
HAL Id: hal-02507450
https://hal.science/hal-02507450

Submitted on 13 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lattice structure lightweight triangulation for additive
manufacturing

Laurent Chougrani, Jean-Philippe Pernot, Philippe Veron, Stéphane Abed

To cite this version:
Laurent Chougrani, Jean-Philippe Pernot, Philippe Veron, Stéphane Abed. Lattice structure
lightweight triangulation for additive manufacturing. Computer-Aided Design, 2017, 90, pp.95-104.
�10.1016/j.cad.2017.05.016�. �hal-02507450�

https://hal.science/hal-02507450
https://hal.archives-ouvertes.fr

Lattice structure lightweight triangulation for additive manufacturing

Laurent Chougrania,b, Jean-Philippe Pernota,∗, Philippe Vérona, Stéphane Abedb

aArts et Métiers ParisTech, LSIS laboratory UMR CNRS 7296, France
bPoly-Shape, France

Abstract

Additive manufacturing offers new available categories of geometries to be built. Among those categories, one can
find the well developing field of lattice structures. Attention has been paid on lattice structures for their lightweight
and mechanical efficiency ratio, thus leading to more optimized mechanical parts for systems. However this lightness
only holds true from a mass related point of view. The files sent to additive manufacturing machines are quite large
and can go up to such sizes that machines can freeze and get into malfunction. This is directly related to the lattice
structures tendency to be of a high geometric complexity. a large amount of vertices and triangles is necessary to
describe them geometrically, thus leading to larger file sizes. With the increasing use of lattice structures, the need
for their files to be lighter is also rising. This paper aims at proposing a method for tessellating a certain category
of such structures, using topologic and geometric criteria to generate as few as possible triangles, thus leading to
lightweight files. The triangulation technique is driven by a chordal error that control the deviation between the exact
and tessellated structures. It uses interpolation, boolean as well as triangulation operators. The method is illustrated
and discussed through examples from our prototype software.

Keywords: Lattice structures, Triangulation, 3D modeling, Lightweight STL files, Additive Manufacturing.

1. Introduction and related works

Additive manufacturing is a promising technology
that allows to create more complex shapes than ever
before. Among the new available convoluted features,
one can find lattice structures that usually consist of
an interconnected set of beams. Lattices are generally
lightweight structures and can have very interesting me-
chanical properties [1]. As aforementioned, lattice struc-
tures are gaining more and more interest in the indus-
try, and designers or engineers are now confronted with
their manipulation, as they are considered as a revolution
in conception paradigms [2, 3]. Furthermore, today’s ap-
plications require lattice structures to contain more and
more beams and have smaller and smaller features lead-
ing to several difficulties for 3D rendering and manipu-
lating such complex structures. As a result the triangu-
lation of these complex structures has become crucial for
additive manufacturing as machines use tessellated files
to print objects.

Triangulation is a well-studied field of 3D modeling as
it is needed for finite elements methods or visualization
purposes. Different triangulation techniques have been
devised. When exact boundaries of the desired structure
are available, e.g. a B-Rep CAD model, they can be used

∗Corresponding author
Email address: jean-philippe.pernot@ensam.eu (Jean-Philippe

Pernot)

as constraints for the triangulation which can then be per-
formed using the Constrained Delaunay Triangulation
(CDT) [4, 5]. Such a method allows to get a low amount
of triangles for a given structure, but they need the exact
geometry and its boundaries as an input. Thus, compu-
tation times can be high especially for lattice structures,
having numerous boundaries (Figure 1).

Figure 1: Illustration of CDT: (a) exact boundaries, (b) triangulation.

To circumvent some of those issues, Marching Cubes
Method (MCM) tends to be more and more used to tes-
sellate lattice structures for additive manufacturing. This
technique consists in using voxelization of the 3D space
around an object as well as a scalar distance field defined
on each node of the voxel grid. Then, it uses simple rules
to tessellate the wanted iso-value of the field [6]. The field
can be deduced from a skeleton (e.g. points, wireframe,
surface, volume). Thus, there is no need to have an ex-

Preprint submitted to SPM’17 May 5, 2017

act boundary of the object. However, it usually generates
a high amount of triangles which are usually of irregu-
lar geometric quality throughout the mesh. This is due to
the fact that the number of triangles and their shape qual-
ity are directly linked to the size of the voxelization grid
as well as to the orientation of the voxel grid relatively
to the object. This is a strong limitation when consider-
ing lattice structures made of beams with widely varying
directions. Adaptive voxel grids could lead to marching
cubes that would be less dependent on the beams orien-
tations [7]. However, the grid would need to be computed
before the triangulation begins and would lead to some
extra computation time. The quality can also be improved
afterwards using some recent methods such as [8]. MCM
has been widely used for medical imagery, as shapes of
organic structures are often convoluted [9] and their ex-
act boundaries rarely available (Figure 2).

Figure 2: Illustration of MCM: (a) voxel grid, (b) triangulation [9].

