
Automatic fitting of conical envelopes to free-form surfaces for flank CNC machining

Pengbo Boa, Michael Bartoň∗,b, Helmut Pottmannc

aSchool of Computer Science and Technology, Harbin Institute of Technology,
West Wenhua Street 2, 264209 Weihai, China

bBCAM – Basque Center for Applied Mathematics,
Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain

cCenter for Geometry and Computational Design,
Vienna University of Technology, Wiedner Hauptstr. 8-10/104, A-1040 Vienna, Austria

Abstract

We propose a new algorithm to detect patches of free-form surfaces that can be well approximated by envelopes of a rotational
cone under a rigid body motion. These conical envelopes are a preferable choice from the manufacturing point of view as they
are, by-definition, manufacturable by computer numerically controlled (CNC) machining using the efficient flank (peripheral)
method with standard conical tools. Our geometric approach exploits multi-valued vector fields that consist of vectors in which the
point-surface distance changes linearly. Integrating such vector fields gives rise to a family of integral curves, and, among them,
linear segments that further serve as conical axes are quickly extracted. The lines that additionally admit tangential motion of the
associated cone along the reference geometry form a set of candidate lines that are sequentially clustered and ordered to initialize
motions of a rigid truncated cone. We validate our method by applying it on synthetic examples with exact envelopes, recovering
correctly the exact solutions, and by testing it on several benchmark industrial datasets, detecting manufacturable conical envelope
patches within fine tolerances.

Key words: 5-axis CNC machining, flank milling, free-form surface, tangential movability, shape manufacturing

1. Introduction & Motivation

Free-form surfaces are a popular modeling tool for engi-
neers, architects, and designers in general [6]. Most commonly
represented as non-uniform rational B-splines (NURBS), these
surfaces are supported by a vast majority of the state-of-the-art
computer-aided design (CAD) software. Using such software,
the modeling stage of a free-form surface is intuitive via local
adjustment of the control points. On the other hand, the manu-
facturing (or realization) stage is difficult, particularly because
of the very diverse nature of a general free-form surface. An im-
portant step towards by-definition-manufacturable surfaces has
been taken recently by proposing an interactive modeling tool
with developable surfaces [28]. However, these surfaces are not
generally free-form, and therefore the problem of accurate ap-
proximation of a general doubly-curved surface is still highly
desirable.

Driven by industrial demands, efficient and high-precision
manufacturing methods of free-form surfaces have been an ac-
tive field for several decades [8, 24, 2, 15, 4, 5, 20, 1]. Man-
ufacturing of free-form objects in a serial manner is typically
realized using molds where a material (e.g., heated to become
flexible) is pasted between the molds to form the desired shape.

∗Corresponding author
Email addresses: pengbo@hitwh.edu.cn (Pengbo Bo),

mbarton@bcamath.org (Michael Bartoň),
pottmann@geometrie.tuwien.ac.at (Helmut Pottmann)

The leading manufacturing technology of free-form molds is 5-
axis computer numerically controlled (CNC) machining which
is a subtractive technology where a rotational tool is navigated
along a workpiece, removing redundant material to shape the
desired geometry. Depending on the contact between the ma-
chining tool and the design surface, various strategies are known.
Whereas the most popular approaches of flat-end and rounded-
end milling consider only point-point contact between the tool
and the machined surface [19, 9, 34], a more efficient strategy
is known to be flank machining [14], where the tool possesses a
tangential contact with the design surface Φ along a 3D curve.
The advantage of flank milling is not only the fact that one re-
moves more material by a single sweep of the tool, but more
importantly, this strategy is by definition scallop-free because
of the tangential contact along the whole contact curve. To ini-
tialize the milling tool to meet the tangential contact condition
along a whole 3D curve (infinitely many points), however, is
theoretically impossible unless the surface is an exact envelope.
Therefore, it is difficult to find a good approximation that glob-
ally minimizes the error between the design surface and its ap-
proximation when compared to single contact point approaches.

Our work belongs to the category of “digital” reverse engi-
neering, where a general free-form surface is given as an input,
and the goal is to find sub-patches that can be machined to high
precision with flank milling. In this work, we restrict ourselves
to conical tools and derive an automatic algorithm that detects
conical envelope patches.That is, given an input surface Φ and
parameters defining a conical cutter, we seek sub-parts of Φ

1

Ψ(0)

ch(0)

Ω
Ψ(1)

R

Figure 1: An envelope Ω of a one-parameter motion of a general surface of rev-
olution Ψ. At each time instant t, Ψ(t) touches Ω along a 3D curve known
as characteristic ch(t) (red). The trajectory of the rotational axis defines a
ruled surface (yellow). High quality approximation of free-form surfaces by
envelopes of general rotational surfaces has been studied recently [3] (figure
courtesy of Bo et al. [3]).

that can be well-approximated by 3D motions of a truncated
cone within a predefined tolerance.

2. Previous work and contributions

Our research belongs to the flank machining category [14],
where the design surface and machining tool share a tangential
contact along a 3D curve (known as characteristic), see Fig. 1.
In particular, we focus on the case of conical milling tools [17,
18, 37, 20, 8, 27], which are the most frequently used tools for
flank milling [26]. Typically, conical milling tools are provided
by a ball tip, see Fig. 2, that for the simplicity of the argument
we exclude from our considerations, and simplify the tool as
a truncated cone. Truncated cones need only three degrees of
freedom to specify the meridian which is a simplification when
compared to cutters where the meridian is a general B-spline
curve [3].

A special subclass are cylindrical cutters. Their axes have
zero slope with respect to the tangent plane of the surface. Sen-
atore et al. [25] provide analysis with respect to the maximal
size of the cylindrical tool in order to cover large patches while
satisfying the error between the machined and designed sur-
face. Sprott and Ravani [27] present an algorithm that controls
the under- and overcutting of the machined surface.

A lot of research has been devoted to ruled surfaces [8, 24,
21, 22, 12, 13, 32, 33, 29] and references cited in [14]. Ruled
surfaces can be seen as limits of general envelopes when the
moving surface of revolution degenerates to a single line. This
fact, in the context of CNC-milling, makes a strong restriction
on the milling tool, as to meet fine numerical tolerances for ap-
proximation of non-developable ruled patches, the milling tool
must converge to a straight line. Elber and Fish [8] approximate
a general free-form surface using piece-wise ruled surfaces. A
subdivision strategy is applied, resulting in a large number of
patches, each patch requiring the shape of the tool to be a cylin-
der with a tiny radius (a straight line in the limit). In contrast,
we approximate the input surface by envelopes of conical tools
of arbitrary given slope and thickness.

