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A real–time CNC interpolator algorithm

for trimming and filling planar offset curves

Rida T. Farouki and Jyothirmai Srinathu
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA.

Abstract

Tool paths for CNC machines must be offset from the desired part
shape, in order to compensate for the tool radius. To avoid gouging the
part geometry and to ensure continuous paths, the offset construction
employs trimming and filling operations at tangent discontinuities and
regions of high concave curvature on the part shape. Typically, offset
paths are constructed offline in a CAM system — the resulting paths
are inherently approximate, and must be re–generated when a different
tool size is selected. To circumvent these shortcomings, an interpolator
algorithm for real–time offset curve trimming and filling is developed
and verified herein. Since the algorithm uses the exact part geometry,
offset path approximation errors are completely eliminated. Circular
fill arcs of the appropriate angular extent are automatically executed
at convex tangent–discontinuous junctures of adjacent part boundary
segments, and offset trimming operations are triggered by real–time
point/curve distance computations, which determine footpoints of the
instantaneous tool position on the part boundary. The algorithm also
accommodates feedrates that correspond to a constant speed of either
the tool/part contact point, or the tool center. The practical feasibility
of the method is demonstrated by an implementation on a 3–axis CNC
mill governed by an open–architecture software controller.

Keywords: CNC machine, tool radius compensation, offset curve trimming and filling,
point/curve distance function, footpoint, real–time interpolator, open–architecture controller.
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1 Introduction

Computer–aided design and manufacturing (CAD/CAM) technology plays a
critical role in enhancing industrial productivity. Typically, geometric models
designed within a CAD system are passed on to a CAM package, to generate
part programs specifying the motion commands and other process parameters
that govern a variety of computer–controlled part fabrication processes, such
as CNC machining, 3D printing, and laser or waterjet cutting.

In certain respects, the CAM generation of process–specific part programs
from CAD models is the weakest link of the chain from product conception to
manufactured part. For example, tool path geometries are often incompatible
with simple exact representations that machine controllers can interpret, and
are consequently subject to data–intensive approximations. Discretized paths
incur a loss of higher–order (curvature) information, essential to acceleration
management, and severely impede the ability to smoothly execute high–speed
motions. Tool paths are also specific to a priori choices of tooling, and part
programs must be re–generated to accommodate tool changes.

The availability of fast processors for computer numerical control (CNC)
machines now allows more–sophisticated computations, based upon the exact
CAD geometry, to execute in real time. Although complete circumvention of
the assumptions and approximations incurred by CAM part programs is an
ambitious goal, important steps in this direction are nevertheless feasible and
worthwhile. For example, a recent study [19] demonstrates the possibility of
machining a versatile family of swept surface geometries directly from their
high–level procedural definitions, yielding greater accuracy and versatility in
tool choice, scallop height control, roughing/finishing passes, etc.

Within this context, the goal of the present study is to develop a real–time
tool radius compensation strategy for machining of piecewise–analytic planar
shapes with a cylindrical end mill. The usual CAM solution to this problem
entails offline computation of the offset curve to the part shape, for a specified
tool radius. In general, the computation of offset curves is a challenging task
involving both local and global geometrical aspects of a given shape, in which
the point/curve distance function plays a key role. However, the possibility of
real–time computation of this function with a modest processor has recently
been demonstrated [4] in the context of precise contour error measurement
for the cross–coupled control of multi–axis CNC machines.

The real–time point/curve distance function computation, introduced in
[4], is generalized herein to the case of piecewise–analytic curves and applied
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to the real–time tool radius offset compensation problem. This methodology
follows the STEP–NC philosophy [1, 13, 26] of relying more directly on precise
CAD geometry data in CNC machining, and offers many advantages over the
prevailing reliance on offline CAM–generated offset tool paths — for example:

• Modifications to the part shape or tool radius are easily accommodated,
since they do not incur the need to re–generate a part program.

• Free–form curves do not, in general, admit exact (i.e., rational) offsets,
so CAM–generated toolpaths are necessarily approximations. However,
since the real–time offset compensation strategy uses only the original
exact part geometry, the need for approximation is eliminated.

• Smoother execution of curvilinear motions, with accurate maintenance
of feedrates, becomes possible when analytic path geometry is available
in lieu of highly discretized piecewise–linear/circular approximations.

• Greater flexibility in specifying feedrates is possible — e.g., the feedrate
may correspond to constant speed of either the tool/part contact point
(yielding an approximately constant chip load), or of the tool center.

• Higher–order path information (e.g., curvature) can be computed from
the exact part geometry in real time, and used for the management of
axis accelerations, path tangent discontinuities, cutting forces, etc.

For brevity, the methodology is considered at present only in the context
of machining planar shapes specified by closed piecewise–polynomial curves.
Also, due to constraints on the complexity of feasible computations in real–
time motion control, the present focus is on “local” offset trimming, in which
the only necessary trimming operations result from high–curvature concave
regions within a single boundary segment, or concave tangent–discontinuous
junctures between adjacent segments. The “global” offset trimming problem
for arbitrarily complex free–form shapes is computationally very demanding,
and careful consideration must be given to issues of computational efficiency
to extend the present methodology to accommodate interference of the offsets
to arbitrary boundary segment pairs. A detailed treatment of the real–time
global trimming problem is beyond the scope of the present study.