Lattice structures can be defined as complex regarding
the high number of vertices/triangles needed to define,
render and manufacture them with an arbitrary preci-
sion. This huge amount of data can lead to several diffi-
culties and notably: (i) software can have difficulties ren-
dering a huge amount of triangles, (ii) additive manufac-
turing machines can have difficulties leading to malfunc-
tion when files get too heavy (ordinarily around 2Gb).

Figure 3: Illustration of LSLT: (a) 3D graph associated to a lattice struc-
ture inside the Stanford bunny, (b) lattice structure triangulation, (c)
zoom on the ear.

This paper tackles the second difficulty and introduces
a new approach for direct triangulation of lattices struc-
tures. Contrary to CDT, the algorithm does not need an
exact representation of boundaries, but only the 3D graph

that represents the lattice (figure 3). Three main oper-
ators have been defined to control efficiently the num-
ber of generated triangles: interpolation, boolean and tri-
angulation operators. The contribution is threefold : (i)
the algorithm generates much less triangles than CDT
and MCM; (ii) it is not sensitive to the object’s orien-
tation with respect to the reference frame; (iii) quality
and accuracy of the triangulation can be controlled sepa-
rately. Section 2 introduces the problem, notations as well
as the main ideas driving the different steps of the so-
called Lattice Structure Lightweight Triangulation (LSLT)
algorithm detailed in Section 3. The proposed approach
is compared to CDT and MCM triangulation techniques
and results are discussed using several academic and in-
dustrial examples introduced in Section 4. The last sec-
tion refers to the different contributions as well as dis-
cussing future.

2. Problem formalization and notations

In the proposed approach, the idea is to triangulate lat-
tice structures directly through their associated 3D graph
using topologic and geometric informations. In order to
reduce rendering difficulties, this triangulation can be
performed at the very end of the design process, i.e. just
before uploading the file to the machine.

This manuscript focuses on a certain type of lat-
tice structures, which consist of a set of interconnected
beams (i.e. unidimensional elements) that forms a 3D
graph. this graph can be triangulated while consider-
ing each beam as a cylinder. The topology of the lattice
is defined through the adjacency matrix associated to its
3D graph using graph theory [10]. For sake of clarity, as
both graph and triangulation are composed of vertices,
3D graph’s vertices are her referred to as nodes and de-
noted N , and triangulation’s vertices are called vertices
and denoted V . Additional subscripts will be used to fur-
ther characterize them.

The 3D graph adjacency matrix is a n × n symmetric
matrix C = (cij) with n the number of nodes in the lat-
tice {N1, · · · ,Nn} and cij the number of beams between two
nodesNi andNj . In particular, cij = 0 if no beams are con-
necting the two nodes Ni and Nj . Theoretically, the terms
cij can be greater than 1 if there are some loops, i.e. a node
connected to itself [11], but this will not happen in our
case and the adjacency matrix will only be composed of 0
and 1. Thus, each beam Bij connects exactly two nodesNi
and Nj (Figure 4). The direction of a beam is given by a
unit vector dij . Its length is denoted `ij and the angle be-
tween two beams Bki and Bij is denoted αkij where i is the
index of the central node. A unique radius Ri is associated
to each node Ni and defines the common radius of all the
sections connected to it. Sections are defined per beam,
with their first index indicating the node from where it
is considered. Thus, σij refers to the extremity section of
Bij connected to Ni . Finally, the number of beams incom-

2

ing to a node Ni is the node valence denoted V ali . On the
example of Figure 4, V ali = 3 , V alj = 4 and V alk = 1.

Figure 4: Simple lattice structure and associated notations.

To control better the quality of the triangulation be-
tween two extremity sections of a beam Bij , two control
parameters are introduced (Figure 5):

• the number nij of intermediary sections σikj , with k ∈
{1, · · · ,nij }, which can be optionally inserted between
Ni and Nj . Those additional sections have radii de-
noted rikj .

• the number nikj of vertices Vikjs, with s ∈ {1, · · · ,nikj },
in the intermediary section σikj . Those vertices form
an ordered list organized by angular positions, with
an identical zero angular position for all the sections
of a beam.

Figure 5: Beam Bij represented as a cylinder with a constant radius for
all the circular sections.

Those definitions combined with the positions of the
nodes in the 3D space are sufficient to have a fully defined
lattice structure.

Considering that beams are modeled as cylinders con-
nected to extremity nodes, trying to triangulate them as
a simple cylinders would lead to difficulties in two dif-
ferent ways that can be seen on Figure 6: (i) overlapping
triangles leading to a non-manifold mesh; (ii) holes/gaps
in the mesh. We want to draw attention to the fact that for
rendering purposes, cylinders could be triangulated sep-
arately with no regard to interference. But for printing
applications this would lead to the two following main
problems:

• The slicing operation needed to print the part and
consisting in making cross sections of the part,
would probably fail, due to the overlap, the slicing
software would have a hard time to sort out what is
inside and outside the part.

• Even if the slice operation is a success, the overlap-
ping area would lead to the machine "Laser beaming"
several time the same surface, causing over-fused
"blobs" around the lattice node and leading to de-
graded material properties.

