 0°C is the ambient
temperature on the top side. To prevent a trivial solutidmictvcorresponds to an infinitely thick
panel, a resource constraint is included, namely

f dQ < 0.02x 0.04. (45)
Q

In the design space, the knot vectors refined intof = {00001 0202505075111}

usingh-refinement. The corresponding control points of the refisiedretization are shown in

Fig.12. The sensitivity analysis, which was done using th&iouous adjoint method, can be

found in [12]. A descent method with a fixed step size was usehd iterative procedure. The

step sizes used in this problem for the normalized and umalized cases are 6 10°° and
17
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Figure 13 lIteration history of (a): objective function arg:(volume constraint without the
normalization approach
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Figure 14 Evolution of the design shape without the nornatilim approach at selected steps
throughout the optimization process and the corresportdimgerature contour plot

3x 1077, respectively. The reason that the step-size of the un-aliwenl case is bigger than the
normalized one is due to the normalization facﬁs)R'dD <1

The ideal updating scheme for the structure is simply toease the thickneamiformly
until a global volume constraint becomes active (i.e., thieime reaches a maximum allowed
value). The iteration history of the optimization procesthaut the normalization approach,
with a relatively small step size, is presented in Fig. 12nkthe figure it can be seen that even
with a small step size, the optimization wast able to converge. The evolution of the shape,
at selected steps throughout the iterative process, isrshiofig. 14. From the figure, it can be
seen that the mesh distortion became severe after aboutelf3)) preventing the descent method
from converging.

In contrast, the optimization process with the normal@atpproach reached the volume
constraint after 7 iteration steps, which was much fasten tthe case without normalization.
The iteration history is shown in Fig. 15 and the design shateselected steps are plotted in
Fig.16. It can be clearly observed in Fig. 16 that using thenadized shape gradient resulted in
intermediate designs consistently updated compared toothtinuous case.

The mechanical and thermal examples shown in this sectiastriite the relevance of a
consistent approximation of the search direction in terfreverall efficiencyandconvergence
Although the normalized search direction requires a (gnadidlitional computationalféort, the
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Figure 16 Evolution of the design shape with the normalimatipproach at selected steps
throughout the optimization process and the corresportdingerature contour plot

method is globally moref@cient since it generally requires fewer iterations to cogeace.

8. Conclusions

Inisogeometric shape optimization, the un-normalizedcedirection is strongly dependent
on the discretization. In this paper, théeet of the discretization-dependency was analyzed. It
was found that the un-normalized search direction was nadistent with the continuous steep-
est descent search direction. This problem was illustras@th a volume minimization problem
with different discretizations. It was also found that the incoesist originated from the dis-
cretization which induces a discrete quadratic norm toasgmt the continuous Euclidean norm.
To fix this inconsistency, a standard normalization apgumpadich is used to find the steepest
descent direction for quadratic norm problems, was praptisebtain a consistent discretization
-independent search direction. The standard approaciresgolving a linear system of equa-
tions. Using the diagonally lumped mapping matrix (DLMM)kthe partition of unity property
of NURBS, two simpler normalization approaches, which doraquire solving a linear system
of equations, were proposed. The same volume minimizatiobl@m was presented to demon-
strate the discretization-independence and equivalehiteeroposed approaches, to within a
relatively small numerical error, which eliminates theosty discretization-dependence of the
discrete gradient. The normalization approach was testaskichanical and thermal optimiza-
tion problems, which overall provided a better performagnte convergence characteristics. The
proposed method can also be used fortthditional FE-based shape optimization to deal with
the mesh- or parameterization-dependent solutibis also worth pointing out that the DLMM
approach can also be used, more generally, to consistdatlsetize given functions (e.g., dis-
placement boundary conditions) within the isogeometralysis framework.
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