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Normalization approaches for the descent search directionin
isogeometric shape optimization

Zhen-Pei Wang1, Mostafa Abdalla, Sergio Turteltaub

Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, the Netherlands.

Abstract

In isogeometric shape optimization, the use of the search direction directly predicted from the
discrete shape gradient makes the optimization history strongly dependent on the discretization.
This discretization-dependencycan affect the convergence and may lead the optimization process
into a sub-optimal solution. The source of this discretization-dependency is traced to the lack of
consistency with the local steepest descent search direction in the continuous formulation. In
the present contribution, this inconsistency is analyzed using the shape variation equations and
subsequently illustrated with a volume minimization problem. It is found that the inconsistency
originates from the NURBS discretization which induces a discrete quadratic norm to repre-
sent the continuous Euclidean norm. To fix this inconsistency, three normalization approaches
are proposed to obtain a discretization-independent normalized descent search direction. The
discretization-independence of the proposed approaches is verified with a benchmark problem.
The superiority of the proposed search direction and its suitability for numerical implementation
is illustrated with examples of shape optimization for mechanical and thermal problems.The
proposed methodology also applies to the ”mesh-dependency” in tradational FE-based shape
optimization.

Keywords:
Isogeometric analysis, Shape optimization, Normalization approach,
Discretization-dependency, Mesh-dependency

1. Introduction

The recently developed isogeometric analysis (IGA) has been aimed from the start at inte-
grating computer aided design (CAD) and analysis [1]. This synthesis of geometry and analysis
has naturally led to renewed interest in developing structural shape optimization. The advantages
of using isogeometric analysis in shape optimization are embodied in its ability to preserve exact
CAD geometrical descriptions and its enhanced sensitivityanalysis as explained in [2] and [3].

Isogeometric analysis is used for shape design optimization of curved beam structures in [4]
and [5], vibrating membranes in [6], pulsatile ventricularassist devices in [7] and shells in [8] and
[9]. Non-mechanical design optimization works are presented by [10] for photonic crystals, [11]
for electromagnetic scattering problems, [12] for heat conduction problems, [13] and [14] for the
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fluid problems. Shape optimization using a T-spline based isogeometric method is presented in
[15]. Isogeometric shape optimization under time-varyingloading conditions has recently been
analyzed in [16]. The exact geometric description using IGAalso provides a good opportunity
to develop shape optimization using boundary element method [17]. A method to avoid mesh ir-
regularity for the interior control points updating in isogeometric shape optimization is presented
in [18].

Compared with shape optimization based on the traditional finite element method, isogeo-
metric shape optimization can provide a simpler and more accurate sensitivity, especially when
the sensitivity expressions depend on geometric properties such as curvature. This advantage
is discussed in terms of enhanced sensitivity in the work of [3]. In the framework of NURBS
discretization for design, full analytical sensitivitieswith respect to both the positions and the
weights of NURBS control points are achievable [19]. Designsensitivity analysis is further
studied using transformed basis functions for Kronecker delta property in the work of [20].

In isogeometric shape optimization, the control points, orsome value associated with the con-
trol points, are commonly chosen as the design variables. The shape design sensitivity leads to
the calculation of the discrete shape gradient with respectto control point variables. Depending
on how a search direction is constructed from the discrete shape gradient, discretization-depen-
dency of the optimization history might arise [9]. This discretization-dependency can affect the
convergence speed and may lead the optimization process into a sub-optimal solution. It should
be noted here that this discretization-dependency is not limited to shape optimization based on
isogeometric analysis; it also occurs in shape optimization based on traditional FE-based shape
optimization,which is often termed ”mesh-dependency” or ”parameterization-dependency” in
the classical finite element formulation and leads to a zigzag boundary (see [21] and [22], etc.).

The discretization-dependency of the sensitivity analysis requires some technique to find a
reasonable search direction. In [4], a Sobolev semi-norm, referred to as ”shape change norm”,
is introduced to balance the shape variation with the cost ofconstructing the Sobolev semi-
norm and solving a system of equations. In [23], theH1 gradient method is used such that the
discretization-dependency is avoided at the expense of solving a reshaping problem construct-
ed by theH1 gradient method. In [24], [25], [26] and [27], a similar method called ”traction
method” is used to secure the shape regularity at about the same price as theH1 gradient method.
Other approaches and mesh regularization strategies, suchas the filtering method, are presented
for discretization-free shape optimization in [28], [21] and [29] to avoid the shape irregularity,
referred to as a “parameterization-free” optimization. However, all of these approaches require
to construct a system of linear equations and solve it. In [9], a ”sensitivity weighting” scheme is
employed to obtain a discretization-independent search direction. The ”sensitivity weighting” is
computationally much simpler since it only requires a locally integrated ’weighting’ factor over
the local support of the corresponding design control point. While the ”sensitivity weighting”
approach is shown to work in [9], the underlying reasons of its success and where the problem
originates remain not clear.