The problem of overlapping triangles is solved either
by CDT and MCM. However, the gap issue is not tackled
by CDT, but is resolved by MCM as it is based on an Eu-
clidean distance field which rounds all sharp edges. Thus,
the need for a method that can both generates lightweight
and manifold meshes with no holes or gaps leads to the
description of our Lattice Structure Lightweight Triangu-
lation (LSLT) method.

Figure 6: Interference around the extremities of two connected beams
Bij and Bik .

3. Lattice Structure Lightweight Triangulation (LSLT)

The proposed LSLT technique consists in six main steps
illustrated on the flowchart of Figure 7 and detailed in the
next subsections: (i) creation of the mandatory triangula-
tion vertices from an input lattice structure (section 3.1);
(ii) use of a chordal error criterion to interpolate new ver-
tices (section 3.2); (iii) displacement of the vertices using
a special boolean operator (section 3.3); (iv) optionally in-
terpolate the extremity sections to create additional sec-
tions and vertices (section 3.4); (v) triangulation of all the
sections (section 3.5); (vi) filling of the holes (section 3.6).

3.1. Mandatory vertices search

First step is to define the location of triangulation ver-
tices on the extremity sections. It is done by parsing
through the nodes and sorting out every duet of beams
{Bij ; Bik} around each given node Ni . For a duet of beams,
one can see that the two ideal cylinders will have interfer-
ences. Those interferences occur for all connected beams

3

Figure 7: Overall framework of the LSLT technique

at a given extremity as shown in Figure 6. The two given
interfering cylinders possess their original extremity sec-
tions σij and σik as well as an interference curve Iikj which
is normally obtained using boolean operators.

To get a manifold triangle mesh, the triangulation ver-
tices must lay on this interference curve. In case the two
beams are not collinear, only two points Vkij1 and Vkij2
are already lying on Ikij and are defined as follows:{

Vkij1 = Ni +Ri .Okij

Vkij2 = Ni −Ri .Okij
with Okij =

dik ∧ dij
||dik ∧ dij ||

(1)

Here : "∧" is the symbol used for cross product. One
can then define these two mandatory triangulation ver-
tices for the two extremity sections that lay on Ni . Loop-
ing through the duets of beams will give all mandatory
triangulation vertices. Each duet gives two points, so for
a given node Ni , the number of mandatory triangulation
vertices is at most:

2× V ali !
2!(V ali − 2)!

(2)

Due to symmetry conditions some mandatory triangu-
lation vertices can be redundant and will only be taken
into account once. These vertices being collected and
stored in each corresponding sections, one will under-
stand that they all lay on the sphere around Ni of radius
Ri . Due to the angular incidence of each beam, the sphere
represents the minimum surface on which the real tri-
angulation vertices must lay. The proof of that statement
can be made following some elegant ideas found in [12].

Let dij and dik be the unit vectors of the two cylin-
ders, forming an angle αkij that can be limited to [0,π/2]
due to symmetry, and Ri their common radius as radii
are defined at each node. As we have only two cylinders,
one can simplify the problem by calling xOz the plane
that contains them both. The problem is to solve the in-
tersection as a f (z) function. Using those simplifications,

one can write the following cylinder parametric equation
(first for two perpendicular cylinders):{

y2 + z2 = R2
i

x2 + y2 = R2
i

(3)

This equation can then be transformed using R(v,αkij)
the rotation operator around the positive y axis of value
αkij , and using the linear transformation to get the system
which solution is the intersection curve for any arbitrary
value of αkij .The idea is to fix one cylinder and let the
other free of rotation in order to get the intersection curve
for any values of αkij .

R
(
x,y,z,αkij

)
=

cos(αkij) 0 −sin(αkij)
0 1 0

sin(αkij) 0 cos(αkij)

xy
z

 (4)

y2 + (x.sin(αkij) + z.cos(αkij)2 = R2

i

x2 + y2 = R2
i

(5)

After eliminating y2 and doing some arrangements,
one can get a nice parametric equation:

x = Ri .cos(t)
y = Ri .sin(t)

z = Ri .sin(t)[1 + sec(αkij)]
∀t ∈ [−π,π] (6)

From that system, one can write the minimum distance
to the extremity node (here (0,0,0)) as:

d =
√
x2 + y2 + z2 (7)

With respect to the values found for (x,y,z), one get the
distance expressed as :

d(t) = Ri .
√

1 + sin(t)2(1 + sec(αkij)) ∀t ∈ [−π,π] (8)

Studying this distance is made easy as we have practi-
cal constraints on αkij ∈ [0,π/2] and t ∈ [−π,π]. It comes:

mind(t) = Ri (9)

which means that the sphere of radius Ri is the minimum
surface where mandatory triangulation vertices can lay
for any couple of beam around a given node Ni .

One can also observe that this parametric equation
would need to be performed for all couples of beams, and
then having all those systems merged to get the whole
set of interference curves. This is what is needed for con-
strained Delaunay triangulation and can be time consum-
ing. The proposed method only needs all the Vkij1 and
Vkij2 madantory vertices at each node Ni . One thus know
that those points would only need to be pushed outward
the sphere and never pulled inward. Those vertices need
to be pushed depending on the value of αkij as it will be
explained in section 3.3.