In general, local offset trimming accommodates the important “finish cut”
motion, which must accurately achieve the desired part shape to a prescribed
tolerance, with an appropriately smooth surface finish. The ability to drive
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the finish machining operation directly from the exact analytic part geometry
is a major advantage in this context. For a given part shape and tool radius,
the validity of the real–time local offset trimming can be readily verified by
an a priori off–line check. The practical feasibility of this approach to finish
machining operations is demonstrated by its implementation and verification
on a 3–axis CNC mill with an open–architecture software controller.

The authors are unaware of any prior investigations aimed at developing
algorithms for real–time offset curve trimming and filling, and verifying their
feasibility by implementation on a CNC machine, with performance assessed
by the analysis of real–time position encoder data. The paper [20] describes
a “locus tracing algorithm” for following offset paths to given smooth curves,
without (as in the present study) explicit representations of their offsets, but
does not directly address the critically important offset trimming and filling
functions that are the main focus of the present investigation. Global offset
trimming and filling can be achieved by the use of “level set” methods [2, 21].
However, these grid–based methods are computationally intensive, especially
if grid resolutions compatible with CNC machine accuracy requirements are
employed, and are thus unsuitable for real–time implementation.

The plan for the remainder of this paper is as follows. Sections 2 and 3
review some fundamental properties of the point/curve distance function and
planar offset curves. These are employed in Section 4 to develop algorithms
for “local” real–time trimming and filling of offset curves. An implementation
of these algorithms on a 3–axis CNC mill governed by an open–architecture
software controller, together with real–time performance data for several test
curves, is presented in Section 5, and their extension to address the more–
challenging problem of “global” offset curve trimming and filling is briefly
discussed. Finally, Section 6 summarizes the contributions of this study, and
identifies possible further developments of the methodology.

2 Point/curve distance function

The point/curve distance function plays a fundamental role in real–time offset
curve trimming and filling. For any given point p = (xp, yp) and parametric
curve r(ξ) = (x(ξ), y(ξ)), ξ ∈ [ 0, 1 ] this function is defined by

distance(p, r(ξ)) := min
ξ ∈ [ 0,1 ]

|p− r(ξ) | = min
0≤i≤n+1

|p− r(ξi) | , (1)
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where ξ0 = 0 and ξn+1 = 1, while ξ1, . . . , ξn are the odd–multiplicity roots1

on ξ ∈ (0, 1) of the function

F (xp, yp, ξ) := [ xp − x(ξ) ] x′(ξ) + [ yp − y(ξ) ] y′(ξ) . (2)

If r(ξ) is a degree d polynomial curve, F (xp, yp, ξ) is of odd degree 2d− 1 in
ξ, and thus has at least one real root. The real roots of (2) identify points of
r(ξ) where p lies on the curve normal line. On traversing the curve, |p−r(ξ) |
attains a local stationary value at ξ1, . . . , ξn since

d

dξ
|p− r(ξ) | = −

F (xp, yp, ξ)

|p− r(ξ) |
.

The value of distance(p, r(ξ)) is the smallest of the interior extremal distances
and the distances to the curve endpoints r(0) and r(1). Minima of |p−r(ξ) |
can be distinguished from maxima by noting that the second derivative may
be expressed as

d2

dξ2
|p− r(ξ) | = −

F ′(xp, yp, ξ)

|p− r(ξ) |
−

F 2(xp, yp, ξ)

|p− r(ξ) |3
,

where

F ′(xp, yp, ξ) = [p− r(ξ) ] · r′′(ξ) − |r′(ξ)|2

= [ xp − x(ξ) ] x′′(ξ) + [ yp − y(ξ) ] y′′(ξ) − [ x′2(ξ) + y′2(ξ) ] .

Since F (xp, yp, ξi) = 0 for i = 1, . . . , n we see that ξi identifies a minimum of
|p− r(ξ) |, with a positive second derivative, when F ′(xp, yp, ξi) < 0 — i.e.,

[ xp − x(ξi) ] x′′(ξi) + [ yp − y(ξi) ] y′′(ξi) < x′2(ξi) + y′2(ξi) .

If the minimum in (1) is realized with i = k, we call r(ξk) a footpoint of p
on the curve r(ξ). When 1 ≤ m ≤ n it is called an interior footpoint, but if
m = 0 or n + 1 it is called a terminal footpoint. Ordinarily, p has a unique
footpoint on r(ξ), but if the point p lies on the self–bisector or medial axis
of r(ξ), there can be more than one footpoint [10].

For boundary curves specified in the customary Bézier/B–spline form, it
is natural to express the polynomial (2) in the Bernstein basis on ξ ∈ [ 0, 1 ].
Its real roots on this interval can then be accurately and efficiently computed

1Even–multiplicity roots identify stationary, but non–extremal, values of |p− r(ξ) |.
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by exploiting the subdivision and variation–diminishing properties [7] of the
Bernstein form. The method employed herein determines isolating intervals
for each real root over which elementary conditions [15] for the guaranteed
convergence of Newton–Raphson iterations hold.

The real–time offset curve trimming and filling algorithm is based on the
following two basic functions:

• footpoint(p, r(ξ)) gives the parameter value of the footpoint of a point
p on the curve segment r(ξ) — when there is more than one footpoint,
the largest of their parameter values is returned;

• distance(p, r(ξ)) returns the distance of a point p from segment r(ξ).

distance(p, r(ξ)) calls footpoint(p, r(ξ)), but it will also be necessary to call
the latter independently of the former.

