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Abstract

Indirect hex-dominant meshing methods rely on the detection of adjacent tetrahedra that may be combined to form
hexahedra, prisms and pyramids. In this paper we introduce an algorithm that performs this identification and builds
the set H of all possible combinations of tetrahedral elements of an input mesh T into hexahedra, prisms, or pyra-
mids. All identified cells are valid for engineering analysis. First, all combinations of eight/six/five vertices whose
connectivity in T matches the connectivity of a hexahedron/prism/pyramid are computed. The subset of tetrahedra of
T triangulating each potential cell is then determined. Quality checks allow to early discard poor quality cells and to
dramatically improve the efficiency of the method. Each potential hexahedron/prism/pyramid is computed only once.
Around 3 millions potential hexahedra are computed in 10 seconds on a laptop. We finally demonstrate that the set of
potential hexes built by our algorithm is significantly larger than those built using predefined patterns of subdivision
of a hexahedron in tetrahedral elements.
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1. Introduction

In this paper we propose a new algorithm to identify all the hexahedra that may be built by combining tetrahedra
of a given mesh. Hexahedral meshes are considered by most of the finite element practitioners to be superior to
tetrahedral meshes (see e.g. [1]). Yet, no robust meshing technique is able to process general 3D domains. And
generating hexahedral meshes in an automatic manner is still considered as the ultimate goal in mesh generation
[2]. Recently, promising techniques producing meshes composed of a majority of hexahedra have been proposed
[3, 4, 5, 6, 7]. These methods take advantage of the existence of robust algorithms to generate tetrahedral meshes
and combine tetrahedra to produce meshes composed of a majority of hexahedra associated to prisms, pyramids and
tetrahedra . The four steps of these indirect hex-dominant meshing methods can be summarized as follows (see also
Figure 1):

1. A set of mesh vertices V is initially sampled in the domain.
2. A tetrahedral mesh T is built by connecting V , e.g. using a Delaunay kernel like [8].
3. The set of potential cells H (hexahedra, prisms, pyramids) that can be defined by combining tetrahedra of T is

built.
4. A maximal subset Hc ⊂ H constituted of cells that can be part of the same final mesh is determined. The final

hex-dominant mesh is obtained adding the remaining not selected tetrahedra T ′.

To reach the ultimate goal and combine all tetrahedra into hexahedra, i.e. obtain a final full-hexahedral mesh, all steps
are crucial. Previous works primarily focus on the first step of placing the final mesh vertices. In this paper, we focus
on the third step. Our input is a tetrahedral mesh T of a given point set V and we output the set of all hexahedra,
prisms, and pyramids that may be built by combining tetrahedra of T .
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(2) Tetrahedral mesh (3) All possible combinations
of tets in hexahedra, prisms, pyramids

(4) Hex-dominant mesh(1) Point set

Figure 1: Indirect hexahedral dominant meshing principle.

(1)

v

(2)

Figure 2: Two hexahedra not identified by existing combination methods. (1) A decomposition with an interior vertex v. (2) A decomposition into
eight tetrahedra. This is a counter example to [7]’s claim that there is no decomposition of the hexahedron into more than seven interior tetrahedra.

Identifying combinations of tetrahedra into pyramids is trivial. There are three possible pyramids for each facet
shared by two tetrahedra of T . Identifying combinations of tetrahedra into prisms is a bit more challenging since
three tetrahedra properly connected should be identified. However, when identifying combinations of tetrahedra into
hexahedra, there are at least ten different subdivisions of a hexahedron into five, six, or seven tetrahedra (§2). To
overcome this challenge, two main approaches have been proposed. The first relies on a predefined set of patterns of
the decomposition of a hexahedron into tetrahedra [3, 6, 7], the second on patterns of edge connections in a hexahedron
[4, 5]. Their main limitation is that they do not build the largest set of potential hexahedra H. For example, they do
not detect the two hexahedra of Figure 2 (more details in §2.4).

In this paper, we introduce an algorithm that detects all possible combinations of tetrahedra into hexahedra. The
algorithm is based on the local search of combinations of eight vertices that are adequately connected to build a
hexahedron. The key advantages of the new algorithm are that it computes all possible potential hexahedra, computes
each of them once only, discards bad quality hexes at an early stage, is easy to implement and is very efficient. The
algorithm does not rely on any pattern. An algorithm variation permits to compute all the possible potential prisms.

After reviewing the main methods to combine tetrahedra into hexahedra , prisms or pyramids (§2), we detail
our vertex-based algorithm to identify the potential hexahedra , prisms and pyramids in a tetrahedral mesh (§3).
We demonstrate we actually compute the set of all possible hexahedra , prisms, and pyramids. We further show in
particular that the set of hexahedra built by our algorithm is larger than the one built by existing methods (§4.2).
Examples of hex-dominant mesh that may be generated from these potential cells are given in §4.3. The C++ code
implementing the methods of this paper is open-source and available at https://www.hextreme.eu/download/.

2. Background

Before giving details on subdivisions of hexahedra , prisms or pyramids into tetrahedra (§2.2) and on methods
used to identify these in an existing mesh (§2.3), we define the terms and notations used throughout the paper.
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Figure 3: 3D cell templates: tetrahedron, pyramid, prism, and hexahedron.