4

3.2. Chordal error to interpolate new vertices

Once mandatory triangulation vertices have all been
placed, a chordal error can be computed comparatively
to the perfect circle of a cylindrical section. Depending on
the value, extra vertices can be inserted to meet a certain
criterion on shape approximation. They are added on the
common sphere, and distributed upon all sections. This
issue along with the number of section determination will
be developed in section 4 as an analysis and comparison
between LSLT and MCM. It is now needed to push those
vertices onto the intersection curves. To do so, a simplifi-
cation can be made, by noticing that for a duet of beams,
the intersection curve always lays on a plane. This result
could also be extracted from the system above.

3.3. Special boolean operator

In this section, to better illustrate the process and the
way the operator acts on section’s vertices, figures will use
triangulated cylinders even though the triangulation is
performed later in the process (section 3.4).

Figure 8: Boolean operation (subtraction) between a cylinder mesh and
a plane: (a) classic boolean result with deletion and reconstruction of
vertices along edges, (b) LSLT result with displacement of vertices along
the unit vector dij

.

Now that sections are completed and the chordal error
criterion is met, one needs to get the section vertices on
the interference curves. To do so a special boolean opera-
tor has been developed and uses the 3D graph to move
some vertices around, thus simulating shape deforma-
tion. This operator works on each beam and consists in
pushing vertices onto a plane along the beam axis unit
vector dij . The plane Pkij is defined between two con-
nected beams Bij and Bki . Then, a point in P is referred
as VP .

To understand its importance, a comparison with a
classic boolean operator is proposed. As a simple exam-
ple, let’s consider a mesh intersected by a plane P (Fig-
ure 8.a). Classic boolean operators would: (i) look for
intersection between the mesh elements and the plane;
(ii) suppress triangles in these areas; (iii) use differ-
ent methods to re-mesh such as subdivision-based or
voxellization-based remeshing [13, 14, 15]. The resulting
mesh would then be manifold but have a larger amount
of triangles (Figure 8.a). It is here proposed to create a
boolean operator that does not add triangles to the mesh,

and only affects the position of vertices, hence preserv-
ing triangle connections and neighborhood data. Know-
ing that the geometry is composed of cylinders, the idea
is to move each vertex of a section along the axis of the
cylinder defined by the unit vector dij . As a result, the
number of triangles is preserved (Figure 8.b). For the sake
of clarity, Figure 8 illustrates this for the simple case of
one beam intersected by one plane.

Figure 9: Vertices of extremity sections are pushed toward the plane.

Using the remark that each intersection curve always
lay on a plane, it is proposed to use this plane as a cut-
ting plane and push the section vertices upon it (Fig-
ure 9). Looping through the section’s vertices, one can
easily check if the considerate vertex is on the interfer-
ence side or not. A vertex Vkij is moved along the vec-
tor dij of its beam if [nP .(Vkij-VP)] < 0, with nP the cut-
ting plane normal unit vector such that nP .dij > 0, and
VP a 3D point in the plane P . Using radii defined per
beam has for consequence that P is always the median
plane. Note that if Vkij is on the other side of the plane
it is not moved. One can compute the position V′kij of the
projection of Vkij on the plane P (Figure 9):

V′kij = Vkij +λ.dij with λ =
−nP [Vkij −VP]

nP .dij
(10)

At this point, the different possibilities can be sepa-
rated into three classes for a given node Ni :

• V ali = 1. Nothing needs to be done as the beam is
simply hanging.

• V ali = 2. Section vertices are pushed at most one
time toward a plane (as there is at most one inter-
section curve). The connection between the differ-
ent section vertices is conserved. Performing a clas-
sic boolean successively on each section would lose
the connectivity through adding new vertices (Fig-
ure 10).

• V ali > 2. Section vertices might be pushed more
than once. In this case holes might appear at the
beam connection, as seen in Figure 11.c. One can also
see that classic boolean would not form holes, and
would lead to non manifold triangulation as some

5

vertices would lay onto triangle edges. The holes ap-
pearance is due to multiple cutting planes and can be
understood through Figure 12. A solution is to add
mandatory vertices to the section on the planes, but
this would add more triangles than simply close the
holes as discussed in section 3.6. Again, this opera-
tor works on vertices, the triangles are here displayed
only for sake of clarity.

Figure 10: Comparison between: (a1) the lattice structure made of nodes
and beams and (a2) its associated classic boolean result (non manifold
and addition of triangles), (b1) the lattice structure and (b2) our associ-
ated special boolean operator result (manifold and no added triangles)
for V ali = 2 on the Stanford bunny lattice mesh.

Figure 11: Top and isometric views for V ali = 4 on a lattice cell mesh.
Results comparison between : (a1) and (a2) initial cylinders with a given
precision, (b1) and (b2) classic boolean result (non manifold and added
triangles), and (c1) and (c2) our special boolean operator result (mani-
fold and no added triangles)

3.4. Section number interpolation

Once all extremity sections are set up and the associ-
ated vertices moved on the different planes, intermediary
sections can be added between the two extremity sections

Figure 12: Different steps of our boolean operator : (a) initial section
with intersection planes, (b) first displacements of vertices toward the
first plane (gap creation), (c) second displacements toward the second
plane with hole appearance.

of a beam Bij . This objective is twofolds: (i) to generate a
triangulation with a better and more homogeneous qual-
ity, in the sense that triangles will have their angles closer
to 60°; (ii) to smoothen the possible angular distortion
between two extremity sections of a cylinder. As V ali can
be different from V alj , and αkij different from αkji , the
two extremity sections may have both different number
of mandatory vertices and different angular repartitions
of these vertices.