3 Untrimmed and trimmed offset curves

We consider a part shape defined by a closed planar contour C, comprising a
sequence of curve segments ri(ξ) = (xi(ξ), yi(ξ)), ξ ∈ [ 0, 1 ] for i = 1, . . . , N .
These segments meet end–to–end with (at least) point continuity, i.e.,

ri(1) = ri+1(0) , i = 1, . . . , N − 1 and rN(1) = r1(0) ,

such that C bounds a simply–connected domain. The parameterizations are
assumed to be such that C has an anti–clockwise orientation. The distance
of a point p from the entire contour C is defined by

distance(p, C) := min
1≤i≤N

distance(p, ri(ξ)) . (3)

Along segment ri(ξ), the tangent and normal vectors and the curvature
are defined [25] by

ti(ξ) =
r′i(ξ)

| r′i(ξ) |
, ni(ξ) = ti(ξ)× z , κi(ξ) =

[ r′i(ξ)× r′′i (ξ) ] · z

| r′i(ξ) |
3

, (4)

where z is a unit vector orthogonal to the plane. Note that the normal ni(ξ)
points locally to the right of segment ri(ξ) as it is traversed with increasing
ξ, and κi(ξ) is negative or positive according to whether ni(ξ) points toward
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or away from the center of curvature. The nodal points q1, . . . ,qN of C are
the junctures of its individual curve segments2 — i.e.,

qi = ri(1) = ri+1(0) , i = 1, . . . , N − 1 and qN = rN(1) = r1(0) .

A nodal point qi is tangent continuous if ti(1) = ti+1(0). A nodal point that
is not tangent–continuous amounts to a curvature impulse, since the tangent
and normal exhibit finite instantaneous rotations at such points.

The untrimmed offset at signed distance d to the curve segment ri(ξ) is
the locus defined by

rd,i(ξ) = ri(ξ) + dni(ξ) , ξ ∈ [ 0, 1 ] . (5)

This defines an interior or exterior offset to ri(ξ) according to whether d is
negative or positive. However, the untrimmed offset to the entire contour C
is not simply the union of the offsets to all its individual curve segments. If
qi is a tangent–continuous nodal point, the segments ri(ξ) and ri+1(ξ) have
contiguous untrimmed offsets, i.e., rd,i(1) = rd,i+1(0). However, if qi is not
tangent–continuous, the untrimmed offsets are not contiguous.

The untrimmed offset can be regarded as the locus traced by the vector
dn along C, where n is the normal along C. The variation of n with arc
length s may be expressed in terms of the tangent t and curvature κ of C as

dn

ds
= κ t .

Now at a nodal point qi that is not tangent–continuous, the normal n to C
is not uniquely determined. However, consistent with the interpretation of
such a point as a curvature impulse, n may be considered to undergo a finite
instantaneous rotation ∆θi about that point, so that dn traces a circular arc
connecting rd,i(1) and rd,i+1(0). If each tangent–discontinuous nodal point is
treated in this manner, the untrimmed offset to C forms a continuous closed
curve (although it may exhibit self–intersections).

The process of ensuring a continuous untrimmed offset, by introducing a
circular arc associated with each tangent–discontinuous node of C, is called
offset filling — Figure 1 illustrates this for a simple polygonal contour. Each
point of the untrimmed offset constructed in this manner is precisely distance

2It should be understood that the index i will henceforth be interpreted cyclically —
i.e., i = N + 1 is replaced by i = 1.
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|d| from some point C. However, its distance from the entire contour C, in
the sense of the function (3), may be less than |d|. Portions of the untrimmed
offset containing such points must be deleted, to obtain the trimmed or “true”
offset to C. Figure 1 illustrates this offset trimming process.

Figure 1: Left: the untrimmed offsets to each individual segment of a simple
polygonal curve C. Center: filling the untrimmed offset by the insertion of
circular arcs associated with each tangent–discontinuous nodal point. Right:
trimmed offset obtained by removing all segments at distance < |d| from C.

Let ∆θi ∈ (−π, +π) be the finite rotation mapping ni(1) onto ni+1(0) at
a tangent–discontinuous nodal point qi, satisfying

cos ∆θi = ni(1) · ni+1(0) and sin ∆θi = [ni(1)× ni+1(0) ] · z ,

with angles considered positive anti–clockwise and negative clockwise. Then
qi is convex or concave, relative to the offset distance d, according to whether
the product d ∆θi is positive or negative. As seen in Figure 1, a convex nodal
point qi incurs a “gap” between the untrimmed offset segments rd,i(ξ) and
rd,i+1(ξ), that must be filled by the circular arc corresponding to the rotation
of dni(1) onto dni+1(0) through angle ∆θi. On the other hand, a concave
nodal point qi incurs an “overlap” between rd,i(ξ) and rd,i+1(ξ), resulting in
a self–intersection loop of the untrimmed offset that must be trimmed.