2.1. Definitions

We have to be very clear that all the cells we are considering are finite element cells hexahedra /prisms/pyramids
valid for finite element simulations. A very important point is that their quadrilateral facets are not planar, but are
bilinear surfaces. We require the Jacobian determinant to be strictly positive at any point inside the cell. The following
conventions will be used throughout this paper (see Figure 3).
The pyramid {abcde} has:

• 5 vertices: {a}, {b}, {c}, {d}, {e}

• 8 straight line edges: {ab}, {bc}, {cd}, {ad}, {ae}, {be}, {ce}, {de}

• 4 planar triangle faces: {abe}, {bce}, {cde}, {ade}

• 1 bilinear quadrilateral face: {abcd}

The prism {abcdef} has:

• 6 vertices: {a}, {b}, {c}, {d}, {e}, {f}

• 9 straight line edges: {ab}, {bc}, {ca}, {ad}, {be}, {cf}, {de}, {ef}, {fd}

• 2 planar triangle faces: {abc}, {def}

• 3 bilinear quadrilateral faces: {abed}, {efcb}, {acfd}

The hexahedron {abcdefgh} has:

• 8 vertices: {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h},

• 12 straight line edges: {ab}, {bc}, {cd}, {ad}, {ae}, {bf}, {cg}, {dh}, {ef}, {fg}, {gh}, {eh}

• 6 bilinear quadrilateral faces: {abcd}, {efgh}, {abfe}, {dcgh}, {bcgf}, {adhe},

A triangulation (tetrahedrization) of a hexahedron/prism/pyramid is a triangulation of the vertices of the cell that
respect the cell boundary, in other words it is a subdivision of the interior of the hexahedron/prism/pyramid into a set
of conformal tetrahedra without any additional vertex. The tetrahedra induce a subdivision of each quadrilateral facet
into two triangles by a diagonal boundary edge. We further define the boundary tetrahedra as the tetrahedra connecting
the four vertices of a cell quadrilateral facet (Figure 4.2). In previous works [3, 6, 5, 7], boundary tetrahedra are called
slivers. We do not use that term which refers to a geometrical property (degeneracy) of tetrahedra. The triangulation is
determined by interior tetrahedra (Figure 4.1). Indeed, the addition or removal of one or several boundary tetrahedra
does not modify the cell.

2.2. Decomposing a cell into tetrahedral elements

We first review the subdivisions of the pyramid, of the prism and of the 3-cube into tetrahedra [9].
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2. Boundary tetrahedra

Figure 4: Interior tetrahedra and boundary tetrahedra of a hexahedron triangulation. Boundary tetrahedra connect the four vertices of the same
quadrilateral facet.

2 triangulations 8 triangulations 4 triangulations24 triangulations24 triangulations 12 triangulations

Figure 5: The six types of triangulations of the 3-cube and their dual complex representations. In the dual complexes, there is on vertex per
tetrahedron , one plain edge linking adjacent tetrahedra and one dashed edge linking tetrahedra incident to the same quadrilateral facet. The interior
(red) edge is the cube diameter and corresponds to a cell in the dual complex.

Triangulation of the pyramid. There are as many subdivisions of the general pyramid as there are subdivisions of its
planar base [9]. We are considering square pyramids, there are then exactly two triangulations of the pyramid.

Triangulation of the prism. The ordinary triangular prism is the result of the product of a triangle with an edge:
prism(D3) = D3 × D2. A prism(Dn) has exactly n! triangulations that are all equivalent to one another by affine
symmetries [9]. The prism has then 6 triangulations that are all equivalent.

Triangulation of the 3-cube I3 = [0, 1]3. The 3-cube has exactly 74 triangulations [9] :

1. Every triangulation of the 3-cube contains either a regular tetrahedron (i.e. a tetrahedron whose 6 edges are of
equal lengths) or a diameter, i.e. an interior edge joining two opposite vertices (red edges on Figure 5).

2. There are 2 triangulations with a regular tetrahedron, symmetric to one another. The triangulations containing
an interior edge are completely classified modulo symmetries by their dual complex which can be one of the
last five shown on Figure 5. There are respectively 8, 24, 12, 24, 4 triangulations in each class.

A dual complex (Figure 5) is a practical way to visualize the 6 different possible decompositions (tetrahedrizations)
of the 3-cube. In the dual complex, also called dual graph, one vertex corresponds to one tetrahedron and two vertices
are connected by an edge if the corresponding tetrahedra are adjacent through a triangular facet. A 2-cell of the
dual complex (cycle in the dual graph) corresponds to an interior edge of the tetrahedrization (red on Figure 5). In
a meshing context, these different possible decompositions of the 3-cube were identified by [3] who enumerate the
feasible dual complex graphs, called RF-graph in their paper. In the RF-graph, additional dashed edges connect
tetrahedra that are adjacent to the same quadrilateral facet (Figure 5).

Triangulations of the real cube. Recently, the work of [3] was extended by [6] and [7] who proposed four additional
decomposition patterns into seven tetrahedra (Figure 6). The hexahedron is split into two prisms by a tetrahedron
without any facet on the hexahedron boundary and containing two interior edges. For this tetrahedron to have a
strictly positive volume, it is sufficient to work in finite precision, i.e. move slightly one of its vertices.
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Figure 6: The four types of triangulations of an almost perfect cube into 7 tetrahedra proposed by [6] and their dual complex representation.