The simplest and most intuitive search direction is the steepest descent direction. The use of
the steepest descent direction, computed from thediscreteshape gradient, makes the optimiza-
tion history strongly dependent on the discretization. In this paper, we analyze the cause of the
discretization-dependency of the steepest descent searchdirection from the underlying mathe-
matical aspects and propose three normalization approaches to obtain a discretization-indepen-
dent search direction, namely (i) a “standard” normalization, (ii) a diagonally-lumped mapping
matrix (DLMM) normalization and (iii) a simplified DLMM normalization. The approaches
proposed in the present contribution will also work for the finite element method based shape
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optimization especially these methods using NURBS parameterization to describe the geometry
(see, e.g., [30], [31], [32], [33] and [34]).

The paper is organized as follows: The isogeometric discretization framework is presented
in Sec.2 and the continuous and discrete gradients and search directions are shown in Sec.3. The
discretization-dependency of the un-normalized search direction is illustrated in Sec. 4 using a
volume minimization problem with different NURBS discretizations. A quadratic norm induced
by the NURBS discretization is derived in Sec. 5. Subsequently, a standard normalization ap-
proach for an optimization problem with a quadratic norm is proposed to obtain a discretization
-independent search direction. Using the concept of the lumped mass matrix and the partition of
unity property of NURBS, two simpler approaches are also proposed. The suitability of the nor-
malization schemes is verified in Sec.6 using the same volumeminimization problem presented
in Sec.4 and, additionally, using the sensitivity analysisin a volume minimization problem of a
two-dimensional domain. Design problems of a three-dimensional fillet and a two-dimensional
thermal isolating panel are presented in Sec. 7 to demonstrate the superiority of the proposed
normalization approaches. Concluding remarks are presented in Sec.8.

2. Isogeometric discretization

The basic idea behind isogeometric analysis is to use NURBS,commonly used to describe
the geometry, as the shape functions of the finite element analysis. A NURBS geometry can be
treated as a mapping from a B-spline geometry by weight functions. A B-spline curve with a
degree ofp is defined as

x[ξ] =
n
∑

i=1

Ni,p[ξ]xi 0 6 ξ 6 1 (1)

wherex is the location of a point in the physical space corresponding to the parameterξ defined
in a parametric space,n is the number of the control points,Ni,p is theith basis function of degree
p, andxi is the location of theith control point. Theith B-spline basis function of degreep can
be defined as

Ni,0[ξ] =















1 if ξi 6 ξ < ξi+1

0 otherwise

Ni,p[ξ] =
ξ − ξi

ξi+p − ξi
Ni,p−1[ξ] +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1[ξ], [p > 0],

(2)

whereξi is theith element of a non-decreasing knot vector, i.e.,

ξ = {ξ1, ξ2, ξ3, ..., ξn+p+1}.

The knot vector is said to beuniformif the knots are equally spaced andopenif the knots at each
ends havep+ 1 multiplicity, respectively. A uniform vector withp + 1 multiple equal knots at
each end is referred to asopen-uniform.

Adding a weight to each control point of a B-spline curve, it gives a NURBS curve with
better flexibility. The basis functionRi,p[ξ] for a pth degree NURBS curve is defined as

Ri,p[ξ] =
Ni,p[ξ]wi

W[ξ]
, (3)
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wherewi is the weight of theith control point andW[ξ] :=
n
∑

j=1
N j,p[ξ]w j . Following this, a

NURBS curve can be defined as

x[ξ] =
n
∑

i=1

Ri,p[ξ]xi . (4)

The NURBS basis functionRi,p[ξ] is nonnegative and is nonzero only on the subinterval
[ξi , ξi+p+1]. This property is referred to aslocal support, which implies that moving a control
point xi only affects the part of the geometry that corresponds to the subinterval [ξi , ξp+i+1] in the
parametric space. NURBS surfaces and volumes can be defined following the same way as

x[ξ, η] =
n
∑

i=1

m
∑

j=1

Ri j [ξ, η]xi j , (5)

and

x[ξ, η, ζ] =
n
∑

i=1

m
∑

j=1

l
∑

k=1

Ri jk [ξ, η, ζ]xi jk , (6)

whereξ, η andζ are parameters in the parametric space and, for simplicity,the degrees of the
functions is not shown. More details about NURBS can be foundin [35]. By introducing a
mapping function

I =



























I [i], for 1D parametric space

I [i, j], for 2D parametric space

I [i, j, k], for 3D parametric space

(7)

points in a region generated from NURBS can be expressed in a general way as

x =
∑

I

RI [χ]xI = XR, (8)

whereR = [R1,R2, · · · ], X = [x1, x2, · · · ] andχ is a vector-valued parameter equal to either
ξ, (ξ, η) or (ξ, η, ζ) depending on the dimension of the parametric space. The meaning of the
operationXR is implicitly defined in (8).