In a trimming operation incurred by a concave nodal point qi, it is not
necessary to insert the circular arc generated by the rotation of dni(1) onto
dni+1(0) — it suffices to cut away the portions ξ ∈ [ ξl, 1 ] and ξ ∈ [ 0, ξr ] of
rd,i(ξ) and rd,i+1(ξ) where ξl and ξr are, respectively, the smallest and largest
parameter values such that rd,i(ξl) = rd,i+1(ξr) — i.e., ξl and ξr identify an
intersection point of consecutive untrimmed offset segments.

In addition to the filling/trimming operations associated with the tangent–
discontinuous nodal of points of C, the untrimmed offset may require further
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trimming operations to obtain the trimmed offset. Every portion [ ξl, ξr ] ⊆
[ 0, 1 ] of an untrimmed offset segment rd,i(ξ) such that

distance(rd,i(ξ), C) < |d| for ξ ∈ (ξl, ξr)

should be trimmed away. Such portions are delineated by untrimmed offset
points that have more than one footpoint on C, and these footpoints may be
on a single segment or on completely unrelated segments of C. For planar
contours C that comprise N free–form curve segments, with nodal points that
are not necessarily tangent–continuous, we distinguish between two regimes
of the general offset curve trimming problem, as follows.

In local trimming, all required trimming operations are incurred by either
(a) concave tangent–discontinuous nodes between consecutive segments of C;
or (b) untrimmed offset segments delineated by self–intersections that have
footpoints on a single segment of C. If ξl and ξr are the smallest and largest
distinct values in [ 0, 1 ] such that the offset to a single segment ri(ξ) satisfies
rd,i(ξl) = rd,i(ξr), a (local) interior trim of the subsegment [ ξl, ξr ] is required.

Global trimming, on the other hand, deals with untrimmed offset segments
at distance less than |d| from C, that are delineated by self–intersections with
footpoints on unrelated segments of C (see Figure 2). Global offset trimming
is a much more challenging and computation–intensive problem. We focus at
present on developing a comprehensive solution to the local real–time offset
trimming problem, and outline preliminary steps towards a solution of the
global trimming problem (see Section 5.3 below). Notwithstanding its more–
limited scope, the local solution offers an accurate and versatile scheme for
the important task of finish–machining complex free–form planar shapes.

It should be noted that any trimming of the untrimmed offset reflects an
inability to precisely machine the desired shape with a tool of radius r = |d|.
To avoid an “overcut” (or gouging), the trimmed offset ensures an “undercut”
— concave portions of the shape where the radius of curvature is less than r
will be rounded out by circular fillet arcs of radius r on the machined part.

4 Local offset trimming and filling

For brevity, only local offset trimming (which is especially valuable in finish
machining) is considered in this initial study, although some key requirements
for the extension to global trimming are briefly discussed in Section 5.3. This
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Figure 2: Left: several untrimmed offsets to a piecewise–linear/circular curve
C, illustrating the need for global trimming. Right: trimmed offsets obtained
by deletion of all untrimmed offset segments at global distance < |d| from C.

section describes the basic real–time interpolator, and the various functions
required to implement real–time local offset curve trimming and filling.

4.1 Real–time interpolator

The function of the real–time interpolator in a CNC machine is to compute a
reference point (commanded machine position) in each sampling interval δt
of the servo system, from prescribed path geometry and feedrate information.
The reference point is compared with the actual machine location, measured
by axis position encoders, to generate the instantaneous axis position errors
that serve as the basic input to the control algorithm. The focus here is on
piecewise–analytic paths, rather than discretized G code approximations.

The parametric speed σ(ξ) = |r′(ξ)| = ds/dξ of a curve r(ξ) specifies
the rate of change of arc length s with the parameter ξ. Since the feedrate
V is the rate of change ds/dt of arc length with time, the derivative of the
parameter ξ with respect to time is

dξ

dt
=

ds

dt

dξ

ds
=

V

σ
. (6)

Thus, for each sampling interval δt, the reference point parameter value is

9



updated according to

ξ ← ξ +
V δt

σ(ξ)
. (7)

The first–order approximation (7) is commonly employed [3, 16, 18, 28] and
is sufficiently accurate in practice for modest feedrates V and small sampling
intervals δt. The accuracy may be improved, if desired, by use of a higher–
order Taylor series expansion [12], or analytic integration of the relation (6)
in the case of Pythagorean–hodograph curves [11].

The main modification of the basic real–time interpolator algorithm, in
the present context, is to omit certain portions of the ξ ∈ [ 0, 1 ] parameter
domain when offset trimming operations become necessary. In the case of
a single segment interior trim, a subset [ ξl, ξr ] ⊂ [ 0, 1 ] will be omitted. In
the case of adjacent segments ri(ξ) and ri+1(ξ) meeting at a concave node,
the trimming amounts to using truncated parameter domains of the form3

[ 0, ξl ] and [ ξr, 1 ]. In both cases, the trim parameter values ξl and ξr will be
automatically determined in real time, to within a certain resolution.

For a segment ri(ξ) with offset rd,i(ξ), two interpretations of the feedrate
V in equation (7) are of interest. When V is interpreted as specifying the tool
center speed along the offset path, the parametric speed σd,i(ξ) = |r′d,i(ξ)| of
the offset must be used in (7). By differentiating (5), one can verify [8] that

r′d,i(ξ) = [ 1 + κi(ξ)d ] r′i(ξ) ,

and thus σd,i(ξ) = | 1+κi(ξ)d | σi(ξ). However, this incurs an uneven spacing
of the tool/part contact points, and hence a variable chip load — the contact
points are more closely spaced and more widely spaced in convex (κi(ξ)d > 0)
and concave (κi(ξ)d < 0) regions of ri(ξ), respectively.