Bounds on the number of tetrahedra. The Euler characteristic gives a relationship between the number of tetrahedra t
in a cell decomposition and its number of interior edges eint. Each triangulation is a 3-ball with Euler characteristic
χ = 1, where χ = v− e + f − t. Then v− eint − ebd + fint + fbd − t = 1. Since there are 4 triangular faces per tetrahedron
and 2 tetrahedra per interior triangular face, we have 4t = 2 fint + fbd. Since the number of boundary edges ebd, and
boundary triangular facets fbd are fixed for each type of cell, the number of tetrahedra t in a hexahedron , prism or
pyramid decomposition (without internal vertices) depends only on the number of interior edges eint. Moreover, there
are at most

(
n
2

)
− ebd edges in a cell with n vertices we then have trivial bounds on the number of tetrahedra in the

triangulation of the cells.

• For the hexahedron: thex = 5 + eint and 5 ≤ thex ≤ 15.

• For the prism: tprism = 3 + eint and 3 ≤ tprism ≤ 6

• For the pyramid: tprism = 2 + eint and 2 ≤ tpyramid ≤ 3.

See also [10] for additional combinatorial results.

2.3. Combining tetrahedra into hexahedra: state of the art

To compute the set H of potential hexahedra and other cells that may be built by combining the elements of a tetra-
hedral mesh T without modifying its connectivity there are two known approaches. [3] propose to find combinations
of tetrahedra into hexahedra by searching the adjacency graph of T for all occurrences of the cube decomposition
dual complexes (Figure 5). The problem of matching subgraphs in large sparse graphs is solved using standard data
mining algorithms that operate on graphs. The same technique is used by [11, 12, 6] and [7] who consider four de-
compositions into seven tetrahedra (Figure 6). The second approach proposed by [4] relies on the vertices and edges
of the tetrahedral mesh T . Local searches are performed into the vertex-edge graph of T using two patterns. These
vertex connectivity patterns generalize those proposed by [3] and relax partially the dependency on the tetrahedral
mesh. This method has been implemented by [5] where a third pattern taking into account configurations with an
interior flat tetrahedron was added. Some other approaches like H-Morph [13] combine tetrahedra into hexahedra,
while allowing for modifications of the connectivity and geometry of the input tetrahedral mesh (tetrahedron flips,
node insertions, and node displacement). This great flexibility can make the algorithm intractable, but one advantage
is that it maintains a valid mixed mesh throughout the procedure.

2.4. Motivations for a new approach

Important observations led us to work on improving these existing techniques. First, they do not identify the
largest set H of potential hexahedra. On Figure 2 we gave two valid hexahedra that would neither be found by [3]’s
method nor by [4]’s method. The first is a decomposition that encompasses one internal vertex, a configuration that
may occur when a Steiner point is added when generating the tetrahedra. The second is a decomposition that has
8 interior tetrahedra. It is a counter example to [7]’s claim that there is no hexahedron decomposition with more
than 7 interior tetrahedra. Both decompositions are not identified when searching for hexahedra made of 5, 6, or 7
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Figure 7: Two hexahedra with different edges and faces may be defined from the same set of tetrahedra.

interior tetrahedra. Neither are they by [4]’s algorithm since none of their constitutive tetrahedra has three facets on
the hexahedron boundary.

Second, as mentioned by [4], several hexahedra may be defined using the same decomposition pattern by modi-
fying the ordering of the vertices (Figure 7). The hexahedra have different edges and different faces while having the
same tetrahedral decomposition. The hexahedron on the left being a perfect cube, the one on the right is undoubtedly
invalid (zero Jacobian determinant), but were the vertices in a more general position, both could be valid. Third, the
existing methods identify the same hexahedron several times. That number is as high as the number of corner tetra-
hedra in the decomposition in [4]’s approach and depends on dual complex symmetries in [3]’s approach. With those
observations in mind, we believe that an algorithm that finds all potential hexahedra in a tetrahedral mesh should not
be based on a predefined set of patterns.

3. An algorithm to combine tetrahedra into hexahedra

In this section, we detail our algorithm to detect combinations of tetrahedra into hexahedra or prisms and find
all cells that may be generated by combining elements of a given input tetrahedral mesh T . We first explain the 2d
version of the algorithm that combines triangles into quadrilaterals and show its relationship to algorithms generating
permutations and combinations.

3.1. The 2D algorithm

The 2D version of the algorithm is built by modifying an algorithm generating the 4-permutations of a n-set.
Given a set V of n vertices labeled from 1 to n, let us first compute all possible quadrilaterals that can be defined from
these vertices. We define a numbered quadrilateral abcd by the order of its 4 vertices and we define a non-oriented
quadrilateral abcd by its edges ab, bc, cd and da ignoring orientation. Generating all numbered quadrilaterals that
can be built from V is a combinatorial problem solved by Algorithm 1 which generates all possible permutations of
4 vertices of the n labels. When V = {1, 2, 3, 4}, the output is the set of the 24 permutations of 4 values (Table 1).
These 24 permutations define 3 different non-oriented quadrilaterals, each of them corresponding to 8 equivalent
permutations. Adding constraints on the relative order of the vertices of one quadrilateral a < b, a < c, b < d, we
obtain Algorithm 2 which fulfill our first objective and compute all possible non-oriented quadrilaterals that can be
built from V . The output for V = {1, 2, 3, 4} is now the 3 non-oriented quadrilaterals that may be generated from 4
vertices (Table 2).