Optimization-based methods initialize the trajectory of the
axis (a ruled surface), and sequentially optimize only the mo-
tion of the surface of revolution [24, 13, 35], or both the motion

(a) (b) r1

r2

L

Figure 2: (a) A conical milling tool typically posses a rounded tip (red). In our
considerations, we disregard this minor part and consider only the main body,
i.e., the truncated cone. (b) Truncated cone is determined by three parameters,
e.g., top and bottom radii r1, r2, and axis length L. Alternatively, a median value
w of the distance function and its slope c can be used instead of the boundary
radii.

and the shape of the cutter [36, 20, 3]. Redonnet et al. [24]
consider a cylindrical cutter for machining ruled surfaces and
optimize its position such that it possess a tangential contact to
three particular lines: one ruling of the surface and two tangent
lines of the rail curves of the ruled surface.

Zhu et al. [20] simultaneously optimize the tool’s motion
and shape, considering physical constraints such as the stiff-
ness of the cutter. The initialization stage, however, is achieved
using the algorithm of Bedi et al. [2] that locally improves the
position of the axis at one time instant to meet the tangential
contact constraints at the endpoints of the tool. On the con-
trary, our strategy explores the space of axes globally to find
the best tangentially-movable line segments. An algorithm that
recognizes a surface of revolution from its implicit equation,
and computes its axis and meridian, has been presented recently
[31].

Aprroximation of free-form surfaces by envelopes of gen-
eral surfaces of revolution were studied in [3] and conical en-
velopes were considered as a special case. A surface of revolu-
tion and its trajectory are simultaneously optimized to improve
the approximation quality. The initialization stage, however,
requires users’ intervention to indicate the motion of the cutter.
Such a human interaction in the automated machining process
is highly undesirable as it requires a certain experience of the
user, it is time consuming (some initial trajectories do not lead
to high quality approximation), and is unrepeatable. In contrast,
the research of this paper focuses on fully automatic initializa-
tion of the conical tool motions.

Gelfand and Guibas [11] present a reverse-engineering al-
gorithm that seeks segmentation of the input data (point clouds)
to find parts that can be well approximated by simple kine-
matic objects (planes, spheres, and cylinders). These kinematic
surfaces admit tangential glidding motions, i.e., are so called
slippable, which typically corresponds to movable mechanical
components of CAD objects.

Contributions. We aim at a fully automatic algorithm that re-
turns an atlas of conical envelopes that well approximate the
input free-form surface. The main contribution (Section 4) is
an initialization strategy that detects sequences of straight lines
that can serve as discrete positions of a rigid truncated cone.
We explore the space of candidate lines globally which is the

2

p⊥

p

τ

Γ

Φ

Figure 3: First and second order surface approximation. For a given point p,
and a free-form surface Φ, the approximation of the distance function d(p,Φ)
can be efficiently computed using (8). The first (plane τ) and second (osculating
paraboloid Γ) order approximation of Φ at p⊥ are shown.

main distinction to the previous work [20, 2, 3], where the ini-
tial motion of the cutter (a ruled surface) is given as an input. In
contrast, our algorithm seeks automatically such ruled surfaces.
In particular, we do the following:

? Given a point p in 3-space and a design surface Φ, we
use the second order approximation of Φ, see Fig. 3, ana-
lyze the point-surface distance, and determine directions
in which the distance changes linearly, which is a neces-
sary condition for a conical axis.

? We introduce a multi-valued vector field and its integra-
tion gives rise to integral curves with linear distance func-
tion to Φ. Among these curves, we detect linear segments
that admit tangential motion of the cone along Φ.

? Candidate lines that correspond to a particular truncated
cone are clustered and sequentially ordered to form an
initial trajectory of the cone axis (a ruled surface). The
motion of the cone then undergoes a global optimization
to minimize the L2-error between the design surface Φ

and its approximation, a conical envelope Ω.

3. Distance function

Our aim is to detect several discrete positions of a rigid con-
ical cutter Ψ (surface of revolution with a linear meridian) such
that they all fit well the input surface Φ. Our algorithm is based
on several facts from differential geometry. We first analyze the
point-distance function.

3.1. Distance function of a surface

Let the design surface Φ be given and let d be the distance
between p ∈ R3 and Φ, i.e.,

d
R3 −→ R, (1)

and let us consider its graph G, a hypersurface in R4.
At a fixed point p, consider all 3D lines l passing through

p. We seek their directional vectors v such that the second di-
rectional derivative of d in v vanishes, i.e.,

∇v(∇vd) = ∇
2
vd = 0, (2)

(a)

d1

n

p = (0,h)

(x1,x2)

(0,ρ)

p⊥

γ

(b)

d1
d2

n

u1

u2

γ1

γ2

p⊥

Figure 4: Geometry used for the approximation of the point-hypersurface dis-
tance function. (a) 2D scenario: a curve at a point p⊥ is approximated by its
osculating circle γ with a radius ρ . The second order approximation of the dis-
tance function d between x = (x1,x2)

T and γ is given by (6). (b) 3D analogy:
a surface is approximated by an osculating paraboloid at a hyperbolic point
(red). The principal frame (green) is shown together with the osculating circles
(γ1 and γ2) lying in the principal normal planes {p⊥,n,d1} and {p⊥,n,d2},
respectively. The asymptotic directions (yellow) satisfy (3).

which can be seen as the asymptotic directions on the graph
of d. In the context of tangential-movability of a conical tool
along Φ, l being its axis, condition (2) seeks the best candidates
because the distance function changes linearly as we move from
p in the direction v. Therefore, the meridian is locally a straight
line.

Eq. (2) is a quadratic constraint in v, v ∈ R3, and therefore
the solutions form a quadratic cone. Moreover, we will show
that this cone reduces to a pair of planes intersecting in the sur-
face normal that passes through p.