As introduced in section 2, for a beam Bij , two control
parameters are used:

• the number nij of intermediary sections σikj of radius
rikj , with k ∈ {1, · · · ,nij }, located between the extrem-
ity nodes Ni and Nj .

• the number nikj of vertices Vikjs, with s ∈ {1, · · · ,nikj },
in the intermediary section σikj .

First, the number nij of intermediary sections can be
determined as follows:

nij = E
[
`ij
`eij

]
(11)

Where E is the function that returns the integer por-
tion, `ij the length of the considered beam Bij and `eij
the mean length of an edge of the sections which can be
approximated as follows:

`eij ≈ 2×Rij × sin
(

2π
nij

)
(12)

Where nij and Rij are respectively the average of the
number of vertices and the average of the radius of the
two extremity sections.

Second, the number nikj of vertices in the intermediary
section σikj linearly evolves between the number of ver-
tices of the two extremity sections. Thus, it results that:

nikj = E
[
ni +

`ikj
`ij

(nj −ni)
]

(13)

With ni (resp. nj) the number of vertices in the extremity
section σij (resp. σji) and `ikj the distance between the ex-
tremity section σij and the considered intermediary sec-
tion σikj .

6

Finally, the vertices Vikjs of the intermediary section
σikj are added in order to linearly smooth the angular de-
viation between the two extremity sections. If the num-
bers of vertices in the three sections are equal, i.e. nikj =
ni = nj , then the following formula can be applied di-
rectly:

Vikjs = Cikj + rikj .
rikjs
||rikjs ||

∀s ∈ {1, · · · ,nikj } (14)

with Cikj the center of σikj , and rikjs a vector obtained by
linear combination so that:

rikjs =
(
1− k

nikj

)
.rijs +

(k − 1)
nikj

.rjis (15)

where rijs (resp. rjis) is a vector that goes from the center
of section σij (resp. σji) to the vertex Vijs (resp. Vjis) of
that section. If the number of vertices contained in each
three sections are not equal, then the vectors rijs and rjis
are either averaged or extrapolated.

Figure 13: Influence of the number of intermediary sections on the qual-
ity of the triangulation : (a1) no intermediary sections and (a2) associ-
ated quality map, (b1) 8 intermediary sections and (b2) associated qual-
ity map.

Figure 13 shows the influence of intermediary sections
on the quality of the resulting triangulation. Here, the
quality of a triangle is defined as the ratio between its in-
ner and outer circles [16]. The quality aspects are further
discussed in the results section. Finally, one can say that
even if the proposed approach allows for the treatment of
multiple radii and number of vertices, the way the lattice
structure is generated through the repetition of elemen-
tary cells often induces that the numbers of vertices in
the different sections are equal and that the radii are also
equal.

3.5. Sections triangulation
Once all extremities and intermediary sections are set,

triangulation can be performed in two different ways de-
pending on whether sections do or do not have the same
number of vertices:

• If they have the same number of vertices, tessella-
tion is performed directly, as vertices are angularly
oriented, triangles will be added up two by two as
part of quadrangles. Sections will also be tessellated
two by two.

• If they don’t have the same number of vertices, there
is no direct way to sort out the best triangulation and
a trick can be used. Sections are gathered together
two by two. The second section is projected onto the
plane of the first one with a positive homothetic scal-
ing so that the two sections will not lay on the same
circle (Figure 14). Then, in this plane, a Delaunay tes-
sellation is performed between the two sections. This
is done with an advancing front method from the
first extremity to the second one, and then through
re-deploying the sections along the axis, the 3D tri-
angulation of the cylinder is obtained.

Figure 14: Two projected sections σij and σji with their unequal number
of vertices Vijs and Vjit and the resulting Delaunay triangulation.

3.6. Hole filling
Once every cylinder has been triangulated, and since

cylinders are hollowed, holes appear in the mesh at ex-
tremity sections (Figure 11). Depending on the valance of
a node Ni , several techniques can be used to fill in these
holes:

• When V ali = 1, the section is convex and one can
simply chose arbitrarily a vertex in the section and
connect it to all the other vertices, leading to a mini-
mum number of triangles for the given section. Here,
all the nodes of the section could also be directly con-
nected to Ni .

• When V ali > 1, several holes can appear and may
not be convex depending on αkij . Several techniques
exist to fill in holes according to a surrounding
mesh [17, 18, 19]. Here, a more simple technique
is used. To fill in a hole h around a node Ni , the
barycenter Gih of the vertices forming the hole con-
tour is first computed and pushed against the sphere
of radius Ri centered in Ni :

G′ih = Ni +Ri ×
Gih − Ni

||Gih − Ni ||
(16)

7

The hole is then triangulated while connecting ver-
tices of the contour to the projected barycenter G′ih.