Since the shape of a NURBS-generated object depends on the control points, these can be
naturally used as design variables for shape optimization.Furthermore, the NURBS basis func-
tions can also be used as shape functions for analysis, whichis the underlying principle behind
isogeometric analysis. Isogeometric shape optimization,which corresponds to the coupling be-
tween a geometrical design and an isogeometric analysis, uses NURBS discretization both for
the design and analysis. With the NURBS discretization, theintegral of a functionf in a domain
D in the physical space can be evaluated over the corresponding domainD̄ in the parametric
space, i.e.,

∫

D
f
[

x
]

dD =
∫

D̄
f [x[χ]]

∣

∣

∣J[χ]
∣

∣

∣dD̄ (9)

whereJ is the Jacobian matrix between the parametric space and the physical space and|J | is
its norm or the absolute value of its determinant depending on the dimensions of the parametric
and physical space (see, e.g., [36]).
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3. Continuous and discrete shape gradients and search directions

3.1. Continuous shape gradient and search direction

A typical shape optimization problem can be formulated as the minimization of a given ob-
jective functionalΨ, which may depend on a fieldu and/or its gradient∇u defined in a domain
Ω ∈ Rd, i.e.,

Ψ =

∫

Ω

F(u,∇u, x)dΩ, (10)

whereF is the objective density function, which may also explicitly depend on the locationx.
The minimization is carried out over a set of admissible domainsΩ. A gradient-based descent
algorithm requires expressing the variationδΨ of the objective functional with respect to the
design variables. Given a domainD that may corresponds toΩ or its boundaryΓ in physical
space depending on whether the domain or the boundary integral approach is used for continuous
sensitivity analysis, in acontinuousformulation, the design variables are pointsx ∈ D and the
variation can be expressed as

δΨ = 〈g, δx〉D =
∫

D
g · δx dD, (11)

whereδx represents the variation ofx and g = g[x] denotes the local shape gradient (see,
e.g., [16]) and〈·, ·〉D is a conveniently-chosen inner product over the integration domainD. An
alternative representation ofδx is to express it in terms of so-called design velocity, i.e.,δx = νδs,
wheres is a time-like parameter andν = dx/ds is the design velocity (see [16]).

The product used in the integrand in (11) is the canonical Euclidean inner product inRd.
Correspondingly, given an arbitrary search directionδx, the localcontinuous steepest descent
search directiondc (or analytical search direction), which coincides with the negative of the
continuous shape gradient, at a locationx is

dc = −g [Continuous]. (12)

With the continuous steepest descent search direction, functionalΨ decreases in the fastest di-
rection by

δΨ|δx=dc = −

∫

D
dc · dc dD . (13)

Using (12), the design domain may be updated in an iterative descent algorithm from (itera-
tion s to iterations+ 1) as

x(s+1) = x(s) + αdc = x(s) − αg, (14)

whereα is a step size. For a suitably-chosen step size, (13) guarantees that the functionalΨ
decreases ifx is changed according to (14).

3.2. Discrete shape gradient and search direction

The above updating scheme is based on the continuous formulation (i.e., on the continuous
descent direction−g). For the actual numerical implementation, the geometry needs to be dis-
cretized according to (8). The discrete variation of the functionalΨ corresponds to a change due
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Figure 1 (a) 2D rectangular plate and its design boundary; (b) shape update using local steepest
descent search directiondc with one unit step size

to variationsδxI of the control points, which are the design variables in the discretized formula-
tion. Substituting (8) into (11), the discrete variation can be obtained as

δΨ =

∫

D
g ·
∑

I

RIδxI dD =
∑

I

gI
d · δx

I = Gd · δX, (15)

whereGd :=
[

g1
d, g

2
d, · · ·

]

, δX =
[

δx1, δx2, · · ·
]

and gI
d is the discrete shape gradient calculated

from the continuous sensitivity analysis, i.e.,

gI
d = 〈g,R

I 〉D =

∫

D
gRI dD. (16)

The discrete shape gradientgI
d can also be calculated from a discrete sensitivity analysisapproach

(discretion-first approach), which is identical with the one calculated from above continuous
approach.