3.2. Degenerate cone of admissible directions

Firstly, we observe that Φ and any of its offsets Φo f f share
the same distance functions (just translated by the value of the
offset distance), and therefore we may assume that arbitrary p
lies on some Φo f f .

At any point p, the constraint (2) on candidate directions v
reads as

vTHv = 0, (3)

which is a quadratic form in v, H being the Hessian matrix of
d. This quadratic cone, however, will be shown to degenerate
to a pair of planes (real or complex, depending on the sign of
det(H)).

If p is a hyperbolic point on Φo f f , (3) is a pair of real planes,
and there are three obvious real directions emanating from p
that satisfy (3): two asymptotic directions u1 and u2, and the
surface normal vector n = u1×u2. Along the asymptotic lines,
d is identically zero, while along n the distance varies in a linear
fashion with unit speed (∇nd = 1).

Consider the principal frame {d1,d2,n} at p ∈Φo f f . Since
the distance function is (up to the second order) linear in the
direction of n, and constant in u1, and u2, (3) holds for all these
three vectors. Moreover, expressing H with respect to the prin-
cipal frame {d1,d2,n}, (3) becomes

a1v2
1 +a2v2

2 +a3v2
3 = 0, a1,a2,a3 ∈ R, (4)

3

Surface seg-
mentation using

VSA, Section 4.2

Computation of
admissible direc-
tions and integral

curves, Sec-
tions 4.1 and 4.3

Specific cutter
and line trimming,

see Fig. 11 and
Section 4.5

Clustering &
ordering of

candidate lines,
Section 4.6

Global optimiza-
tion, Section 4.7

Figure 5: Algorithm overview.

and since n = (0,0,1)T must comply with (4), it follows that
a3 = 0. Finally, this implies that the quadratic cone (3) decom-
poses to a pair of planes {p,n,u1} and {p,n,u2}.

3.3. Approximation of the distance function

We want to approximate the distance function d of a surface
Φ at a point p, p 6∈Φ. For the sake of simplicity, let us consider
the 2D analogy first, see Fig. 4(a). Let p lie outside a curve
φ at distance h and let γ be a second order approximation of
φ , namely the osculating circle at the closest point p⊥. With
x = (x1,x2)

T ∈ R2, the exact distance d(x,γ) is

d(x,γ) = ρ +
√

x2
1 +(x2−ρ)2, (5)

−ρ being the radius of γ . Direct computation of the Taylor
expansion of d at p = (0,h)T gives

d̃(x,γ) = x2 +
1

2(h−ρ)
x2

1 (6)

which is the second order approximation of d, that is,

d(x,γ) = d̃(x,γ)+O(x3
i), i = 1,2. (7)

Due to symmetries, the generalization of (6) to 3D becomes

d̃(x,Γ) = x3 +
1

2(h−ρ1)
x2

1 +
1

2(h−ρ2)
x2

2 (8)

where Γ is the osculating paraboloid of Φ at p⊥, and −ρ1,2 are
the radii of the osculating circles in the principal normal planes,
see Fig. 4(b).

4. Initialization algorithm for fitting conical envelopes

Our algorithm first investigates admissible vector fields in
which the surface distance d changes linearly. Variational shape
approximation is used to segment the input surface, and straight
integral curves that admit tangential motion of the associated
cone along the surface are computed. These line segments are
clustered and ordered to define ruled surfaces, initial trajecto-
ries of a conical cutter. Finally, an optimization routine is ap-
plied to globally minimize the error between the input geometry
and the conical envelope. An overview of our whole framework
is shown in Fig. 5.

c

c n

p⊥

p

α1
α2

τ
d1

d2

Figure 6: Admissible directions of a given slope. In general, at most four di-
rections (yellow) of a constant slope emanating from p that solve (3) exist. All
solutions of (3) form a singular cone, i.e., a pair of planes α1 and α2. The pa-
rameter c is the coordinate in the normal direction n, and controls the slope of
l with respect to the tangent plane τ of Φ at p⊥.

4.1. Computation of admissible directions

Let us consider p 6∈Φ to be expressed in the principal frame
{d1,d2,n} of its footpoint (orthogonal projection) p⊥ on Φ, that
is, p = (0,0,h)T, see Fig. 6. Let us further consider a line l, the
milling axis of a conical tool, passing through p such that the
axis possesses a constant slope with respect to Φ. We wish to
find lines such that the distance function d to Φ changes lin-
early (conical tool) when moving along l. This condition on
the directional vector is exactly expressed by (3). Since (3) is
a singular cone, i.e., a pair of planes passing through the sur-
face normal pp⊥, the computation of admissible directions v
proceeds as follows.

Let v, ‖v‖= 1 be expressed in the principal frame {d1,d2,n}
and let c be the parameter to control the slope of l with respect
to Φ, defined as c = v3, c ∈ [0,1]. That is, c = 0 corresponds to
lines parallel to Φ while c = 1 is the case when l = pp⊥.

The Hessian of (8) is diag(1
h−ρ1

, 1
h−ρ2

,0), and therefore (3)
becomes

v2
1

h−ρ1
+

v2
2

h−ρ2
= 0, (9)

which together with

v2
1 + v2

2 = 1− c2 (10)

4

α

n

p⊥

p

d1

d2

c

Figure 7: In the limit case when p⊥ is a parabolic point on Φ (ρ1 = ∞), Eq. (11)
gives only two admissible directions: [±

√
1− c2,0,c]T (yellow) for fixed c.

These directions lie in the normal plane α = {p⊥,d1,n}.

gives

v(h,ρ1,ρ2,c) =


±
√

1− c2
√

h−ρ1
ρ2−ρ1

±
√

1− c2
√

h−ρ2
ρ1−ρ2

c

 . (11)

That is, the admissible directions at p depend on the second
order approximation of the surface Φ at its footpoint p⊥ (pa-
rameters ρ1 and ρ2), the distance h between p and p⊥, and the
slope parameter c.

Observe that for c= 0, the four admissible directions in (11)
degenerate to two: the asymptotic directions on Φo f f . If addi-
tionally h = 0, these directions are the asymptotic directions on
Φ. If p⊥ is a hyperbolic point on Φ, Eq. (11) gives in general at
most four real admissible directions at p; these vectors lie in the
spans of the normal planes α1 and α2, see Fig. 6. As one oscu-
lating radius increases, e.g., ρ1→ ∞, the two planes close their
opening angle and become one in the limit (parabolic point),
see Fig. 7.