Figure 15: Hole filling using barycenter projection for V ali = 4.

4. Results and discussion

LSLT technique has been applied to two aca-
demic (Stanford bunny and Stanford dragon) and one in-
dustrial (T-fork) models and compared with MCM and
CDT. CATIA V5 has been used to compute the CDT and
NTopology for the MCM. Section 4.1 discusses the results
obtained when comparing the number of triangles gen-
erated by the three techniques for a given accuracy. Sec-
tion 4.2 discusses the results obtained when trying to put
as many beams as possible in a file of size 2Gb. Section 4.3
discusses the results in terms of triangles shape quality.

4.1. Number of generated triangles
Lattice structures to be triangulated are composed of

cells repeated throughout space. The cells have the same
topology as the one of Figure 11 for the three exam-
ples. However, the cells do not have the same size for the
three examples (first row of Table 1). This is to take into
account the size of the models themselves. The way these
cells are generated is not detailed in this paper which fo-
cuses on the triangulation of the resulting lattice struc-
tures. Similarly, the radii of the beams as well as the ap-
proximation error (chord error) are not equal for the three
models (rows 3 to 5 of Table 1).

Bunny T-fork Dragon
Cell size (mm3) 7×7×7 7×7×7 2×2×2
Beam radius (mm) 0.5 0.5 0.2
Chord error (% of radius) 5 5 5
Chord error (µm) 25 25 10

Table 1: Parameters used to compare the number of triangles generated
by the algorithms on the three models.

Using Table 1 parameters, all three lattice structures
can be triangulated using MCM, CDT and LSLT tech-
niques. The triangulations are shown in Figures 16, 17
and 18 and the results are made available in Table 2. First,

it can be noticed that the size of the file is directly propor-
tional to the number of triangles. This is because of the
adopted STL file format which stores the triangles one by
one. Then, for a given example and chord error, results
show that our LSLT technique generates much less trian-
gles than the CDT and MCM. This was the first reason for
developing this new triangulation technique.

Bunny T-fork Dragon
Beams 3648 4605 12416

MCM 924644 1130400 7462036
Triangles CDT 377106 229888 Crashed

LSLT 94872 126488 315728
MCM 44 53.9 355

File size (Mb) CDT 18.5 11.2 N/A
LSLT 4.52 6.3 15

Gain LSLT wrt MCM 89.7% 88.8% 95.7%
Gain LSLT wrt CDT 74.8% 44.9% N/A

Table 2: Gains in terms of triangles (or file sizes) when comparing our
LSLT technique to MCM and CDT.

It also appears that some beams of the T-fork could not
be computed using CDT. This is visible on Figure 17.c and
it explains why the file is lighter for the T-fork than for the
Bunny even-though the number of beams is greater for
the T-fork than for the Bunny. This also explains the ap-
parent gain diminution when comparing LSLT and CDT
on the Bunny and T-fork. The results also shows that
CDT has not been able to triangulate the lattice structure
inserted into the Dragon. Throught the word "Crash"
we simply state here the fact that after around 2 hours
of computing, the software was still sorting the bound-
aries out and sending no information to windows. Win-
dows detected it as a malfunction and shut down the
software.. The MCM succeeds in triangulating the lattice
structure of the Dragon but it generates much more trian-
gles than LSLT does. Thus, the gain has risen up to 95.7%
when comparing our approach to MCM. Marching cubes
are sensitive to the ratio between the geometry dimension
(both global and local) and the voxel grid size. Thus, as
the density of the lattice increases, the refinement of the
voxel grid increases to maintain the chord error, which re-
sults in a larger overall number of triangles and file size.

From those results, it becomes clear that CDT is not
adapted in this case. To further compare the number of
triangles generated by the LSLT and MCM techniques,
the influence of the control parameters of each method
can be analyzed. With LSLT, each time that an interme-
diary section is added up (section 3.4), a ring of triangles
is attached to it. So, if ULSLT (0) represents the number
of triangles when 0 intermediary section has been added,
then it is obvious that the sequence is arithmetic and that
its common difference is the number of triangles q per
ring. Thus, if n intermediary sections are added, the num-
ber of triangles is directly:

ULSLT (n) =ULSLT (0) +n× q (17)

8

Figure 16: Triangulation of a lattice structure inserted in the Stanford bunny: (a) initial triangle mesh to be filled in by a lattice structure, (b) lattice
cells of size 7× 7× 7, (c1) MCM triangulation: 924644 triangles, (c2) CDT triangulation: 377106 triangles, (c3) LSLT triangulation: 94872 triangles.

Figure 17: Triangulation of a lattice structure inserted in an industrial T-fork: (a) triangle mesh used to generate the lattice cells of size7 × 7 × 7,
(b) MCM triangulation: 1130400 triangles, (c) CDT triangulation: 229888 triangles, (d) LSLT triangulation: 126488 triangles.

Figure 18: Triangulation of a lattice structure inserted in the Stanford
dragon: (a) initial triangle mesh used to generate the lattice cells of size
2×2×2, (b) MCM triangulation: 7462036 triangles, (c) LSLT triangula-
tion: 315728 triangles.