Algorithm 1: 4-permutations in V .
Data: V vertex set
Result: Q set of potential quads

1 foreach a in V do
2 foreach b in V, b , a do
3 foreach c in V, c < {a, b} do
4 foreach d in V, d < {a, b, c} do
5 Q← Q ∪ {a, b, c, d};

Algorithm 2: Unique quadrilaterals in V .
Data: V vertex set
Result: Q set of potential quads

1 foreach a in V do
2 foreach b in V, b > a do
3 foreach c in V, c > a, c , b do
4 foreach d in V, d > b, d , c do
5 Q← Q ∪ {a, b, c, d};
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Figure 8: For 4 points in R2, only 1 over 3 possible combinatorial quadrilateral is valid. Note that in R3, all 3 quadrilaterals define valid bilinear
quadrilateral facets.

1234 1243 1324 1342 1423 1432
2134 2143 2314 2341 2413 2431
3124 3142 3214 3241 3412 3421
4123 4132 4213 4231 4312 4321

Table 1: Output of Algorithm 1 for V = {1, 2, 3, 4} is the set of the
24 permutations of 4 values define 3 quadrilaterals.

1234 1243 1324

Table 2: Output of Algorithm 2 for V = {1, 2, 3, 4} is the set of the
3 possible quadrilaterals.

Let us now associate to each labeled vertex a point of R2. Among the 3 possible quadrilaterals that can be defined
from 4 points of R2, only one is valid, i.e. has non-intersecting edges (Figure 8). We further associate to the set of
vertices V a triangulation T and modify Algorithm 2 such that it generates all quadrilaterals whose edges are edges
of the triangulation (Algorithm 3). The search for b and d is then restricted to the set of vertices connected to a.
Similarly c should be connected through an edge to both b and d. The last step of the procedure is to identify the
triangles subdividing each quadrilateral. Vertex selection order is now a, b, d, c instead of a, b, c, d since the choice of
c depends on both b and d. All steps of the identification of quadrilaterals in a simple mesh are detailed on Figure 9b.

The advantage of this approach over the classical algorithms pairing adjacent triangles (e.g. [14]) is that it identifies
quadrilaterals which encompass one (or more) vertex. An example is the quadrilateral {1245} on Figure 9a that
encompasses vertex {3}. The other advantages of the algorithm are that it is easy to add geometrical quality tests (edge
lengths, angles of the quadrilateral under construction) and that its parallelization is trivial. Its complexity may seem
prohibitive but a vertex of a 2d triangulation is connected to an average of 6 other vertices.

Algorithm 3: Vertex based search algorithm of all potential quadrilaterals in a triangulation.
Data: T triangulation of vertex set V
Result: Q set of potential quads

1 foreach a in V do
2 foreach b in neighbors(a), b > a do
3 foreach d in neighbors(a), d > b do
4 foreach c in neighbors({b, d}), c > a do
5 Q← Q ∪ {abcd}

3.2. The 3D algorithm to combine tetrahedra into hexahedra

In this section we extend the 2D algorithm in 3D where the goal is to identify combinations of tetrahedra into
hexahedra. Similarly to what we did in 2D, we can modify an algorithm generating all possible 8-subset of the set of
labeled vertices V to generate exactly once all oriented hexahedra (Algorithm 4). The first corner of the hexahedron
is built by choosing vertices {a, b, d, e} such that b > a, d > b and e > b. This corner sets the orientation of the
hexahedron (Figure 3). Orientation can be ignored by setting e > d. The four other vertices are chosen to be greater
than a. The output of Algorithm 4 for V = {1, 2, 3, 4, 5, 6, 7, 8} is a set of 1,680 oriented hexahedra. This is consistent
with the well-known fact that there are 24 permutations of the labeled vertices that do not modify the orientation, the
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Figure 9: Search tree of Algorithm 3 on a example. Left: Input 2D mesh. Right: Each branch reaching a depth of 4 defines a quadrilateral. Five
quadrilaterals are identified: {1243}, {1235}, {1345}, {1245}, {2354}.

Algorithm 4: Generates exactly once each potential oriented hexahedron in a vertex set V .
Data: V vertex set
Result: H set of potential quads

1 foreach a in V do
2 foreach b in V, b > a do
3 foreach d in V, d > b do
4 foreach e in V, e > b do
5 foreach c in V, c > a, e < {b, d, e} do
6 foreach f in V, f > a, f < {b, d, e, c} do
7 foreach h in V, h > a, h < {b, d, e, c, f } do
8 foreach g in V, g > a, g < {b, d, e, c, f , h} do
9 H ← H ∪ {abcde f gh};

edges, or the faces of a hexahedron since 8! = 1, 680×24. When orientation is ignored, there are 48 such permutations
and then 840 different hexahedra.

The complexity of Algorithm 4 is catastrophic, but it may be nonetheless useful for relatively small point sets. For
example, we managed to recompute the full-hex mesh of the Schneider’s pyramid subdivision of [15] from its 104
points taking into account strong quality constraints on the hexahedra generated.

Our algorithm. Let us now associate to each labeled vertex of V a point of R3. Among the
(

n
8

)
× 1680 possible

hexahedra, only a small proportion will be geometrically valid. As we did in 2D with Algorithm 3, we restrict the
search space using a triangulation (tetrahedrization) of the vertices and consider only hexahedra which edges are
edges of the triangulation. The final Algorithm 5 outputs all the hexahedra that may be built using the edges of the
triangulation. Each hexahedron is generated once only since it is a direct modification of Algorithm 4. Moreover,
by construction, Algorithm 5 computes all the hexahedra that can be generated by combining tetrahedra of an input
mesh T .