When using the steepest descent method, it is often to directly use the negative of the discrete
gradient as thediscrete search directionDd = {d1

d, d2
d, · · · }, i.e.,

Dd = −Gd, [Discrete], (17)

and the model is correspondingly updated by relocating the control pointsxI as
(

xI
)(s+1)

=
(

xI
)(s)
+ αdI

d =
(

xI
)(s)
− αgI

d (18)

which implies that a typical pointx, in view of (8), is updated as

xs+1 = xs + α
∑

I

dI
dRI = xs + αDdR . (19)

As can be seen from (16), the shape gradientGd is highly dependent on the isogeometric dis-
cretization, which means the search direction is also discretization-dependent. This discretization
-dependent search direction, henceforth referred to as theun-normalized discrete search direc-
tion, leads to discretization-dependent evolution of the design that, in turn, may lead to sub-
optimal shape designs.

4. Discretization-dependency

The discretization-dependency may be illustrated by a volume minimization problem. For a
domainΩ with boundaryΓ, the volume of the domain can be expressed as

Σ =

∫

Ω

dΩ. (20)
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Table 1 Different discretizations of the rectangular plate model, where x(x, y) is the location of
the control points;w are the weights of the control points;ξ andη are knot vectors

Cases Discretizations

1

x|y=0,5,10 = {0, 4, 8, 12, 16, 20}
w|y=0,5,10 = {1, 1, 1, 1, 1, 1}
ξ = {0 0 0 0.25 0.5 0.75 1 1 1}
η = {0 0 0 1 1 1}

2

x|y=0,5,10 = {0, 4, 8, 12, 16, 20}
w|y=0,5,10 = {1, 1, 1, 1, 1, 1}
ξ = {0 0 0 0.1 0.2 0.3 1 1 1}
η = {0 0 0 1 1 1}

3

x|y=0,5,10 = {0, 4, 8, 12, 16, 20}
w|y=5,10 = {1, 1, 1, 1, 1, 1}
w|y=0 = {1, 1, 0.6, 0.6, 1, 1}
ξ = {0 0 0 0.25 0.5 0.75 1 1 1}
η = {0 0 0 1 1 1}

4

x|y=0,5,10 = {0, 3, 5, 6, 14, 20}
w|y=0,5,10 = {1, 1, 1, 1, 1, 1}
ξ = {0 0 0 0.25 0.5 0.75 1 1 1}
η = {0 0 0 1 1 1}

5
finite element (FE) discretization:
x = {0, 3, 5, 7, 10, 13, 15, 17,20}
y = {0, 5, 10}

Using Reynolds transport theorem, the variation of the volume via a boundary integral approach
can be obtained as

δΣ =

∫

Γ

n · δxdΓ, (21)

wheren is the unit outward normal vector(see, e.g., [16]). In this case, the continuous local shape
gradient is simply

g = n. (22)

To clearly illustrate the influence of the discretization onthe search direction, it is useful to start
from a simple geometry, namely a rectangular domain as shownin Fig.1(a), and to consider only
the bottom boundary as the design boundary. In this case, a step to minimize the volume, based
on the continuous steepest descent search direction in (14)with the gradient (22), consists on
simply “moving” the bottom boundary uniformly upwards, as shown in Fig. 1(b) (i.e., moving
the boundary in the opposite direction of the outward unit vector). Ideally, a discrete search
direction should provide a good approximation to this behavior.

If the domain is discretized by NURBS, the shape gradient with respect to the location of the
I -th control point,xI , is

gI
d =

∫

Γ

nRI dΓ. (23)
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Figure 2 The shape update for different cases with the un-normalized search direction

Five different discretizations of the rectangular model are shown inTable 1. In case 1, the
control points are uniformly distributed in the physical space. The knot vectorξ andη are open
-uniform. The weights of the control points have all the samevalue of 1. Case 2 has have the
same control points and weights, but its knot vectorξ is non-uniform. Case 3 has the same
control points and knot vectors, but two control points atx = 8, y = 0 andx = 12, y = 0
have the weights reduced to 0.6. Case 4 has the same knot vectors and weights, but the control
points are not uniformly distributed in the physical space.Case 5 is simply a linear finite element
discretization.

The design shape, updated based on (19) with search direction (17) and a step sizeα = 1, is
shown in Fig.2. The locations of the interior control pointsare interpolated from the locations
of boundary control points. It can be seen that the updated shape is strongly dependent on
the discretization and isnot consistent with the continuous steepest search direction shown in
Fig. 1(b). It also shows that the discretization-dependency also happens to the finite element
discretization.

In the context of NURBS, the problems generated from the discretization-dependency are
attributable to the following aspects/factors:

· non-uniform property of the knot vector in parametric space, which is illustrated by case 2

· weights of the design control points, which is illustrated by case 3

· non-uniform local support in physical space, which is illustrated by case 4

Case 1, like case 4, also illustrates the effect of the non-uniform local support, which originates
from the support of the shape functions on the left and right ends. The problems generated
by the un-normalized search direction can be corrected using various alternative approaches, as
addressed in the next section.
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(a)                                             (b)

d

d

Figure 3 Illustration of steepest descent directions for (a) Euclidean norms and (b) quadratic
norms. The ball in (a) is the unit ball of the Euclidean norm, translated to pointx. The ellipsoid

in (b) represents the unit ball of the quadratic norm and the steepest descent directionδX
corresponds to the largest distance inscribed in the ellipse (see, e.g., [37] for details)

5. Normalization of the search directions

The reason for the discretization-dependency is that the un-normalized discrete search di-
rectionDd is not consistent with the continuous steepest search direction dc.