Remark 1. Note that while hyperbolic points p⊥ on Φ define
good local neighborhoods of Φ where Eq.(11) admits real so-
lutions, there exist admissible directions also in the case when
p⊥ is elliptic. In such a case ρ1ρ2 > 0 and, assuming ρ1 < ρ2,
p must lie on the surface normal of Φ at p⊥ between the oscu-
lating centers, i.e., h ∈ [ρ1,ρ2].

4.2. Variational shape approximation
We use variational shape approximation (VSA) from [7] to

segment the reference geometry. Such a segmentation is based
on a L 2,1 metric that uses the normal deviation between the
input surface and its polygonal approximation. We recall

L 2,1(Ri,Pi) =
∫∫

x∈Ri

‖n(x)−ni‖2dx, (12)

where Ri is the segmentation of Φ and Pi are so called planar
proxies. These proxies Pi = (pi,ni), i.e. pairs of points and
normal vectors, are the unknowns in the variational formulation
that seeks the segmentation of Φ that minimizes (12), see [7].
A segmentation of an exact envelope is shown in Fig. 8.

Φ

(a) (b)

6

•

n

p

Figure 8: (a) A segmentation of Φ using VSA [7] with n = 300 proxies. Each
polygonal segment (color coded) corresponds to one proxy; the barycenters of
polygons are depicted as green dots. VSA of Φ offers a favorable sampling
of the surrounding 3D space as the error metric (12) considers deviation of
normal directions. (b) At each barycenter p, we sample points along the surface
normals to compute the candidate lines (cyan).

Φ

n = 100 n = 200 n = 300

Figure 9: VSA of an exact envelope Φ, that was generated by a special motion
where the tool and Φ are in a line contact. Observe that the VSA segmentation
yields narrow rectangles that follow the direction of characteristics (rulings) on
Φ and, therefore, serves also as a detector of these singular cases. Results for
three particular numbers of proxies are shown.

Moreover, VSA helps us to detect singular parts of Φ that
are developable surfaces. In such a case, the characteristic ch
is a straight line, and the normal vector of Φ remains constant
along ch. This results in low values of the L 2,1 functional along
ch. In the context of VSA, this scenario corresponds to a seg-
mentation of Φ into narrow rectangles with the dominant edge
aligned with ch as seen in Fig. 9. Such situations with linear
characteristics need to be detected and avoided as the conical
generator is not unique and any line that lies in the normal plane
of Φ and contains ch is a good candidate.

5

Φ
p⊥i

pi
pi+1

pi+4

vi

vi+1

Figure 10: Computing integral curves. Starting at pi in an admissible direction
vi, the next iteration point is defiend as pi+1 := pi+δvi. The admissible vectors
(green) represent directions in which the surface distance d changes linearly
(note several admissible directions exist at each point, see also Fig. 6). The
next admissible direction is chosen such that the integral curve is as straight as
possible. The numerical threshold is governed by an angular deviation between
two consecutive admissible vectors (visualized as transparent cones). Three
succesful integration steps are shown.

4.3. Candidate lines
Having the VSA segmentation of Φ, we sample the points

along the surface normals passing through the barycenters of
the VSA polygons. At each point on a surface normal, we com-
pute the admissible directions v that satisfy (2), see also Fig. 6.
This yields an initial value problem and its solutions are sets
of space curves shown in Fig. 8(b). We recall that these curves
have the property that the distance from Φ varies linearly.

Note that these integral curves are not, in general, straight
lines. Among the integral curves, we seek linear segments.
Starting at an initial point pi in an initial admissible directional
vector vi, see Fig. 10, we integrate the multi-valued vector field,
looking for a consecutive admissible vector vi+1 that satisfies

angle(vi,vi+1)< εlinear, (13)

where the parameter εlinear directly controls the straightness. If
not stated differently in the examples section, the default value
is set εlinear = 2◦. The integration terminates once (13) is vio-
lated. The result is a nearly straight curve that is approximated
by a single linear segment, see e.g. [10, 23, 30] for curve fitting
algorithms.

4.4. Movability analysis
So far, we have studied only metric relations between a line

and a surface, i.e., we have not imposed the movability con-
straint yet. Observe that we aim to approximate Φ by an enve-
lope of a conical tool and, therefore, the cone must be tangen-
tially movable along Φ. We use the movability constraint now
to filter out those lines that do not admit a rigid body motion
along Φ.

We follow the prior work on movability analysis of general
surfaces of revolution along free-form surfaces [3], and define
an objective function expressing the tangential movability as

F(x) =
1
n

n

∑
i=1
〈vi,

pi−p⊥i
‖pi−p⊥i ‖

〉
2

= xAxT → min, (14)

with the constraint

vmvT
m = 1, (15)

where n is the number of sampled points pi on l, p⊥i are their
orthogonal projections onto Φ, vi are the velocity vectors as-
sociated to pi, and vm is the velocity at the midpoint m of l.
The unknown x is a 5-dimensional vector that corresponds to
an infinitesimal rigid body motion (a vector field that preserves
length of l up to the first order), see e.g. Sections 3 and 4.1 in
[3] for a detailed explanation.

(a)

p = l(0)

m
q

w

d(s)

L = ‖pq‖ (b)

Φ

(c)

Figure 11: Distance function. (a) A conical axis l(s) = pq, s ∈ [0,1], L being
its length and m its midpoint, m = l(1

2), possesses a linear distance function
d(s) from Φ. The parameter c controls the slope of l with respect to Φ, see
also Eq. (10) and Fig. 6, and therefore c = (d(1)− d(0))/L. (b) A family of
candidate lines of the same parameter c. That is, their distance functions to Φ

possess the same slope (c).

The objective function (14) is quadratic and has a unique
non-trivial minimizer x∗ that corresponds to the best possible
instantaneous motion that moves the cone, l being its axis, as
tangentially as possible along Φ. We evaluate F at x∗ to define
the gliding energy Fl . We recall that when Φ is an exact en-
velope, Φ ≡ Ω, Fl ≡ 0 at every time instant and, therefore, we
look for lines with low values of Fl .