The algorithm to identify prisms is built with the same principles. To build pyramids it is however much faster to
iterate on all triangular facets of T and to create three pyramids for each of them by changing the apex to be one of
the three vertices of the facet.

3.3. Computing the triangulation of a hexahedron defined by its 8 vertices:

In addition to the vertices and edges of the hexahedron/prism/pyramid, the cell boundary facets and the tetrahedra
meshing its interior should be computed to fully define the cell. For the decomposition to be valid, each quadrilateral

8



Algorithm 5: Vertex based search algorithm of the set of all potential hexahedra H in a tetrahedral mesh T .
Data: V vertex set, T tetrahedrization of V
Result: H set of potential hexahedra

1 foreach a in V do
2 foreach b in neighbors(a), b > a do
3 foreach d in neighbors(a), d > b do
4 foreach e in neighbors(a), e > b, e , d do
5 foreach c in neighbors({b, d}), c > a, c , e do
6 if !is quad face(a, b, c, d) then continue;
7 foreach f in neighbors({b, e}), f > a, f < {b, d, e, c} do
8 if !is quad face(a, b, f , e) then continue;
9 foreach h in neighbors({d, e}), h > a, h < {b, c, f } do

10 if !is quad face(a, d, h, e) then continue;
11 foreach g ∈ neighbors({c, f , h}), g > a, g < {b, d, e} do
12 if !is quad face(d, c, g, h) then continue;
13 if !is quad face(e, f , g, h) then continue;
14 if !is quad face(b, c, g, f) then continue;

15 HexahedronTets = compute tets({abcde f gh});
16 H ← H ∪ {abcde f gh,HexahedronTets};

facet should be subdivided into two triangles that are facets of the input tetrahedral mesh. The existence of these
triangle faces must be checked explicitly. Indeed, in a 3D triangulation, the existence of edges {ab}, {bc}, {bd}, {da}
does not guarantee that any of the triangles {abc}, {acd}, {abd}, or {adc} do exist in the triangulation. These tests are
performed when computing the possible cells with Algorithm 5 in order to skip invalid configurations and accelerate
the procedure. It is then guaranteed, that the boundaries of the cells defined by each set of ordered vertices output by
the combination algorithm correspond to a set of triangular facets of the input tetrahedral mesh. We also ensure that
two merged triangles belong to the same parts of the input model, or model faces.

For each cell, the last step is to determine the interior tetrahedra. Starting from a tetrahedron that is inside the cell
we propagate to the adjacent tetrahedra and determine if they are inside the cell too. For a tetrahedron to be inside
the cell, it should either (i) have its four vertices be vertices of the cell, or (ii) have one facet on the boundary and a
volume of the same sign than the cell, or (iii) be adjacent, through a facet that is not on the theoretical cell boundary,
to a tetrahedron that respect (i) or (ii). The difficulty is that at this step the real cell boundary is not yet determined
since there are two choices to triangulate each quadrilateral facet. The four triangle facets are then part of what we
previously called the theoretical boundary. All the tetrahedra should belong to the same part of the model, when they
do not the cell is discarded. Note that the boundary tetrahedra, as defined in §2, are not considered to be inside the
cell and are ignored.

3.4. Efficiency and flexibility of the algorithm
To improve the efficiency of Algorithm 5 or of its prism variation, it is crucial to discard invalid or bad quality

cells as soon as possible. The quality and validity of a cell depend only on the coordinates of its vertices. We recall
that we consider that a cell is valid if the Jacobian determinant is strictly positive at any point of the element. All cells
that have a negative Jacobian determinant are discarded.

The quality of a finite element cell is defined as the minimal value taken by the scaled Jacobian determinant over
the element. If this value is inferior or equal to zero, the cell is invalid. In the first-order finite element cells we are
considering (hexahedra, prisms, and pyramids) the maximum quality of the element is bounded by the quality at the
corners, itself bounded by the quality of the facets sharing this vertex Qcell < min(Qcorners) < min(Q f acets).

• The quality of a quadrilateral face corner abd is evaluated as the sinus of the angle made by the incident edges:

sin( ~ab, ~ad)

9



.

• The quality of a triangle facet corner abc [16] is evaluated as:

2 ‖ ~ab × ~ac‖

3
√

3

‖ ~ab‖ + ‖ ~ac‖ + ‖ ~bc‖

‖ ~ab‖ ‖ ~ac‖ ‖ ~bc‖

• The quality of a hexahedron corner abde is evaluated as the scaled Jacobian:

|( ~ab × ~ad) · ~ae|

‖ ~ab‖ ‖ ~ad‖ ‖ ~ae‖

• The quality of a prism corner abcd is evaluated as:

2 ( ~ab × ~ac) · ~ad

3
√

3

‖ ~ab‖ + ‖ ~ac‖ + ‖ ~bc‖

‖ ~ab‖ ‖ ~ac‖ ‖ ~bc‖ ‖ ~ad‖

• The quality of a pyramid base corner abde is evaluated as:

3 det(J)
2
3

‖J‖2F
where J = JpJ−1

I with JI =


1 0 1

2

0 1 1
2

0 0
√

2
2

 Jp =

(
~ab ~ad ~ae

)

where ‖.‖F denotes the Frobenius norm.

These quality values give an upper bound of the overall cell quality that we use to accelerate dramatically the
cell identification of Algorithm 5. Indeed a new upper quality bound for the cell under construction can be computed
when a vertex completing a face or a corner is added. When this bound becomes smaller than the required minimum
quality, the cell construction is terminated. Additional quality tests on the planarity of quadrilateral facets, or on edge
lengths could be added.