Using the same idea, one can understand when the
number of vertices per section increases, the total num-
ber of triangles raises linearly. Thus, each time a vertex
is added to the sections the number of triangles evolves
such as:

ULSLT (n) =ULSLT (0) +n× [2× (s − 1)] (18)

With s the number of sections. The common difference
is due to the fact that adding one vertex to each section
leads to the creation of two triangles between two con-
secutive sections.

With MCM, identifying the evolution of the number of
triangles is trickier as there are different cases and dif-
ferent ways of refining the grid. Here, it is assumed that
the grid is refined by linear subdivision, and that the
beam orientation is constant throughout the lattice. For
a cylindrical iso-surface, which is the case when model-
ing the beams of our lattice structures, and a grid con-
structed such as the cube length is smaller than the beam
radius, then each cube is at most crossed once by the iso-
value. From one subdivision to another, each cube is sub-
divided into 8 sub-cubes, each sub-cube is then crossed at
most once by the iso-surface. This means that the number
of triangles rises from one to q, with 1 ≤ q ≤ 8. Actually,
the value of q depends on the shape of the iso-surface, its
orientation relatively to the voxel grid and on the voxel
grid starting position. The value of q varies through iter-
ations, nevertheless the number of triangles at a given it-
eration is obtained through a multiplication of this num-
ber at the previous iteration. Therefore, the sequence is
geometric this time and can be represented such as:

UMCM (n) =UMCM (0)× qn (19)

As a conclusion, LSLT generates much less triangles
for a given chord error than the two other methods. Fur-

9

thermore, when reducing the chord error, the number of
triangles generated by MCM increases much faster than
LSLT. Thus, the gain of LSLT with respect to MCM in-
creases as the chord error decreases. Using LSLT one can
first set the section vertices in order to meet the chord
error criterion, and then directly compute the right num-
ber of intermediary sections to ensure a certain quality of
the triangles. The triangles shape quality is discussed in
section 4.3.

4.2. Number of generated beams

From the previous analysis, it is clear that, for a given
chord error, LSLT generates a lighter triangulation than
the other methods. Thus, for a given number of triangles,
LSLT should triangulate much more beams than CDT
and MCM. This has been tested and the results are pro-
vided in Table 3. The number of triangles has been indi-
rectly fixed with the file size that should not exceed 2Gb
to avoid the additive manufacturing machines malfunc-
tions. Beam radii and chord errors are the same as in Ta-
ble 1. Only the cell size has been modified to try to insert
as many beams as possible in 2Gb.

Bunny T-fork Dragon
Number of MCM 165800 170800 70000
beams to CDT 394378 822321 N/A

reach 2Go LSLT 1614100 1462000 1655000
Gain LSLT wrt MCM 9.73 8.55 23.64
Gain LSLT wrt CDT 4.09 1.78 N/A

Table 3: Gains in terms of beams when comparing our LSLT technique
to MCM and CDT.

Results clearly show that using our LSLT technique to
triangulate lattice structures allows the insertion of much
more beams for a given chord error. As a consequence, de-
signers have more freedom in the definition of their lat-
tice structures and notably on their resolution.

4.3. Triangles shape quality

Figure 20 shows the relative distribution of the trian-
gles shape quality in percentage of the total number of
triangles (vertical axis) per decile of quality (horizontal
axis) when using MCM. Here again, triangles shape qual-
ity is defined as the ratio between its inner and outer
circles [16]. First decile (decile 1) gathers together trian-
gles close to equilateral, whereas the last decile (decile
10) corresponds to very elongated triangles. Five voxel
grids have been tested while playing with the number of
squares that can fit into a beam’s section. For example,
MCM Q5 corresponds to a voxel grid which size is so that
5 squares can fit into a beam’s section. Clearly, for MCM,
increasing the precision of the voxel grid does not affect
the relative distribution of the triangles in term of quality.

Figure 20: Evolution of the quality of the triangles when changing the
size of the voxel grid (MCM).

For LSLT, the number of vertices per section affects
the chord error, thus the accuracy, whereas the num-
ber of sections affects the quality of the triangles. Those
two parameters are not correlated and can be dealt with
separately. Figure 21 shows how triangles shape quality
evolves when the number of intermediary sections in-
creases. It clearly demonstrates that as the number of
intermediary sections increases, the number of triangles
in the first deciles increases. This is also visible in Fig-
ure 19. When the number of vertices per section increases
from 6 to 12, the chord error decreases and the accuracy
increases (Figure 19.b compared to 19.c). Similarly, when
one more intermediary section is added, shape quality is
improved (Figure 19.c compared to 19.d).

Figure 21: Evolution of the quality of the triangles when increasing the
number of intermediary sections (LSLT).

As a conclusion, thanks to two independent control pa-
rameters, LSLT generates triangle meshes of better qual-
ity than MCM.