At this point, our algorithm returns a set of straight lines
that correspond to cones that are tangentially movable along Φ

where this movability is measured in terms of the gliding energy
Fl . Straightness is controlled by εlinear, Eq. (13), and movability
is controlled by the upper bound εgliding on the gliding energy
Fl . The default value is set εgliding = 0.005. These straight lines
all correspond to cutters with the same slope, yet these curves
may have different lengths and mean of their linear distance
functions, see Fig. 11(c).

4.5. Specific conical cutter
The conical cutter enters our algorithm as an input parame-

ter since, typically, a set of milling tools is known a-priori the
milling process. We now incorporate the three parameters that
determine the specific truncated cone: the slope c, width w, and
length L, see Fig. 11. Defining the width of the tool as the
value of the distance function at the midpoint m, see Fig. 11(a),
our algorithm extracts lines that correspond to a particular cut-
ter. Distance functions of a set of lines with the same slope are
shown in Fig. 11(c).

Fig. 12 shows an example of movable lines as a function of
the cutter width w and slope c. Our analysis reveals the trun-
cated cone parameters that are the most convenient for a par-
ticular general free-form surface. At this point, our algorithm
returns a set of line segments with equal lengths that correspond

6

(c,w) = (0.02,0.01)

#lines = 936

(0.1,0.02)

#lines = 2064

(0.2,0.01)

#lines = 2769

(0.1,0.04)

#lines = 5954

(0.5,0.04)

#lines = 8736

(0.4,0.02)

#lines = 23122

Figure 12: Families of the candidate lines as a function of the shape of the conical milling tool. Straight line segments (blue) of constant length L = 0.1 are shown;
the line endpoints are highlighted in yellow. Two parameters, the slope c and width w, that control the shape of the truncated cone vary. For each family, the number
of lines is displayed, indicating (c,w) = (0.4,0.02) as the most preferable cone for this specific free-form surface.

to discrete positions in 3D of a specific truncated cone (slope,
width, and length) that is tangentially movable along Φ. The
distance function d(s) gives us the range [d(0),d(1)] for sam-
pling the points on the surface normals, see Section 4.3.

4.6. Line clustering and ordering
A set of candidate lines of the same length is further pro-

cessed to extract subsets that correspond to ordered positions
of a rigid conical cutter. In particular, this requires clustering
lines to groups that represent a single approximation patch, and
ordering the lines to define a smooth and fair initial ruled sur-
face. We now describe these steps in detail.

Line proximity. In order to cluster nearby lines to groups, we
introduce a line proximity measure that aims at categorizing
lines according to proximity of the underlying conical tools.
Let mi, vi, and wi be in turn the line midpoint, unit directional
vector, and unit vector pointing to Φ, i.e., wi = (m⊥i −mi)/w,
see Fig. 13. We define the proximity measure between two lines
as

P(l1, l2) = ‖m1−m2‖2+ω1‖v1−v2‖2+ω2‖w1−w2‖2, (16)

where the weight ω1 votes for parallel lines and ω2 seeks mo-
tion with small deviation of the footpoint (characteristic).

k-means clustering. We perform k-means clustering sub-routine
based on the measure (16) to reduce the number of candidate
lines. Since this set may contain hundreds to thousands of lines,
see Fig. 12, the clustering serves as a filter to obtain only mod-
erate number of lines that can be quickly grouped and ordered.

Having n movable lines and an integer k that defines the de-
sired number of clusters, the clustering problem seeks k lines
(called centers) such that the mean square distance (16) be-
tween centers and the cluster elements (other lines) is mini-
mized. We use the k-means clustering algorithm of Kanugo
et al. [16] in our implementation, see Fig. 14.

Φ
m⊥1

w1

v1

q1

m1

p1 m2

Figure 13: Entities appearing in the proximity measure (16). The proximity
reflects the distance deviation between midpoints mi, directional vectors vi,
and projection directions wi, i = 1,2.

Line ordering. To order lines into meaningful sequences, see
Fig. 14(d), we use again the VSA segmentation introduced in
Section 4.2. Let li be a line from the set of candidate lines M .
We first detect all VSA-segments that contain footpoints of li.
In our discrete setup, li is sampled by n = 20 points pi. This
projection defines a part of Φ that can be well approximated by
a single cone. Our aim is to approximate large portions of Φ by
finding recursively lines from the set M that cover neighboring
VSA-segments.

We use the VSA datastructure which, for each VSA-segment,
stores the information of its neighboring patches. Let Si be a set
of patches associated to li, i.e., set of segments that contain foot-
points of li. We say patch P is a neighboring VSA-segment of
Si if it shares a common edge with Si. We denote by Ni the set
of neighboring patches of Si, see Fig. 15. A line l? is said to be
a neighbor of li, if one of its footpoints belongs to Ni.

Once a line l is provided by the set of its neighbors, we rank
them according to (16) and parse this ranked list to select a line
that admits motion which satisfies

angle(vi,ui)> εshear, (17)

7

(a)

(b)

(c)

(d)

Figure 14: Clustering and ordering. (a-c) Two levels of line filtering based on
k-means clustering with the line proximity measure (16) are shown: the initial
number n0 ∼= 5K of candidate lines (a) is in turn reduced to (b) n1 = 500 and
(c) n2 = 150. (d) The lines are grouped (color-coded) and ordered (thin black)
to form initial discrete ruled surfaces.

where ui is the unit vector determined by the midpoints, i.e.,
ui = (mi+1−mi)/‖mi+1−mi‖, see Fig. 13. This requirement
eliminates the neighboring lines that would generate a shear
motion, i.e., the line would move in the direction of its direc-
tional vector.

4.7. Initial ruled surface and motion optimization
Our initialization stage returns sets of ordered lines. For

each set, a ruled surface that interpolates the ordered lines is
constructed

R(t,s) = (1− s)p(t)+ sq(t), [t,s] ∈ [0,1]× [0,1]. (18)

where p(t) and q(t) are the two boundary curves, cubic B-
splines in our implementation, and the input rulings correspond
to uniformly distributed parameter values of t.