To guarantee that the Jacobian determinant is strictly positive, a lower bound of the quality is needed. That
computation is more challenging and time consuming and is done when the upper bound test passes. We implemented
the mathematically exact tests proposed by [17, 18]. We additionally modified it so that it is exact and robust to
floating point errors.

4. Results

4.1. Performances
We have applied our algorithm to 12 different tetrahedral meshes. Those were generated using the point placement

strategy described in [5] and implemented in Gmsh (www.gmsh.info). They have between 127 and more than 3 million
vertices (Table 3).

The results of our algorithm in terms of numbers of detected potential hexahedra, prisms, pyramids and computa-
tional times are given in Table 4. The number of potential hexahedra, prisms, pyramids mainly depends on the number
of vertices of the input tetrahedral mesh and on the minimal required quality. As expected, for a given input mesh, the
higher the minimal quality, the faster the algorithm. For example, the running time on dataset Knuckle decrease from
214s to about 9s when quality increases (Table 4). The discard of cells with a too low quality is key to the efficiency
of the algorithm. The multi-threaded version of our algorithm is very fast with about 300,000 potential hexahedra
built per second. The algorithm for prisms generates about 900,000 prisms per second and the one for pyramids about
more than 1.5 millions per second. All timings and performances are given for a laptop with 16Go RAM and an
IntelrCoreTMi7-6700HQ CPU @2.60 GHz processor. For all cells, the running time clearly depends almost only on
the number of potential cells detected. Note that for models Knuckle and Los1 the computed potential cells are only
counted since they do not fit in the 16 Go RAM.
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We estimate that our method is more than ten times faster than the state of the art pattern matching method to
identify combinations of tetrahedra into cells [7]. However, providing a valuable comparison is delicate because
quality criteria have a strong impact on performances and are not explicitly stated in previous works, preventing
comparison. Moreover no timings are provided for this one step of the hex-dominant meshing workflow.

4.2. Comparison of identified hexahedra with pattern based methods

We compare the number of potential hexahedra identified by our algorithm with the number of potential hexahedra
that would be identified by pattern-matching methods [6, 7] or vertex combination [4] in Table 5. To count the potential
hexahedra matching one of the six cube decompositions or one of the four decompositions into seven tetrahedra we
compare the dual complex graphs. To count the potential hexahedra that would be detected by [4], we count those
containing a tetrahedron that has three facets on the hexahedron facets. On small models, our algorithm detects
4 to 5% more potential hexahedra than the existing methods. That number does depend on the input tetrahedral
mesh.On larger meshes, the small difference between methods can be explained by the point placement strategy of the
input tetrahedral mesh. The points are generated by propagation from the boundary of the model. Where the fronts
collide, a roughly 2-dimensional surface, point placement is not optimal. It is in this area that out method makes a
difference, and the bigger the mesh is, the relatively smaller this area. Note that the higher the required minimum
scaled Jacobian, the smaller the difference between the number of potential hexahedra detected by our method and
the number of hexahedra detected by the existing methods. This is no surprise since the best quality is obtained for
hexahedra that are close to the perfect cube which has a limited number of decompositions.

4.3. Hex-dominant meshing

To demonstrate that hex-dominant meshes may be generated from the set of potential cells identified by our
algorithm, we choose a subset of all compatible hexahedra, prisms, and pyramids.

Cell compatibility. To have a valid final mesh, chosen cells should be mutually compatible. Two cells (hexahedron,
prism, pyramid) are compatible if all following conditions are satisfied:

1. They share no interior tetrahedron.
2. If they share 4 vertices, they share a quadrilateral face connecting these 4 vertices;
3. If they share 3 vertices, they share a triangle face connecting these 3 vertices;
4. If they share 2 vertices, they share an edge connecting these 2 vertices;

The incompatibilities between the remaining tetrahedra (not selected to build any cell) and the cells should also be
accounted for. There are at least two possible strategies to manage them: [19] propose to raise pyramids on each
non-conformal quadrilateral face and [6] propose to subdivide the pyramid or hexahedron incident to a non conformal
contact into pyramids and tetrahedra. Both methods insert a new vertex, the apex of the pyramid or a point inside

Table 3: Characteristics of the input tetrahedral meshes on which tests are performed. For each model are given the number of vertices, the number
of tetrahedra, the number of triangles defining the model boundary, the sequential timings to load the mesh and build the data structures used by
our algorithm in seconds. The meshes are available at: www.hextreme.eu.

Model #vertices #tets #bd tris Load (s) Struct. (s)

Cube 127 396 192 <0.01 <0.01
Fusee 11,975 50,750 15,128 0.07 0.04
CrankShaft 23,245 104,302 27,342 0.13 0.09
Fusee 1 71,947 349,893 55,954 0.40 0.26
Caliper 130,572 675,289 79,446 0.77 0.49
CrankShaft 2 140,985 763,870 59,656 0.87 0.52
Fusee 2 161,888 828,723 98,952 0.95 0.58
FT47 b 221,780 1,260,255 55,178 1.42 0.83
FT47 370,401 2,085,394 102,434 2.36 1.40
Fusee 3 501,021 2,694,950 217,722 3.07 1.89
Los1 583,561 3,250,705 182,814 3.76 2.28
Knuckle 3,058,481 17,466,833 640,081 17.49 16.25
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Table 4: Number of valid cells (hexahedra, prisms and pyramids) identified in 12 tetrahedral meshes (Table 3) with our algorithm for different
minimal quality values. Running times are given for a laptop with 16Go RAM and an IntelrCoreTMi7-6700HQ CPU @2.60 GHz processor. Input
tetrahedral meshes are available at: www.hextreme.eu

Cells Timings (s) Cells Timings (s)
Qmin #Hexes #Prisms #Pyr. Hex Pri. Pyr. Qmin #Hexes #Prisms #Pyr. Hex Pri. Pyr.