5. Conclusions and future works

Lattice Structure Lightweight Triangulation technique
(LSLT) has been introduced and the different steps of the
algorithm have been detailed. Contributions are three-
fold: (i) for a given chord error, our algorithm generates
much less triangles than CDT and MCM, which allows for
the insertion of much more beams in lattice structures;
(ii) it is not sensible to the orientation of objects with re-
spect to the reference frame; (iii) it is driven by two pa-
rameters which control separately the accuracy and the
quality of the triangulation. Following our approach is
much faster than constructing an exact model of a lattice

10

Figure 19: Evolution of the accuracy and quality of a triangulated lattice structure obtained from LSLT: (a) triangulated lattice structure, (b) with a
chord error of 15% of the beam radius and no intermediary section, (c) with a chord error of 5% and no intermediary section, (d) with a chord error
of 5% and one intermediary section.

structure and then tessellating it from its boundaries with
CDT.

This proposed approach is also interesting when con-
sidering lattice structures optimization. The adopted data
structure helps the manipulation of the lattice structure
independently of its triangulation which is generally gen-
erated at the really end of the optimization process. Just
as MCM, LSLT can be massively parallelized and thus
lead to a very fast triangulation.

Moreover, the proposed approach can be pushed fur-
ther to non uniform lattice structures. It is here proposed
to contract and expand locally the lattice dimensions as to
obtain overall 3D curvature for the lattice fibers as shown
in Figure 22. Today, Poly-Shape company commonly uses
the LSLT method to triangulate and build lattice struc-
tures.

Figure 22: (a): 3D Graph of a non uniform lattice inserted within the
Stanford bunny; (b): Front view of the triangulated mesh; (c): Side view
of the triangulated mesh.

Finally, as it is, the proposed approach only applies
to lattice structures that use beams as basic compo-
nents. Some future work could lead to extend it to a more
general case of lattice structures that would use more
complex geometric features or shapes.

References

[1] Z. Qin, G. S. Jung, M. J. Kang, M. J. Buehler, The mechanics and
design of a lightweight three-dimensional graphene assembly, Sci-
ence advances 3 (1) (2017) –.

[2] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B.
Williams, C. C. Wang, Y. C. Shin, S. Zhang, P. D. Zavattieri, The
status, challenges, and future of additive manufacturing in engi-
neering, Computer-Aided Design 69 (2015) 65–89.

[3] W. Regli, J. Rossignac, V. Shapiro, V. Srinivasan, The new fron-
tiers in computational modeling of material structures, Computer-
Aided Design 77 (2016) 73–85.

[4] L. P. Chew, Constrained delaunay triangulations, Algorithmica
4 (1) (1989) 97–108.

[5] S. Owen, A survey of unstructured mesh generation technology,
Proceedings of the 7th International Meshing Roundtable. Sandia
National Laboratories (1998) 239–267.

[6] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution
3d surface construction algorithm, SIGGRAPH Comput. Graph.
21 (4) (1987) 163–169.

[7] M. O. J.-H. C. Chien-Chang Ho, Bing-Yu Chen, Extended cubical
marching squares for surface extraction from various kinds of vol-
umetric structure, Computer-Aided Design (4).

[8] S. Raman, R. Wenger, Quality isosurface mesh generation using an
extended marching cubes lookup table, Computer Graphics Fo-
rum 27 (3) (2008) 791–798.

[9] P. Young, T. Beresford-West, S. Coward, B. Notarberardino,
B. Walker, A. Abdul-Aziz, An efficient approach to converting
three-dimensional image data into highly accurate computational
models, Philosophical Transaction of the Royal Society A. 366
(2008) 3155–3173.

[10] K. Ruohonen, Graph Theory, 2013.
[11] R. J. Wilson, Introduction to Graph Theory, 5th Edition, Prentice

Hall/Pearson, 2010.
[12] A. Gray, E. Abbena, S. Salamon, Modern Differential Geometry of

Curves and Surfaces with Mathematica, 3rd Edition, Chapman &
Hall/CRC, 2006.

[13] R. Lou, J.-P. Pernot, A. Mikchevitch, P. Véron, Merging enriched
finite element triangle meshes for fast prototyping of alternate so-
lutions in the context of industrial maintenance, Computer-Aided
Design 42 (8) (2010) 670–681.

[14] G. Mei, J. C. Tipper, Simple and robust boolean operations for tri-
angulated surfaces, CoRR abs/1308.4434 (2013) –.

[15] S. Landier, Boolean operations on arbitrary polygonal and polyhe-
dral meshes, Computer-Aided Design (85) (2017) 138–153.

[16] P. P. Pébay, T. J. Baker, Analysis of triangle quality measures, Math-
ematics of computation 72 (244) (2003) 1817–1839.

11

[17] W. Zhao, S. Gao, H. Lin, A robust hole-filling algorithm for trian-
gular mesh, The Visual Computer 23 (12) (2007) 987–997.

[18] J.-P. Pernot, G. Moraru, P. Véron, Repairing triangle meshes built
from scanned point cloud, Journal of Engineering Design 18 (5)
(2007) 459–473.

[19] Y.-C. H. Lung-Chun Wang, Hole filling of triangular mesh seg-
ments using systematic grey prediction, Computer-Aided Design
44 (12) (2012) 1182–1189.

12