Since varying chip loads can incur tool chatter or degrade the machined
surface finish, an alternative interpretation of (7) may be preferable, in which
V is viewed as the speed of the tool/part contact point. This yields a uniform
chip load, and is implemented by employing the parametric speed σi(ξ) of the
boundary segment ri(ξ) in (7), in lieu of the offset parametric speed σd,i(ξ).
The disadvantage of this approach is that, in the case of strongly–curved
shapes, it incurs substantial variation of the tool center speed.

Both interpretations of the feedrate V have been implemented, and results
for a variety of test curves will be presented in Section 5 below.

3We assume here that no trim between ri−1(ξ), ri(ξ) and ri+1(ξ), ri+2(ξ) is necessary.
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4.2 Single segment interior offset trim

An interior offset trim of a single segment ri(ξ) is required [8] whenever its
curvature satisfies

κi(ξ) d < −1 (8)

over a subinterval [ ξl, ξr ] of the parameter domain ξ ∈ [ 0, 1 ]. This condition
indicates that the tool radius exceeds the radius of curvature of ri(ξ) over the
concave segment ξ ∈ [ ξl, ξr ], so the tool will gouge the desired shape specified
by that segment. To avoid this, an “interior trim” is required, amounting to
a deletion of the untrimmed offset segment ξ ∈ [ ξl, ξr ].

An explicit curvature test is not necessary to exceute the interior offset
trim, since the footpoint function (see Section 2) can be used for this purpose.
Before reaching ξl, the real–time interpolator increments the parameter ξ
along the curve using (7). The footpoint function is then called with p =
rd,i(ξ+δξ), the updated offset point. Once ξ+δξ has passed ξl, the footpoint
function will detect a new closest point, with a parameter value close to ξr,
and return it as the new footpoint parameter. Commencing with this new
parameter value, the interpolation scheme (7) then resumes.

The interior parameter interval [ ξl, ξr ] is thus (approximately) removed
from the untrimmed offset in real time. The trimming is only approximate,
because the non–zero sampling time δt and feedrate V imply that the machine
travels a finite distance δs = V δt in each sampling interval, so the reference
points generated by the real–time interpolator will never exactly possess the
footpoint parameter values ξl and ξr. For feedrate V = 100 ipm and sampling
frequency f = 1/δt = 1024 Hz, as employed in the experiments described in
Section 5 below, the maximum geometrical error of the offset trim points is

ǫ = V δt ≈ 0.0016 in . (9)

However, by adjusting the feedrate — e.g., by using an extrapolation method
to detect an impending trim point, and reducing V in its vicinity — it is
possible to identify the offset trim points as accurately as desired. In general,
trimming introduces offset path tangent discontinuities, and suppressing the
feedrate in their vicinity has the additional benefit of minimizing the impact
of the corresponding machine velocity and acceleration discontinuities.
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4.3 Offset trimming at concave nodes

Recall from Section 3 that concave and convex junctures between successive
segments ri(ξ) and ri+1(ξ) are characterized by negative and positive values
for the product d ∆θi of the offset distance d and rotation angle ∆θi between
their final and initial normals, ni(1) and ni+1(0). To detect a concave node
qi = ri(1) = ri+1(0), with d ∆θi < 0, and execute the proper offset trimming
it incurs, it is necessary to monitor the footpoints of the machine position p
on both ri(ξ) and ri+1(ξ), as it follows the untrimmed offset rd,i(ξ).

This is accomplished by calling the footpoint and point/curve distance
functions twice, with the instantaneous machine location p and consecutive
segments ri(ξ), ri+1(ξ) as arguments. The necessity of an offset trim between
these segments is detected in real time when a machine location p such that

distance(p, ri+1(ξ)) < distance(p, ri(ξ)) (10)

arises. If ξl, ξr are the footpoint parameter values of p on ri(ξ), ri+1(ξ) when
this condition arises, execution of the offset rd,i(ξ) is terminated at ξ = ξl and
execution of the offset rd,i+1(ξ) commences at ξ = ξr, i.e., only the parameter
domains ξ ∈ [ 0, ξl ] and ξ ∈ [ ξr, 0 ] of these offset paths are traversed.

As with the interior offset trim of a single segment, the offset trimming
for two adjacent segments that meet at a concave node is approximate. An
exact trim would require determination of the precise machine location p such
that the footpoint parameters ξl and ξr yield satisfaction of the condition (10)
with equality, but the discrete sequence of reference points generated by the
real–time interpolator for a given sampling time δt and feedrate V do not
exactly identify this point. The value V δt bounds the error in the trim point
location, although it is typically much smaller. For small V δt, the trimming
accuracy is high, and the need for complicated self–intersection calculations
[9] — which must be performed offline — is avoided.