5.1. Consistent discretization

In order to well approximate the continuous steepest descent search directiondc and eliminate
the discretization-dependency, thenormalized search directionDn = {d1

n, d2
n, · · · } is introduced

such that
dc ≅

∑

J

RJdJ
n = DnR. (24)

Using (24) in (13) implies that

δΨ|δX=Dn = −
∑

I

∑

J

∫

D
RI RJ dD

(

dI
n · d

J
n

)

= −MDn · Dn, (25)

whereM is a second-order symmetric mass matrix-like mapping defined as

M = MT :=
∫

D
R ⊗ R dD. (26)

The interpretation of the tensor product⊗ can be obtained from (25) and (26).

5.2. Standard normalization

From (13), it can be seen that the variation of the objective functional in the continuous sense
is a Euclidean norm. The steepest descent direction of an Euclidean norm is simply the negative
gradient, which is defined in (12). Nevertheless, from (25) it can be seen that once the contin-
uous steepest search direction is discretized, the variation of the objective functional becomes
a (squared) quadratic norm. For problems with quadratic norms, a normalization approach is
required to obtain the steepest descent direction. The steepest descent direction for Euclidean
and quadratic norms are illustrated in Fig.3. A detailed explanation of this can be found in [37].

Using equations (15) and (25), it follows that

−MDn · Dn = Gd · Dn. (27)
9



Following this, thenormalized search direction, which is thediscrete steepest search direction
corresponding to the quadratic norm, can be obtained as

Dn = M−1Dd, [Standard normalization], (28)

which is the standard way to obtain normalized search direction. This standard approach, how-
ever, requires computing the mapping tensorM and solving (28).

5.3. Diagonally-lumped mapping matrix (DLMM) normalization

A computationally-attractive alternative to the standardapproach is to introduce thediago-
nally lumped mapping matrix(DLMM), denotedM̄, such that the diagonal components are

M̄II :=
∑

J

MIJ , (29)

and the off-diagonal components are zero. From the partition of unity property, i.e.,
∑

J RJ = 1,
and in view of (26) and (29), it follows that

M̄II =

∫

D
RI dD . (30)

The advantage of approximatingM with M̄ is that a normalized search direction can simply be
computed as

dI
n = −

gI
d

M̄II
= −

∫

D
gRI dD
∫

D
RI dD

[DLMM normalization] . (31)

This type of approach is referred to as “sensitivity weighting” in [9].

5.4. Simplified DLMM normalization

The DLMM approach is defined in the physical space. As mentioned in Sec.4, the discretiza-
tion-dependency of the search direction is attributed to the weights and the non-uniformity of the
local support in parametric and physical space. If the “sensitivity weighting” is done only in the
parametric space, the dependency on the local support in thephysical space vanishes naturally.
This observation motivates the development of a simplified approach where the normalization is
carried out in the NURBS parametric space. For the DLMM normalization, the search direction
(31), integrated in physical spaceD, can be expressed in parametric spaceD̄ as

dI
n = −

∫

D̄
gRI |J | dD̄
∫

D̄
RI |J | dD̄

. (32)

The NURBS geometry can be treated as a mapping from the corresponding B-splines model via
weighted functions (see (3)). The “sensitivity weighting”can be also simply carried out in the
B-spline parametric space by mapping the NURBS space back tothe B-spline space, which is
independent on the weights of the control points. Towards developing a simplified method, the
DLMM normalization is further approximated as

dI
n ≈ −

∫

D̄
gNI dD̄
∫

D̄
NI dD̄

. (33)
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Implicitly, it is assumed that the mean contributions of theJacobianJ and the weightW are
compensated in the ratio (33). The rationale is that, based on the mean value theorem, if the
upper and lower bounds of the Jacobian|J | and the weightW are relatively close to each other in
the domain of integration then their contribution in the numerator will be compensated with that
of the denominator, i.e., sinceRI = wI NI /W,

∫

D̄
gwI NI |J |/WdD̄
∫

D̄
wI NI |J |/WdD̄

≈
(|J |/W)∗

∫

D̄
gNI dD̄

(|J |/W)∗∗
∫

D̄
NI dD̄

(34)

where(|J |/W)∗ and(|J |/W)∗∗ correspond to ratios of the Jacobian and the weight, each evaluated
at some point in the domain of integration. The implicit assumption that we use is that(|J |/W)∗ ≈
(|J |/W)∗∗. The effect of this assumption on the search direction is tested in the next section, but
first it is useful to explore the computational advantages ofthe expression (33).