Cube Fusee 2
0 710 1,596 1,172 0.03 0.01 0.01 0 4,586,779 5,866,663 3,122,057 9.46 6.88 1.21
0.2 349 1,052 661 <0.01 <0.01 <0.01 0.2 3,147,148 4,614,298 2,013,799 6.17 5.37 0.92
0.4 308 1,010 639 <0.01 <0.01 <0.01 0.4 1,940,213 3,978,611 1,746,731 4.13 4.79 0.85
0.6 129 661 615 <0.01 <0.01 <0.01 0.6 455,155 1,849,333 1,489,604 1.27 2.44 0.78
0.8 64 218 138 <0.01 <0.01 <0.01 0.8 114,224 520,350 333,250 0.40 0.86 0.46

Fusee FT47 b
0 149,731 251,131 158,671 0.50 0.37 0.07 0 8,374,128 9,845,963 4,954,902 16.34 11.28 2.06
0.2 95,259 193,440 120,496 0.30 0.28 0.06 0.2 6,111,946 8,046,676 3,177,657 11.11 9.11 1.45
0.4 50,931 148,390 99,949 0.19 0.23 0.05 0.4 3,413,741 6,963,922 2,798,967 6.88 8.09 1.34
0.6 14,978 73,397 74,831 0.07 0.13 0.04 0.6 869,890 3,257,991 2,349,396 2.33 4.13 1.22
0.8 4,187 20,323 18,312 0.02 0.05 0.03 0.8 184,921 808,736 745,059 0.65 1.40 0.78

CrankShaft FT47
0 309,938 516,217 327,071 1.06 0.78 0.14 0 13,842,934 15,994,194 8,098,013 26.79 19.32 3.42
0.2 196,441 400,698 255,842 0.65 0.60 0.12 0.2 10,225,710 13,177,806 4,968,253 18.28 14.90 2.33
0.4 97,194 291,381 205,388 0.38 0.47 0.11 0.4 5,978,752 11,638,277 4,441,345 11.65 13.54 2.18
0.6 27,549 138,308 143,964 0.15 0.26 0.09 0.6 1,481,030 5,392,542 3,886,408 3.76 6.76 1.99
0.8 6,381 35,157 33,804 0.05 0.10 0.06 0.8 325,062 1,428,695 1,080,358 1.05 2.32 1.24

Fusee 1 Fusee 3
0 1,692,873 2,323,521 1,283,513 3.90 2.85 0.52 0 17,052,534 20,251,770 10,377,769 33.06 24.08 4.43
0.2 1,098,993 1,792,440 866,043 2.40 2.17 0.40 0.2 12,581,618 16,270,311 6,218,061 22.75 18.75 2.94
0.4 655,375 1,496,380 739,789 1.58 1.88 0.37 0.4 8,214,177 14,639,094 5,562,577 15.55 16.63 2.75
0.6 167,752 714,225 610,352 0.53 0.99 0.33 0.6 1,770,306 6,701,699 4,969,021 4.41 8.39 2.59
0.8 46,215 207,852 139,521 0.17 0.36 0.21 0.8 414,528 1,859,542 1,047,155 1.34 2.92 1.54

Caliper Los1
0 3,536,954 4,675,695 2,508,509 7.96 5.73 1.03 0 21,909,206 25,424,213 12,802,385 42.21 30.00 6.30
0.2 2,341,875 3,706,438 1,745,660 5.07 4.48 0.81 0.2 16,152,752 20,505,357 7,698,238 28.56 23.60 3.61
0.4 1,262,784 3,032,209 1,490,139 3.15 3.82 0.75 0.4 10,300,168 18,629,804 6,821,354 19.39 21.42 3.37
0.6 314,028 1,372,489 1,205,077 1.08 1.97 0.67 0.6 2,330,993 8,867,751 6,106,437 5.81 10.84 3.13
0.8 78,639 376,243 301,792 0.34 0.73 0.43 0.8 502,613 2,262,204 1,798,365 1.61 3.54 1.94

Crankshaft 2 Knuckle
0 4,406,357 5,565,490 2,898,887 9.24 6.45 1.24 0 86,688,872 122,469,704 64,495,784 220.75 161.08 28.29
0.2 2,983,490 4,376,413 1,874,339 5.84 5.11 0.86 0.2 51,459,040 93,888,327 36,416,856 132.79 122.33 19.81
0.4 1,683,753 3,777,653 1,598,601 3.63 4.41 0.78 0.4 34,537,750 87,271,830 34,099,717 96.46 115.21 19.37
0.6 417,004 1,677,332 1,385,062 1.20 2.21 0.72 0.6 9,499,091 42,600,754 32,019,383 31.59 62.31 18.77
0.8 104,728 468,154 301,721 0.36 0.79 0.43 0.8 2,837,726 10,931,917 6,650,518 9.44 20.43 11.32
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Table 5: Number of valid potential hexahedra detected by our algorithm and comparison with the number of hexahedra that correspond to patterns
used by previous methods.