4.4 Circular fill arcs at convex nodes

Only a convex node qi = ri(1) = ri+1(0) between consecutive curve segments,
with d ∆θi > 0, necessitates the insertion of a circular fill arc to guarantee a
continuous tool path. Let θe and θs denote the angular orientations4 of the
end and start point normals, ni(1) and ni+1(0), of the segments incident at a

4Here θe, θs ∈ [ 0, 2π) and θs > θe or θs < θe according to whether d > 0 or d < 0.
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convex node qi. On completion of segment ri(ξ), satisfaction of the condition

d [ni(1)× ni+1(0) ] · z ≥ 0 (11)

indicates that a fill arc with center qi and radius |d|, between the angular
limits θe and θs, must be executed. This arc is of length S = |d ∆θi|, where
∆θi = θs−θe, and the distance travelled along it during one sampling interval
δt at feedrate V is δs = V δt, corresponding to a (signed) angular increment
δθ = V δt/d along the fill arc. Thus, the real–time interpolator generates the
reference point

p = qi + |d| (cos θ, sin θ) , θ = θe + kδθ (12)

at time t = kδt since commencement of the fill arc. Execution of the fill arc
terminates when θe + kδθ becomes greater than or less than θs, according to
whether d > 0 or d < 0. In general, the total execution time T = |d ∆θi|/V
for the circular fill arc is not an exact integer multiple of the sampling interval
δt, and this incurs a jump in feedrate during the final sampling interval. This
can be mitigated by slightly perturbing the feedrate along the circular fill arc
from the nominal value V to Ṽ = |d ∆θi|/Nδt, where N = ⌊ |∆θi/δθ| ⌋. Once
traversal of the circular fill arc has been completed, the real–time interpolator
can proceed to execute the offset to segment ri+1(ξ).

4.5 Algorithm outline

The following outline summarizes the real–time offset curve trimming/filling
algorithm. The input is a set of polynomial curve segments ri(ξ), i = 1, . . . , N
with parameter domain ξ ∈ [ 0, 1 ] that meet end–to–end to form a simple
closed contour C with anticlockwise orientation, and the offset distance d.
Note that the segment index i is always reduced modulo N , i.e., i+1 becomes
1 when i = N . The algorithm employs the basic functions footpoint(p, ri(ξ))
and distance(p, ri(ξ)), described in Section 2. For brevity, the outline below
considers only the case where no adjacent offset trimming between the final
and initial segments, i = N and i = 1, is required — this case can be easily
accommodated through some technical modifications.

1. initialize: set i← 1, ξ ← 0

2. while ( ξ < 1 )
{
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increment ξ using (7), set p← rd,i(ξ)

// interior segment trimming
set ξr = footpoint(p, ri(ξ))
if ( ξr > ξ ) set ξ ← ξr and p← rd,i(ξ)

// adjacent segment trimming
set ξr = footpoint(p, ri+1(ξ))
if ( distance(p, ri+1(ξ)) < distance(p, ri(ξ)) )
{ set i← i + 1, ξ ← ξr, p← rd,i(ξ) }

}

3. if ( condition (11) is satisfied )
{

// execute circular fill arc
compute angular limits θe, θs

set θ← θe and δθ ← V δt/d
while ( sign(d(θ − θe)) > 0 )
{ compute reference points p using (12) }

if ( i < N )
{ set i← i + 1, ξ ← 0, go to 2 }

else
{ go to 4 }

}
else
{

// proceed to next segment
set i← i + 1, ξ ← 0, go to 2
}

4. stop

4.6 Kinematical considerations

If a path is executed at constant feedrate (speed), the local path smoothness
will determine the continuity of velocity and acceleration along it. An interior
offset trim of a single segment, or an offset trim between adjacent segments
associated with a concave node, generically incurs a point with discontinuous
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tangent t and normal n on the trimmed offset. At the junctures of a circular
fill arc with the offsets to two boundary segments ri(ξ) and ri+1(ξ) that meet
at a convex node, the tangent and normal are continuous but in general the
curvature κ is not continuous. For a constant feedrate V , the velocity v and
acceleration a along a curved path are defined by

v = V t and a = κ V 2n .

Thus, velocity and acceleration are both discontinuous at offset trim points.
When moving from a curve offset segment to a circular fill arc (or vice–versa),
on the other hand, velocity is continuous but acceleration is discontinuous.

Commanded motions involving discontinuities in velocity or acceleration
are obviously inconsistent with smooth execution, especially at high speeds,
and may incur machine vibration or significant path contour error. Since the
offset path geometry is fixed by the requirement of a continuous gouge–free
tool path, the only way to mitigate the effects of the discontinuities — which
are of special concern in high–speed machining [17, 24, 27] — is to modulate
the feedrate in accordance with the path geometry. However, algorithms for
real–time feedrate modulation to accommodate impending offset trim or fill
actions must employ a look–ahead strategy, and are not trivial to formulate.
This aspect is of the problem is deferred to a future study — at present, we
consider only modest constant feedrates.

5 Implementation and experimental results

To establish its practical feasibility, the real–time local offset trimming/filling
algorithm was implemented on a 3–axis CNC mill, and run on a selection of
piecewise–polynomial test curves. The implementation details and real–time
performance results from the test runs are described below.

5.1 Open–architecture software controller

Figure 3 shows the table–top CNC milling machine used in the experiments.
The machine is governed by the MDSI OpenCNC open–architecture software
controller, that allows incorporation of customized real–time motion control
algorithms. The controller runs on a commercial PC with a modest 500 MHz
CPU and employs a sampling frequency f = 1024 Hz, which corresponds to
a sampling interval δt = 1/f ≈ 0.001 seconds.
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Figure 3: 3–axis CNC mill governed by the OpenCNC software controller.