Using the property ofunity of integral[38] of B-spline basis
∫

Ni,pdξ

ξi+p+1 − ξi
=

1
p+ 1

, (35)

Equation (33) can be expressed as

dI
n = −

(p+ 1)
∫

D̄
gNI dD̄

ξi+p+1 − ξi
, [Simplified DLMM] (36)

with the indexI = I (i) given by (7) (with the corresponding degreep) in the one-dimensional
case. Observe that the simplified DLMM normalization only requires one integration over the
B-spline space.

Following (5) and (6), (35) can be easily extended to the 2D and 3D parametric space, re-
spectively, as

∫ ∫

Ni,p[ξ]N j,q[η]dξdη
(

ξi+p+1 − ξi
) (

η j+q+1 − η j

) =
1

(p+ 1) (q+ 1)
(37)

and
∫ ∫ ∫

Ni,p[ξ]N j,q[η]Nk,r [ζ]dξdηdζ
(

ξi+p+1 − ξi
) (

η j+q+1 − η j

)

(ζk+r+1 − ζk)
=

1
(p+ 1) (q+ 1) (k+ 1)

. (38)

The superscriptsq andr are the degrees of the NURBS basis for parametersη andζ, respectively.
Following (37) and (38), the simplified DLMM approach for the2D and 3D parametric spaces
can be obtained, respectively, as

dI
n = −

(p+ 1) (q+ 1)
∫

D̄
gNI dD̄

(

ξi+p+1 − ξi
) (

η j+q+1 − η j

) (39)

and

dI
n = −

(p+ 1) (q+ 1) (k+ 1)
∫

D̄
gNI dD̄

(

ξi+p+1 − ξi
) (

η j+q+1 − η j

)

(ζk+r+1 − ζk)
, (40)

with the indexI given by (7) for the two- and three-dimensional cases, respectively. The com-
putational advantage of the simplified DLMM approach is that(i) it does not require to (numer-
ically) solve problem (28) and (ii) it takes advantage of closed-form expressions of integrals of
B-splines.
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Figure 4 Shape updates for cases 1 to 5 using the simplified DLMM normalization approach
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Figure 5 Volume minimization problem of an elliptic plate

6. Verification

6.1. Volume minimization of an initially rectangular domain

The approaches presented in Sec.5 were verified using the same volume minimization prob-
lem with the four different discretizations cases presented in Sec. 4, namely using an initially
rectangular domain. It was found that, for all cases, all normalization approaches generated
the same normalized search direction (0, 1), to within the same numerical tolerance, which is
consistent with the continuous one. The shape updates of thefour different discretizations with
the normalized search direction are shown in Fig. 4, from which it can be seen that the shape
updates indeed match the continuous solution shown in Fig. 1(b). Case 5 also shows that the
normalization approaches can be generally applicable to the FE-based shape optimization.

6.2. Volume minimization of an initially elliptic plate

To further test the normalization approach in the context ofa variable curvature, consider an
elliptical region as shown in Fig. 5. The boundary of the region is discretized with the control
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Figure 7 Shape updates using (i) the continuous local steepest descent (analytical) search
direction and (ii) the normalized search direction (simplified DLMM) with a step sizeα = 2 for

two different meshes

13



Table 2 TheL2 norm of the error between the analytical and normalized search direction for
mesh 1 and mesh 2 using the different normalization approaches

Mesh Approach

Standard DLMM Simplified DLMM

1 0.02121 0.02597 0.02476
2 0.02087 0.02140 0.02129

points shown in Fig.5 and a knot vectorξ =
[

0, 0, 0, 1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 , 1, 1, 1

]

. For design purposes,
the model was refined using the knot vectorsξ∪ξ′ andξ∪ξ′′, with ξ′ corresponding to a partition
of [0, 1] in subintervals of length 0.1 andξ′′ a partition of [0, 1] in subintervals of length 0.025.
These two knot vectors are referred to asmesh 1andmesh 2, respectively.