We follow the optimization approach introduced in [3] with
the additional constraint on the known linear meridian. We uni-
formly sample the ruled surface R both in t and s parametric
directions and obtain ri j := R(ti,s j), i = 1, . . . ,m, j = 1, . . . ,n.
At every time instant t, the distance function between the line

Si Ni

p
q

Figure 15: VSA-neighbors. A line li = pq is sampled and the union of VSA-
segments containing their footpoints defines a set Si (yellow). A set of all neigh-
boring VSA-segments of Si, Ni, is shown in green.

r31

r34

Φ

d4
d1

Figure 16: Global optimization. The ruled surface (green) is sampled by m×n
points ri j (here m = 9, n = 4). The prescribed distances d1, . . . ,d4 (transparent
spheres) along the rulings change linearly and are determined by the meridian
of the cone. The actual distances are obtained by computing the footpoints of
ri j on Φ.

and surface must obey the linear distance function d(s), see
Fig. 16. The tangential movability objective is formulated as
a minimization problem

Fprox(p,q) =
1

mn

n

∑
j=1

m

∑
i=1

(dist(ri j,Φ)−d j)
2→ min (19)

subject to the rigidity constraints

Frigid(p,q) = 〈p(ti)−q(ti),p(ti)−q(ti)〉−L2 = 0, (20)

where dist(,) is the actual point-surface distance and d j, j =
1, . . . ,n are the samples of the known distance function d(s) in
Fig. 11(a). The unknowns in the minimization are the control
points of the two B-spline curves p(t) and q(t).

We further denote by r⊥i j the footpoints on Φ, and ni j the
unit normals at r⊥i j oriented towards ri j. The point-surface prox-
imity constraint then reads as

Fpoint(p,q) = 1
mn

n
∑
j=1

m
∑

i=1
‖ri j− (r⊥i j +d jni j)‖2,

Fplane(p,q) = 1
mn

n
∑
j=1

m
∑

i=1
(〈ri j− r⊥i j ,ni j〉−d j)

2,
(21)

8

(a)

R1

R2

Φ

(L,c,w) = (0.2,0.1,0.02)

(b)

−7e−4 8e−4

R1

dist(Ω,Φ)

Ω1

(c)

Ω2

R2

Figure 17: Approximation of a general free-form surface by conical envelopes. (a) The input surface Φ is approximated by four conical envelopes of a specific
conical tool (determined by (L,c,w)). The ruled surfaces (yellow) represent the motions of the conical axis. (b,c) A zoom-in on the regions of R1 and R2,
respectively. The framed figures show the corresponding envelopes Ωi, i = 1,2 color-coded by the signed error from the input surface Φ.

which correspond to a point-point and point-plane distance com-
ponents, respectively.

To achieve a fair motion, we aim at fairness of the two
boundary curves, expressed by

Ffair(p,q) = 1
m

m−1
∑

i=2
(p(ti−1)−2p(ti)+p(ti+1))

2

+ 1
m

m−1
∑

i=2
(q(ti−1)−2q(ti)+q(ti+1))

2.
(22)

The final objective function becomes

Fapprox(p,q) = µ1Fplane(p,q) + µ2Ffair(p,q)

+ µ3Fpoint(p,q) + µ4Frigid(p,q),
(23)

adding the rulings rigidity (20) as a soft-constraint. The op-
timization problem is solved using the Gauss-Newton method
in all examples shown in the paper. If not stated differently in
Section 5, we use the default values µ1 = 1, µ2 = µ4 = 0.1, and
µ3 = 0.001.

5. Results, discussion, and limitations

Results obtained by our algorithm when applied to a gen-
eral free-form surface are shown in Fig. 17. This CAD geome-
try is a benchmark industrial model for toolpath generation and
material removal simulation algorithms. The parameters of the
truncated cone are L = 0.2, c = 0.1, w = 0.02 for a reference
surface with normalized bounding box. The color coding rep-
resents the one-sided signed error ε between the envelope (Ω)
and the designed surface (Φ), i.e.,

ε = min
i, j

(dist(ri j,Φ)−d j), (24)

measured over a discrete set of samples ri j of the ruled surface
R. Observe that more than 75% of the surface area is covered
by only four large conical envelopes. We emphasize that all
these four patches correspond to a single milling tool which is a
considerable improvement, e.g., to [3, Figs. 14 and 18], where
different tools are needed for each large patch. This fact is a
significant advantage as it avoids the milling tool exchange that

Φ

R1

Ω1

Ω2

R2

−6e−4 4e−4
dist(Ω,Φ)

Figure 18: Impeller. Two largest motions of a conical cutter (L,c,w) =
(0.2,0.1,0.02) detected by our algorithm when applied to one blade of the im-
peller (framed). The envelopes are color-coded by the signed distance error
(24) where the blue areas indicate overcutting.

is typically slow and involves human interaction. Fig. 18 shows
results on another industrial dataset, a blade of an impeller. Ob-
serve that our solutions meet fine numerical threshold that for a
blade of a size of 10cm corresponds to the absolute machining
error 0.04− 0.06mm. Sets of large envelopes (envelope area
> 5% of the surface area) that cover the same surface for two
additional cone parameters are shown in Fig. 19.

A synthetic example where the input surface is an exact en-
velope is shown in Fig. 20. The envelope corresponds to a ro-
tational motion where the rotational and conical axes are skew
(non-singular case). The exact solution consists of two one-
parameter families of straight lines that are correctly detected
by our algorithm. Fig. 20 further shows that deviating the gen-
erating cone either in the c- or w-direction reduces the number

9

(0.1,0.1,0.02) (0.1,0.1,0.04)

Figure 19: Coverage of the free-form surface shown in Fig. 17 by envelope patches for other two input parameters (L,c,w). For each patch, we show the initial and
final position of the conical cutter (green) and the trajectory of the conical axis (yellow). All envelopes meet the error threshold ε = 5e−4, see (24), measured at
3000 points, uniformly sampled in the parameter domain of the ruled surface.

of candidate lines.
All parameters and numerical thresholds of our algorithm

are shown in Table 1. For all the examples shown in the paper,
the total computation takes few minutes. For example, for the
surface shown in Fig. 17, the computational load is: VSA seg-
mentation and mesh preprocessing (13s), candidate lines (16s),
movability analysis (7s), k-means clustering and line ordering
(4s), and optimization (cca 40s per patch) on a laptop with 16G
RAM memory, 4-core CPU, 2.2 GHz. The optimization param-
eters were set equally as in [3]. The number of VSA clusters
was set based on the experiment showed in Fig. 9 that aimed
at finding sufficient number of clusters to detect singular en-
velopes (developable patches). The numbers of samples on the
ruled surface were set experimentally by roughly requiring the
same distribution of sampling points in s- and t-directions. The
total number of sampled points were desired to be moderate
(few thousands) to keep the total computation times within a
few minutes.