The required software modifications were accomplished entirely within the
real–time interpolator module, the function that generates a reference point
(commanded machine position) in each sampling interval from the specified
path geometry and feedrate. During each test run, real–time position encoder
data are stored in memory for an offline analysis of the machine performance.
Real–time axis velocities and accelerations are obtained by first– and second–
order differencing of the position data, and the feedrate along the path is then
determined as the magnitude of the velocity v with components specified by
the individual–axis velocities (vx, vy). The acceleration magnitude is likewise
obtained from the acceleration vector a = (ax, ay). From the position encoder
data and the known exact path geometry, it is possible to compute the actual
real–time machine contour error — i.e., the normal deviation of the actual
machine position from the commanded path.

5.2 Experimental results from test curves

For the test curves described below, the indicated dimensions are in inches,
and in each case an offset distance d = 1 in and nominal feedrate V = 100 ipm
is specified. These test curves employ Pythagorean–hodograph (PH) quintic
segments [6], but the algorithm can accommodate general polynomial curves.
During each run, the machine real–time position encoder data is recorded in
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memory, for subsequent analysis to assess: (1) correct offset curve trimming
and filling; (2) contour error (i.e., path accuracy); (3) feedrate variation; and
(4) acceleration magnitude.

Example 1 As seen in Figure 4, the first example involves a path comprising
three smooth segments with tangent–discontinuous junctures. Since the path
tangent suffers a complete reversal at these nodes, semi–circular fill arcs are
required to ensure a continuous offset path. However, no interior or adjacent
segment trimming is needed in this case. Figure 4 compares the “raw” offset
(without filling or trimming) and the “true” offset, plotted from the real–time
position encoder data generated by the offset trimming/filling algorithm.
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Figure 4: The raw offset (left) and true offset (right), computed by the real–
time interpolator algorithm, for a case involving only the insertion of circular
fill arcs at each convex tangent–discontinuous point of the part geometry.

Figure 5 illustrates the actual tool center speed obtained from the real–
time position encoder data5 for a constant 100 ipm specified speed of both
the tool center and the tool/part contact point. It is seen that the real–time
interpolator performs very well in the case of a constant 100 ipm speed of the
tool center. For the case of a constant speed of the tool/part contact point,
the tool center speed is reduced below the nominal 100 ipm value along the

5All velocity and acceleration plots shown herein are based on directly differencing the
position encoder data: no smoothing filters have been applied.
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Figure 5: Actual tool speed, computed from real–time position encoder data
along the path shown in Figure 4, for (left) a constant speed of the tool center
on the offset path, and (right) a constant speed of the tool/part contact point.

offsets to the concave segment boundaries, but maintains the 100 ipm value
along the circular fill arcs (on these arcs, however the tool/part contact point
is actually stationary rather than moving at constant speed).
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Figure 6: Actual tool acceleration, computed from real–time position encoder
data along the path in Figure 4, for (left) a constant speed of the tool center
on the offset path, and (right) constant speed of the tool/part contact point.

Analogous plots for the tool acceleration magnitude are shown in Figure 6.
The acceleration spikes visible in these plots are attributable to the curvature
discontinuities between the boundary segment offsets and the circular fill arcs.

Example 2 The second test curve involves eight segments with concave radii
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of curvature smaller than the tool radius, and convex tangent–discontinuous
nodes, necessitating both interior trimming and filling operations. Figure 7
shows the “raw” and “true” offsets in this case. The actual variation of the
tool center speed, for both types of specified feedrate, is shown in Figure 8.
Apart from the spikes in the measured feedrate, resulting from the trimmed
offset tangent discontinuities, the measured feedrate conforms closely to the
prescribed 100 ipm value for both feedrate types. The similarity of the plots
in this case results from the mild curvature of the trimmed offset paths. As
can be seen in Figure 9, the tangent–discontinuous offset trim points incur
quite severe spikes in the measured acceleration magnitude.

The measured contour error, plotted in Figure 10, is seen to be similar for
the two feedrate variations, and its overall magnitude is consistent with the
bound (9). In fact, the root–mean–square contour error over the entire path
is comparable to (9), so positional errors incurred by the finite resolution of
the real–time offset trimming algorithm are not especially pronounced.
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Figure 7: The raw offset (left) and true offset (right), computed by the real–
time interpolator, for a case that requires both insertion of circular fill arcs
and internal segment trimming due to violation of the curvature bound (8).

Example 3 The third test curve comprises eight segments, and necessitates
use of all three of the basic trim/fill functions: interior trimming of individual
segments; trimming at concave nodes of adjacent segments; and filling at the
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Figure 8: Actual tool speed, computed from real–time position encoder data
along the path shown in Figure 7, for (left) a constant speed of the tool center
on the offset path, and (right) a constant speed of the tool/part contact point.
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Figure 9: Actual tool acceleration, computed from real–time position encoder
data along the path in Figure 7, for (left) a constant speed of the tool center
on the offset path, and (right) constant speed of the tool/part contact point.