For mesh 1, the shape updates using (i) the un-normalized search direction, (ii) the con-
tinuous steepest (analytical) search direction and (iii) the discrete steepest (normalized) search
direction (using the simplified DLMM method), all with a stepsizeα = 1, are plotted in Fig.6.
The shape updates using the standard and the DLMM normalization where visually overlapping
with the simplified DLMM update, hence, for clarity, they arenot included in the figure. It can be
seen from Fig.6 that the shape update using the normalized search direction is very close to the
one using the analytical search direction defined in (12), while the one using the un-normalized
search direction has a large discrepancy with the analytical solution and, in fact, the shape be-
comes inadmissible. In spite of the fact that the normalizedsearch direction can approximate the
analytical one relatively well, naturally there is an intrinsic error due to the discretization. This
discrepancy can be particularly observed in the region of maximum curvature as indicated in
Fig.7, which shows the updated shape for (a) mesh 1 and (b) mesh 2 using the normalized search
direction. To clearly visualize the discrepancy between the numerical and analytical search direc-
tions, the updated shapes are plotted using a larger step size, namelyα = 2. Comparing Fig.7(a)
and Fig. 7(b) it is clear that the numerical error can be reduced by a refinement of the design
model leading to a more accurate updated geometry. To quantify the discrepancy between the
distinct normalization approaches theL2 norm of the error between the analytical and normalized
search direction for mesh 1 and mesh 2 using the different normalization approaches is presented
in Tab.2.

From Tab.2, it can be quantitatively seen that the mesh refinement reduces the approximation.
It can also be observed that, the standard normalization approach provides a slightly more accu-
rate search direction compared with the lumped-matrix-basedapproaches (DLMM and simplified
DLMM). However, both lumped-matrix-based normalization approaches provide an approxima-
tion comparable to the one obtained from the standard normalization. But they are computation-
ally more efficient and simpler to implement, which justifies their use, particularly for problems
with a large number of design variables.

7. Performance of normalization approach

In order to provide more insight on the effect of the normalization approach, two optimiza-
tion problems are presented in this section. The first one is amechanical problem where the
objective is to reduce stress concentrations and the secondis a thermal isolation problem where
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Figure 8 3D fillet model under tension

the objective is to minimize the net heat flux. In both problems, the solutions obtained with and
without a normalized search direction are compared.

7.1. 3D fillet shape design optimization

Consider a 3D fillet under axial tension, as is shown in Fig.8.The model is represented with
NURBS and the correspondence between the parametric and thephysical space is shown in Fig.8.
The region occupied by the fillet is denotes asΩ. In order to reduce the stress concentration at
the transition corner, an objective function is defined overa local evaluation regionΩω ⊂ Ω as

Ψω =

∫

Ω

ω(σv − σ̌v)2dΩ (41)

where the functionσv is the Von Mises stress,ω is the characteristic function that has a value of
1 inΩω and 0 outside ofΩω andσ̌v is the mean Von Mises stress of the local domainΩω, i.e.,

σ̌v =
1
Ωω

∫

Ωω

σvdΩ . (42)

The local evaluation regionΩω is located around the transition corner, as is shown in Fig.8. The
characteristic function is defined in the parametric space as

ω[ξ, η, ζ] =















1, 0.4 ≤ ξ ≤ 0.6, 0.99≤ η ≤ 1, 0 ≤ ζ ≤ 1

0, otherwise.

As is also shown in Fig.8, five control points were chosen as the discrete design variables. The
objective was to minimize the difference between the local stress and the mean stress, so that
the local stress concentration could be reduced. The sensitivity analysis, which was done using
continuous adjoint method, can be found in [16] (see also [39]).

The iteration histories of the objective functional and themaximum stress are shown in Fig.9,
in which step 0 represents the initial design. The optimization process without the normalization
approach converged after 11 steps with the maximum Von Misesstress reduced to about 150
MPa, while the process with the normalization approach started to converge with only 6 steps
and the maximum Von Mises stress was reduced to about 130 MPa.The normalization approach
used in this problem was the simplified DLMM approach. Fixed step sizes were used in this
problem. The step sizes were chosen based on a parametric analysis that chooses distinct step
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Figure 10 Shape updates without normalization approach at:(1) step 2, (2) step 6 and (3) step
16 (optimal)

sizes for the best performance (i.e., the “best” constant step size for each descent direction). The
“best” constant step sizes for the normalized and un-normalized cases turned out to be 1× 10−3

and 4× 10−4, respectively. It can clearly be seen that, even though the objective and maximum
stress of the process without normalization approach decreased much faster than those of the one
with normalization approach at the first step, the optimization with normalization approach still
converged much faster and better.

The shape updates of steps 2 and 6 and the final step are plottedin Fig.10 and Fig.11, respec-
tively. As can be seen from Fig. 10, in the design optimization process without normalization,
the shape updating in the middle was bigger than the two sides, which resulted in a sub-optimal
solution. In contrast, in the design process using the normalization approach shown in Fig.11, all
of the design control points moved uniformly, which overallprovided a better convergence (i.e.,
fewer iterations for the same tolerance) and better performance of the optimal design.