Our results approximate the input geometry within toler-
ances that meet the fine industrial requirements. In our exam-
ples, see e.g. Figs. 17 and 19, we show the largest patches since
our algorithm is intended as a finalizing, scallop-free, stage of
the milling process. The output of our algorithm, however, is
an atlas of patches of various patch sizes and milling directions,
but an automatic selection of a subset of these patches is not a
part of this work. One may ask how to automatically select e.g.,
a smallest subset of patches that maximizes the coverage of Φ,
but such an extraction seems to lead to an NP hard problem.
Another limitation of our work stems in the fact that the algo-
rithm does not guarantee to fully cover Φ. To mill the whole
surface, our approach must be complemented by some other
method, e.g., [8], to finalize the remaining residual parts of the
surface.

6. Conclusion and Future Work

We have introduced an automatic algorithm that, in the con-
text of CNC machining, initializes trajectories of conical cutters
of given slopes and sizes such that their conical envelopes ap-
proximate well the input free-form surface. Our approach ex-
ploits multi-valued vector fields that correspond to directions in

which the point-surface distance changes linearly according to
the slope of the prescribed conical tool. Integrating these vec-
tor fields gives rise to integral curves, and among them, straight
segments are detected. Linear segments that additionally admit
tangential motion of the associated cutter along the surface form
a set of candidate lines. These lines are sequentially clustered
and ordered and their sequences define ruled surface patches
that correspond to initial motions of the conical milling tool.
Optimization is then applied to globally minimize the approxi-
mation error.

We have tested our algorithm against benchmark industrial
datasets, as well as against exact envelopes with known solu-
tions. Our algorithm recovers the exact solutions and for gen-
eral free-form surfaces that are not exact envelopes returns ap-
proximate patches within fine tolerances. The algorithm re-
quires several input parameters, e.g. the number of samples
per ruling, but is fully automatic in the sense that it does not re-
quire intervention of the user to indicate the initial trajectory of
the milling tool. We believe this automation is a significant step
forward in the state-of-the-art milling algorithms as detecting
large patches that can be milled by a single sweep may consid-
erably reduce the total execution times.

Our future research aims at developing computer-aided mod-
eling tools that will consider the manufacturing process directly
in the modeling stage. In such a modeling interface, for ex-
ample, a modification of a control point of a free-form surface
would evoke an optimization based routine that would update
both the milling tool and its trajectory to best approximate the
designers’ intentions by a surface that is by-definition manufac-
turable.

Acknowledgments. We thank Denys Plakhotnik for providing
the datasets for Fig. 17 and 18. This research has been sup-
ported by the European Community’s 7th Framework Programme
under grant agreement 286426 (GEMS). The first author has
been partially supported by The National Natural Science Foun-
dation of China (Grant No. 61672187) and Natural Scientific
Research Innovation Foundation in Harbin Institute of Tech-
nology (HIT.NSRIF.201711). The second author has been par-
tially supported by the Basque Government through the BERC
2014-2017 program and by Spanish Ministry of Economy and

10

exact

#lines = 5119

Φ

bad w

#lines = 2905
w = 0.02

bad c

#lines = 974
c = 0.02

Figure 20: Exact envelope reconstruction. An
exact envelope Φ was generated by applying a
pure rotation (red axis) to a cone. In such a sit-
uation, there exist two one-parameter families
of generating lines. Top row from left to right:
Candidate lines detected by our algorithm for
the exact solution (c,w) = (0.1,0.06), distorted
in c-direction, and w-direction. Bottom left: fi-
nal motion recovered by our algorithm and the
top view (framed). Bottom right: The final en-
velope and the contact characteristics (red).

Table 1: Default parameters and thresholds of our algorithm for input surfaces with normalized bounding box. In the ‘VSA’ columns, #nV SA is the number of
proxies, and #nnor is the number of sampled points on the surface normal at each proxy barycenter. ‘Lines & Movability’ columns contain the integration stepsize
δ , see Fig. 10, angular deviation εlinear that controls the line straightness and εgliding that is a threshold on the gliding energy Fl in Section 4.4. In the ‘Clustering
& Ordering’ columns, k is the number of the k-means clusters, ω1 and ω2 are the weights in Eq. (16), and εshear is the angular threshold in (17) that prevents shear
motions. In the ‘Sampling’ columns, m and n are the number of samples on the ruled surface in the time and the ruling parametric directions, respectively. In the
last category, we show the optimization parameters that affect Eq. (23).

VSA Lines & Movability Clustering & Ordering Sampling Optimization
#nV SA #nnor δ εlinear εgliding k ω1 ω2 εshear m n µ1 µ2 µ3 µ4

400 20 0.01 2◦ 0.005 200 1 1 40◦ 100 30 1 0.1 0.001 0.1

Competitiveness MINECO: BCAM Severo Ochoa excellence
accreditation SEV-2013-0323.

7. References

References

[1] M. Bartoň, H. Pottmann, and J. Wallner. Detection and reconstruction of
freeform sweeps. Computer Graphics Forum, 33(2):23–32, 2014.

[2] S. Bedi, S. Mann, and C. Menzel. Flank milling with flat end milling
cutters. CAD, 35(3):293–300, 2003.

[3] Pengbo Bo, Michael Bartoň, Denys Plakhotnik, and Helmut Pottmann.
Towards efficient 5-axis flank CNC machining of free-form surfaces via
fitting envelopes of surfaces of revolution. Computer-Aided Design, 79:1–
11, 2016.

[4] C Brecher, M Weck, M Winterschladen, S Lange, O Wetter, T Pfeifer,
D Dörner, E Brinksmeier, and L Autschbach. Manufacturing of free-
form surfaces in optical quality using an integrated nurbs data interface.
In Proceedings of the ASPE Winter Topical Meeting, 2004.