20



0 5 10 15 20 25 30
0.000

0.001

0.002

0.003

time (s)

no
rm

al
 e

rr
or

 (
in

)

0 5 10 15 20 25 30
0.000

0.001

0.002

0.003

time (s)

no
rm

al
 e

rr
or

 (
in

)

Figure 10: Contour error along the path in Figure 7 for (left) a fixed speed of
the tool center on the offset path, and (right) of the tool/part contact point.

convex nodes of adjacent segments. The “raw” and “true” offsets in this case
are illustrated in Figure 11 — it is seen that the trimmed offset involves strong
convex and concave curvatures. Consequently, there is a marked difference
between the observed behavior of the two feedrate types, shown in Figure 12.
The real–time interpolator performs very well in maintaining the 100 ipm tool
center speed, when this type of feedrate is specified. However, specifying a
constant speed of the tool/part contact point incurs pronounced modulation
of the tool center speed, above and below the nominal 100 ipm value, due
to the strong curvature variation of the part shape. As seen in Figure 13,
both feedrate types incur prominent spikes in the acceleration magnitude,
due to the tangent–discontinuous interior and adjacent segment offset trim
points. However, both types yield similar results (Figure 14) for the measured
contour error, whose magnitude is again consistent with the bound (9).

5.3 Extension to global trimming

Although the real–time computational load imposed by the local offset curve
trimming/filling procedure is not insignificant, no difficulties were observed in
running it on the modest (500 MHz) control computer processor. Inability of
the computer to complete the necessary computations within each sampling
interval would cause an unacceptable following error to accumulate, resulting
in automatic shutdown of the servo system, but this problem never occurred
in practice. In extending the method to accommodate global real–time offset
curve trimming/filling, however, the computational load will be substantially
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Figure 11: The raw offset (left) and true offset (right) for a case involving all
three situations — insertion of circular fill arcs; internal segment trimming;
and trimming at the concave nodes between pairs of adjacent segments.
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Figure 12: Actual tool speed, computed from real–time position encoder data
along the path in Figure 11, for (left) a constant speed of the tool center on
the offset path, and (right) constant speed of the tool/part contact point.
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Figure 13: Actual tool acceleration, determined from position encoder data
along the path in Figure 11, for (left) a constant speed of the tool center on
the offset path, and (right) a constant speed of the tool/part contact point.
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Figure 14: Contour error on the path in Figure 11 for a fixed speed of (left)
the tool center along the offset path, and (right) the tool/part contact point.
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increased, and the formulation of a viable real–time algorithm will necessitate
careful attention to considerations of computational efficiency.

A global algorithm must incorporate trimming operations incurred by the
interference of untrimmed offsets to general pairs of boundary segments, not
just the interior trimming of a single segment, or interference due to adjacent
boundary segments. Furthermore, topological complexities may arise from
the fact that the offset to a single closed contour C can consist of several
disjoint closed loops, requiring tool retraction and re–positioning procedures
to ensure complete traversal. A standard approach to global offset trimming
is through pre–computation of the Voronoi diagram or medial axis of the
domain bounded by the contour C. In general, this is a non–trivial problem,
incompatible with real–time implementation. Although an exact solution is
possible [14] for a piecwesie–linear contour C, approximations are necessary
for contours composed of free–form curve segments [22, 23].

In principle, global offset trimming may be accomplished by calling the
point/curve distance function with every boundary segment ri(ξ) in each
sampling interval. However, a more efficient approach is needed for a viable
real–time implementation, that will also faithfully capture the topology of the
trimmed offset. A more thorough treatment of these issues is deferred to a
subsequent study. At present, we only note that the convex hull property [5]
of the Bézier form of polynomial curves can be used to “triage” the segments
of C, in assessing likelihood of interference of their untrimmed offsets with
that of a given segment, for global offset trimming operations.

6 Conclusion

An algorithm has been developed for the real–time generation and execution
of continuous, gouge–free paths for machining planar shapes with piecewise–
analytic free–form boundary curves using a tool of given radius. The method
automatically executes the necessary offset path trimming/filling operations
in real time, and its practical feasibility has been verified by implementation
on a milling machine with an open–architecture controller, yielding excellent
results. The algorithm offers many useful benefits — including (1) the ability
to accommodate different tool sizes without re–generating the part program;
(2) the elimination of errors associated with approximating the offsets to free–
form curves; (3) the ability to modulate the feedrate to achieve a constant
speed for either the tool center, or the tool/part contact point; and (4) the
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possibility of utilizing analytic geometry data (e.g., path curvature) so as to
achieve smoother motions through acceleration management.

The method described herein is intended for use on parts with boundaries
defined by a reasonable number of extended analytic curve segments, rather
than voluminous discretized approximations. As currently implemented, the
focus is on local trimming, in which all required offset trim operations arise
from concave high–curvature interior portions of single segments, or concave
tangent–discontinuous nodes between adjacent segments. This is appropriate
for finish machining, and also roughing with contour tool paths for parts of
reasonable geometrical complexity. The extension to global offset trimming
to accommodate trim operations incurred by general boundary segment pairs
is more challenging, since computational complexity becomes a key concern.

Another problem that deserves further investigation is the use of feedrate
modulation to mitigate the velocity and acceleration discontinuities arising at
offset trim points when a constant feedrate is specified along a trimmed offset
(this is important to guarantee smooth motions and suppress contour error).
Detailed investigations of these problems are deferred to future studies.
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