7.2. Heat conduction problem

Consider a panel that separates two environments with a difference in temperature of 300◦C
as shown in Fig. 12. The bottom side of the panel is exposed to an ambient temperature of
300◦C while the top side is exposed to an ambient temperature of 0◦C. Heat is exchanged on
both sides through convection. The convection coefficient of these two convective boundaries
is 50 W/(m2·◦C). The thermal conductivity coefficient of the material used in the panel is 0.05
W/(m·◦C). The original design has a dimension of 0.01 m× 0.04 m, which was originally dis-
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Figure 12 Thermal isolating panel with two convection boundaries and given ambient
temperatures

cretized as

x|y=0,0.005,0.01 = {0, 0.01, 0.02, 0.03, 0.04};

w|y=0,0.005,0.01 = {1, 1, 1, 1, 1};

ξ = {0 0 0 0.1 0.2 1 1 1};

η = {0 0 0 1 1 1}.

(43)

Using this structure, the optimization problem is to provide maximum insulation. The problem
can be formulated with the objective to minimize the net heatflux Ψ on the top boundary under
steady state conditions, where

Minimizing Ψ :=
∫

Γ1

h(θ − θtop)dΓ , (44)

whereh is the convection coefficient,θ is the temperature onΓ1 andθtop = 0◦C is the ambient
temperature on the top side. To prevent a trivial solution, which corresponds to an infinitely thick
panel, a resource constraint is included, namely

∫

Ω

dΩ ≤ 0.02× 0.04 . (45)

In the design space, the knot vectorξ is refined intoξ = {0 0 0 0.1 0.2 0.25 0.5 0.75 1 1 1}
usingh-refinement. The corresponding control points of the refineddiscretization are shown in
Fig. 12. The sensitivity analysis, which was done using the continuous adjoint method, can be
found in [12]. A descent method with a fixed step size was used in the iterative procedure. The
step sizes used in this problem for the normalized and un-normalized cases are 5× 10−9 and
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Figure 14 Evolution of the design shape without the normalization approach at selected steps
throughout the optimization process and the correspondingtemperature contour plot

3× 10−7, respectively. The reason that the step-size of the un-normalized case is bigger than the
normalized one is due to the normalization factor

∫

D
RI dD < 1.

The ideal updating scheme for the structure is simply to increase the thicknessuniformly
until a global volume constraint becomes active (i.e., the volume reaches a maximum allowed
value). The iteration history of the optimization process without the normalization approach,
with a relatively small step size, is presented in Fig.13. From the figure it can be seen that even
with a small step size, the optimization wasnot able to converge. The evolution of the shape,
at selected steps throughout the iterative process, is shown in Fig.14. From the figure, it can be
seen that the mesh distortion became severe after about 100 steps, preventing the descent method
from converging.

In contrast, the optimization process with the normalization approach reached the volume
constraint after 7 iteration steps, which was much faster than the case without normalization.
The iteration history is shown in Fig. 15 and the design shapes at selected steps are plotted in
Fig.16. It can be clearly observed in Fig.16 that using the normalized shape gradient resulted in
intermediate designs consistently updated compared to thecontinuous case.

The mechanical and thermal examples shown in this section illustrate the relevance of a
consistent approximation of the search direction in terms of overall efficiencyandconvergence.
Although the normalized search direction requires a (small) additional computational effort, the
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Figure 15 Iteration history of (a): objective function and (b): volume constraint with the
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Figure 16 Evolution of the design shape with the normalization approach at selected steps
throughout the optimization process and the correspondingtemperature contour plot

method is globally more efficient since it generally requires fewer iterations to convergence.

8. Conclusions

In isogeometric shape optimization, the un-normalized search direction is strongly dependent
on the discretization. In this paper, the effect of the discretization-dependency was analyzed. It
was found that the un-normalized search direction was not consistent with the continuous steep-
est descent search direction. This problem was illustratedusing a volume minimization problem
with different discretizations. It was also found that the inconsistency originated from the dis-
cretization which induces a discrete quadratic norm to represent the continuous Euclidean norm.
To fix this inconsistency, a standard normalization approach, which is used to find the steepest
descent direction for quadratic norm problems, was proposed to obtain a consistent discretization
-independent search direction. The standard approach requires solving a linear system of equa-
tions. Using the diagonally lumped mapping matrix (DLMM) and the partition of unity property
of NURBS, two simpler normalization approaches, which do not require solving a linear system
of equations, were proposed. The same volume minimization problem was presented to demon-
strate the discretization-independence and equivalence of the proposed approaches, to within a
relatively small numerical error, which eliminates the strong discretization-dependence of the
discrete gradient. The normalization approach was tested in mechanical and thermal optimiza-
tion problems, which overall provided a better performanceand convergence characteristics. The
proposed method can also be used for thetraditional FE-based shape optimization to deal with
the mesh- or parameterization-dependent solutions.It is also worth pointing out that the DLMM
approach can also be used, more generally, to consistently discretize given functions (e.g., dis-
placement boundary conditions) within the isogeometric analysis framework.
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