Model Ours [3] [6, 7] [4]

Cube 710 672 696 706
Fusee 149,627 123,696 142,783 146,022
CrankShaft 310,181 251,806 294,182 302,131
Fusee 1 1,692,188 1,532,747 1,683,543 1,686,709
Caliper 3,536,997 3,175,201 3,513,863 3,522,483
CrankShaft 2 4,405,892 3,919,768 4,383,763 4,392,081
Fusee 2 4,585,236 4,110,253 4,568,332 4,574,594
FT47 b 8,374,930 7,384,695 8,343,306 8,355,231
FT47 13,846,837 12,133,218 13,806,781 13,821,507
Fusee 3 17,048,021 14,983,008 17,010,173 17,023,768
Los1 21,908,307 19,308,740 21,865,212 21,880,467
Knuckle 86,553,836 79,544,742 86,346,178 86,433,942

the neighboring cell algorithm. Their major drawback is that they increase the proportion of tetrahedra and pyramids
compared to the proportion of hexahedra. In the meshes produced for this paper, the compatibility condition between
tetrahedra and cells is relaxed. Some quadrilateral faces will be adjacent to one or two triangles. This mesh should
then be used with finite element solvers capable of handling these type of non-conformities.

Graph formalization. The selection of the cells of the final mesh can be reformulated as a Maximum Weight Indepen-
dent Set (MWIS) problem [6]. Let us consider the graph G that has one vertex for each of the cell that may be built by
combining tetrahedra of the input mesh T , and one edge linking each pair of compatible cells. The objective is then to
find the largest subgraph in which all vertices are linked to one another. This is the Maximum Clique Problem (MCP),
which is in general NP-hard. We may further associate a weight to each vertex depending on the cell quality. Since the
compatibility graph G is usually very dense, it is advantageous to replace it with its complement, the incompatibility
graph G∗. The goal is then to find the solution to the Maximum Weighted Independent Set problem (MWIS).

When the graph G∗ contains up to a few hundreds of vertices, the optimal solution may be found by enumerating all
independent sets and comparing their total weights [20]. However such an algorithm cannot be expected to terminate
in a reasonable amount of time for graphs with a few thousands of vertices, let alone graphs with a few millions of
vertices like the one we obtain. Reviewing the methods to solve the relevant MWIS problem is out of the scope of
this paper. The interested reader is referred to [21] and references therein for applicable methods in the specific case
of indirect hex-dominant meshing.

Greedy solution. The strategy we develop to obtain a hex-dominant mesh is the one used by previous works: greedily
compute an approximate solution to the MWIS problem [5, 6, 7]. The vertices (potential cells) are sorted by decreasing
weight (quality), and independent vertices (compatible cells) are iteratively added to the solution in decreasing order
of weight. This solution could be improved by taking advantage of the locality of the problem and optimizing small
disjoint subgraphs [22]. Our non-optimized sequential implementation runs typically in a few seconds. The resulting
hex-dominant meshes for three of the input tetrahedral meshes are shown on Figure 10.

5. Conclusion

In this paper we solved one step of the indirect hex-dominant meshing workflow that is the identification in a
given tetrahedral mesh, of all the possible combinations of tetrahedral elements into hexahedra, prisms, pyramids.
Our algorithm identifies all the valid cells elements since no assumption is made on subdivisions into tetrahedra, each
cell detected only once, bad quality cells are discarded early, and the algorithm is easy to implement. The C++ code
is open-source and available at https://www.hextreme.eu/download/ and in Gmsh (www.gmsh.info) [23]. Contrary to
previous works, our algorithm does not depend on a predefined set of templates, it is possible to recover hexahedra
and prisms that have internal vertices and decompositions into unexpected number of tetrahedra. We have also shown
that using a predefined set of templates for the hexahedron triangulation does not permit to detect all the potential
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 Caliper  Qmin 0.3

#hex           85,259
#prisms       18,092
#pyramids     5,957
#tets           89,023

 Los1  Qmin 0.4

#hex         482,524
#prisms       41,397
#pyramids     9,949
#tets         191,519

 Crankshaft 2  Qmin 0.4

#hex             103,722
#prisms           16,084
#pyramids         4,884
#tets               76,202

Figure 10: Examples of three hexahedral dominant meshes generated by a greedy selection (white: hexahedra, red: tetrahedra, yellow: prisms,
black: pyramids). The complete workflow, from the loading of the tetrahedral mesh till the writing of the mixed-cell mesh, typically runs in less
than a minute.
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hexahedra in a given tetrahedral mesh. The percentage of the missed potential hexahedra may be significant and reach
5% when quality requirements are low.

Our algorithm is to be part of a complete workflow to build hex-dominant meshes of which all steps have a crucial
impact on the final output. Indeed, the quality and number of potential hexahedra we can generate highly depend
on the input tetrahedral mesh and then on the placement of its vertices. For example is the model Caliper shown on
Figure 10 has complex geometrical features and points are non optimally placed around these preventing good quality
hex-meshing. The placement of the vertices is one key to the generation of good hex-dominant mesh and is a very
active research subject. The choice of the cells of the final mesh is the second key. We have shown that there may be
up 30 times more hexahedra than they are vertices in the input mesh, making the construction of the incompatibility
graph very costly and the exact resolution of the MWIS problem intractable.
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