[5] Christian Brecher and O Wetter. Manufacturing of free-form surfaces
using a fast tool servo (fts) and an online trajectory generator. In Proc.
ASPE Winter Topical Meeting, 2005.

[6] Cristiano Ceccato, Lars Hesselgren, Mark Pauly, Helmut Pottmann, and
Johannes Wallner. Advances in Architectural Geometry 2010. Springer
Vienna Architecture, 2010.

[7] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational
shape approximation. In ACM Transactions on Graphics (TOG), vol-
ume 23, pages 905–914. ACM, 2004.

[8] G. Elber and R. Fish. 5-axis freeform surface milling using piecewise
rule surface approximation. ASME Journal of Manufacturing Science
and Engineering, 119(3):383–387, 1997.

[9] J. Fan and A Ball. Flat-end cutter orientation on a quadric in five-axis
machining. Computer-Aided Design, 53:126–138, 2014.

[10] S. Flöry. Fitting curves and surfaces to point clouds in the presence of
obstacles. Computer Aided Geometric Design, 26:192–202, 2009.

[11] Natasha Gelfand and Leonidas J Guibas. Shape segmentation using lo-
cal slippage analysis. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing, pages 214–223. ACM,
2004.

[12] H. Gong, C. Li-Xin, and L. Jian. Improved positioning of cylindrical
cutter for flank milling ruled surfaces. Computer-Aided Design, 37:1205–
1213, 2005.

[13] H. Gong and N. Wang. Optimize tool paths of flank milling with
generic cutters based on approximation using the tool envelope surface.
Computer-Aided Design, 41(12):981–989, 2009.

[14] R. F. Harik, H. Gong, and A. Bernard. 5-axis flank milling: A state-of-
the-art review. Computer-Aided Design, 45(3):796–808, 2013.

[15] H. T. Hsieh and C. H. Chu. GPU-based optimization of tool path planning
in 5-axis flank milling. In 2010 International Conference on Manufactur-
ing Automation, ICMA 2010, pages 143–150. IEEE, 2010.

[16] T. Kanungo, D. M Mount, N. Netanyahu, C. Piatko, R. Silverman, and
A. Wu. An efficient k-means clustering algorithm: Analysis and imple-
mentation. IEEE transactions on pattern analysis and machine intelli-
gence, 24(7):881–892, 2002.

[17] C. Li, S. Bedi, and S. Mann. Flank milling of a ruled surface with conical
tools – an optimization approach. Int. J. Adv. Manuf. Technol., 29:1115i–
1124, 2006.

[18] C. Li, S. Bedi, and S. Mann. Flank millable surface design with conical
and barrel tools. Computer- Aided Design and Applications, 5:461–470,

11

2008.
[19] S. X. Li and R. B. Jerard. 5-axis machining of sculptured surfaces with a

flat-end cutter. Computer-Aided Design, 26(3):165–178, 1994.
[20] Y.A. Lu, Q.Z. Bi, and L.M. Zhu. Five-axis flank milling of impellers:

Optimal geometry of a conical tool considering stiffness and geometric
constraints. Proceedings of the Institution of Mechanical Engineers, Part
B: Journal of Engineering Manufacture, 228:1226–1236, 2014.

[21] M. Peternell, H. Pottmann, and B. Ravani. On the computational geome-
try of ruled surfaces. Computer-Aided Design, 31:17–32, 1999.

[22] H. Pottmann and J. Wallner. Approximation algorithms for developable
surfaces. Computer Aided Geometric Design, 16(6):539–556, 1999.

[23] H. Pottmann, W. Wang, and Y. Liu. Fitting B-spline curves to point clouds
by squared distance minimization. Technical report, Technical report,
Department of Computer Science, The University of Hong Kong, 2004.

[24] J. Redonnet, W. Rubio, and G. Dessein. Side milling of ruled surfaces;
optimum positioning of the milling cutter and calculation of interfer-
ence. The International Journal of Advanced Manufacturing Technology,
14(7):459–465, 1998.

[25] J. Senatore, Y. Landon, and W. Rubio. Analytical estimation of error
in flank milling of ruled surfaces. Computer-Aided Design, 40:595–603,
2008.

[26] J. Senatore, F. Moniès, and W. Rubio. 5-axis flank milling of sculptured
surfaces. In Machining of Complex Sculptured Surfaces, pages 33–65.
Springer, 2012.

[27] K. Sprott and B. Ravani. Cylindrical milling of ruled surfaces. Int. J. Adv.
Manuf. Technol., 38:649–656, 2008.

[28] Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann.
Interactive design of developable surfaces. ACM Transactions on Graph-
ics (TOG), 35(2):12, 2016.

[29] K. Tang and C.C.L. Wang. Modeling developable folds on a strip. Journal
of Computing and Information Science in Engineering, 5(1):35–47, 2005.

[30] T. Várady and R. Martin. Reverse Engineering. In: Handbook of com-
puter aided geometric design. Elsevier, 2002.

[31] Jan Vršek and Miroslav Lávička. Determining surfaces of revolution from
their implicit equations. Journal of Computational and Applied Mathe-
matics, 290:125–135, 2015.

[32] C.C.L. Wang and G. Elber. Multi-dimensional dynamic programming in
ruled surface fitting. Computer-Aided Design, 51:39–49, 2014.

[33] C.C.L. Wang and K. Tang. Optimal boundary triangulations of an inter-
polating ruled surface. Journal of Computing and Information Science in
Engineering, 5(4):291–301, 2005.

[34] Kim Y.J., Bartoň M., Elber G., and Pottmann H. Precise gouging-free
tool orientations for 5-axis CNC machining. Computer-Aided Design,
58:220–229, 2015.

[35] G. Zheng, Q.-Z. Bi, and L.-M. Zhu. Smooth tool path generation for five-
axis flank milling using multi-objective programming. In Proceedings of
the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, volume 226, pages 247–254, 2012.

[36] L. Zhu, H. Ding, and Y. Xiong. Simultaneous optimization of tool path
and shape for five-axis flank milling. Comput. Aided Des., 44:1229–1234,
2012.

[37] L. Zhu, G. Zheng, H. Ding, and Y. Xiong. Global optimization of tool
path for five-axis flank milling with a conical cutter. Computer-Aided
Design, 42(10):903–910, 2010.

12

